首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于林业生态功能和青海省森林资源清查数据,采用森林植被生物量换算因子连续函数法,系统估算与分析青海省森林植被碳储量、碳密度,研究其近20a碳储量变化并进行现状分析。结果表明:(1)青海省森林碳储量为11 182 642.22t,占同时期全国总碳储量的1.98%,青海省森林生态系统中面积占较大比重的中龄林,其碳储量尚未达到最大,有较大发展空间;(2)青海省近20a天然林类型中碳储量较大的前4种分别是:柏木(Cupressus funebris)、桦木(Betula)、杨树(Populus)、云杉(Picea asperata)天然林,表明这几种天然林在青海省森林植被中占有重要的地位,其集中分布对区域生态功能的发挥起主导作用;(3)所采用的碳储量估算方法尚存不足,在以后计算中应考虑根据不同林分类型的含碳量进行计算。  相似文献   

2.
基于林业生态功能和青海省森林资源清查数据,采用森林植被生物量换算因子连续函数法,系统估算与分析青海省森林植被碳储量、碳密度,研究其近20 a碳储量变化并进行现状分析。结果表明:(1)青海省森林碳储量为11 182 64222 t,占同时期全国总碳储量的198%,青海省森林生态系统中面积占较大比重的中龄林,其碳储量尚未达到最大,有较大发展空间;(2)青海省近20 a天然林类型中碳储量较大的前4种分别是:柏木(Cupressus funebris)、桦木(Betula)、杨树(Populus)、云杉(Picea asperata)天然林,表明这几种天然林在青海省森林植被中占有重要的地位,其集中分布对区域生态功能的发挥起主导作用;(3)所采用的碳储量估算方法尚存不足,在以后计算中应考虑根据不同林分类型的含碳量进行计算  相似文献   

3.
基于“八五”期间长江中上游流域各省的森林资源调查资料,结合经典的材积源生物量法估算了长江中上游防护林体系生物量碳密度和碳贮量,并根据不同树种生物量-生产力回归关系推算了该地区当前的固碳潜力。结果表明:长江中上游地区森林平均碳密度为2575 t/hm2;碳贮量为1 39459 Tg (1 Tg = 1012 g),其中林分(包括经济林)碳贮量为1 20430 Tg,灌木林为13437 Tg,竹林为5592 Tg,三者分别占总碳贮量的8636%、963%和401%。整个防护林体系森林植被的固碳潜力为36856 Tg/a。位于本区西部的四川盆地嘉陵江流域和西部高山峡谷区,其森林碳密度、碳贮量和固碳潜力较高,而东部地区的川鄂山地长江干流、鄱阳湖水系以及洞庭湖水系相对较低,因此,长江中上游森林碳密度、碳贮量和固碳潜力总体上呈现自西向东逐渐降低的趋势。  相似文献   

4.
长江中上游防护林体系森林植被碳贮量及固碳潜力估算   总被引:6,自引:0,他引:6  
基于“八五”期间长江中上游流域各省的森林资源调查资料,结合经典的材积源生物量法估算了长江中上游防护林体系生物量碳密度和碳贮量,并根据不同树种生物量-生产力回归关系推算了该地区当前的固碳潜力。结果表明:长江中上游地区森林平均碳密度为2575 t/hm2;碳贮量为1 39459 Tg (1 Tg = 1012 g),其中林分(包括经济林)碳贮量为1 20430 Tg,灌木林为13437 Tg,竹林为5592 Tg,三者分别占总碳贮量的8636%、963%和401%。整个防护林体系森林植被的固碳潜力为36856 Tg/a。位于本区西部的四川盆地嘉陵江流域和西部高山峡谷区,其森林碳密度、碳贮量和固碳潜力较高,而东部地区的川鄂山地长江干流、鄱阳湖水系以及洞庭湖水系相对较低,因此,长江中上游森林碳密度、碳贮量和固碳潜力总体上呈现自西向东逐渐降低的趋势。  相似文献   

5.
皖江城市带农作物碳储量动态变化研究   总被引:7,自引:0,他引:7  
根据近20 a(1991~2010)主要农作物产量与耕地面积的相关数据,结合主要农作物的含碳率、经济系数、根冠比、果实水分系数,利用农作物产量与碳储量转换模型计算法对皖江城市带主要农作物碳储量、碳密度进行了估算,分析该区农田生态系统植被碳库的总量和构成的动态变化。结果表明:近20 a来该区农田植被碳储量和植被碳密度都有一定程度的提高,且2010年研究区农田植被碳储量占当年安徽省能源消耗总排碳量的2306%,具有十分明显的碳汇效应,但农作物碳储量和碳密度呈现一定的波动性。研究区中农作物碳储量以水稻作物为主(占总碳储量的6659%),各市农作物碳储量、碳密度表现为:六安、滁州农作物碳储量最大,铜陵最小;滁州、马鞍山农作物碳密度最大,铜陵最小。最后根据该区农作物碳库的构成特点和动态特征,为其进一步提高农作物碳库的碳储量和碳密度提出一些建议  相似文献   

6.
以三峡库区为研究地点,建立库区优势树种立木生物量模型,并测定乔木含碳系数,结合库区第7次和第8次森林资源连续清查数据,估算了整个三峡库区乔木林的生物量和碳储量。研究结果表明:(1)整个库区乔木林生物量和碳储量第7次调查为12 583×104t和6 471×104t,单位面积生物量75.70t/hm2,碳密度38.93t/hm2,第8次调查为14 253×104t和7 396×104t,单位面积生物量77.46t/hm2,碳密度40.20t/hm2。可见,这5a中,三峡库区生物量和碳储量都有所增加。(2)对于不同森林植被类型来说,松类的生物量和碳储量都显著高于其他类型,分别占三峡库区生物量和碳储量的40%和50%。(3)三峡库区森林植被生物量和碳储量随龄级增大先增大后减少,在中龄林时达到最大,比较两次调查的生物量和碳储量,森林植被主要以幼林龄和中龄林占优。(4)两次调查显示三峡库区森林植被生物量和碳储量主要分布在天然林中,对于碳汇起到主要作用,同时,人工林所占的比例有所提高,其碳汇能力也逐步提高。  相似文献   

7.
土壤有机碳在陆地生态系统碳循环中起着举足轻重的作用。针对农田区域内典型县域尺度有机碳储量及其空间格局特征的研究,可以为区域农田土壤固碳提供参考,为研究我国土壤有机碳储量提供基础数据支持。基于2012年农田土壤有机碳分析调查数据,结合GIS和GPS技术对川中丘陵区盐亭县土壤有机碳密度和储量及空间格局进行了估算和分析。结果表明:其主要土壤类型的0~20cm耕层土壤有机碳密度为1.11~4.26kg/m2,平均值为2.66kg/m2,水田和旱地耕层土壤有机碳密度分别为3.45和2.34kg/m2,均低于全国平均值;全县20cm深度土壤有机碳总储量2.50×109 kg C,紫色土类土壤有机碳储量最大,为1.53×109kg C,水稻土次之,有机碳储量0.93×109kg C,两者占据了农田土壤有机碳储量约98%,冲积土和黄壤土类由于面积小,有机碳储量也最低。各土壤类型有机碳储量丰度指数(RI)值都较低,碳存储能力处于中下水平。在县域农田尺度,有机碳空间格局与气候差异、植被类型关系不大,土壤类型空间差异和地形差异是有机碳空间格局形成的主要原因。  相似文献   

8.
川中丘陵紫色土区农田土壤有机碳储量及空间分布特征   总被引:1,自引:0,他引:1  
土壤有机碳在陆地生态系统碳循环中起着举足轻重的作用。针对农田区域内典型县域尺度有机碳储量及其空间格局特征的研究,可以为区域农田土壤固碳提供参考,为研究我国土壤有机碳储量提供基础数据支持。基于2012年农田土壤有机碳分析调查数据,结合GIS和GPS技术对川中丘陵区盐亭县土壤有机碳密度和储量及空间格局进行了估算和分析。结果表明:其主要土壤类型的0~20 cm耕层土壤有机碳密度为111~426 kg/m2,平均值为266 kg/m2,水田和旱地耕层土壤有机碳密度分别为345和234 kg/m2,均低于全国平均值;全县20 cm深度土壤有机碳总储量250×109 kg C,紫色土类土壤有机碳储量最大,为153×109kg C,水稻土次之,有机碳储量0.93×109kg C,两者占据了农田土壤有机碳储量约98%,冲积土和黄壤土类由于面积小,有机碳储量也最低。各土壤类型有机碳储量丰度指数(RI)值都较低,碳存储能力处于中下水平。在县域农田尺度,有机碳空间格局与气候差异、植被类型关系不大,土壤类型空间差异和地形差异是有机碳空间格局形成的主要原因。  相似文献   

9.
"退耕还林"、"天然林保护"等重大生态建设工程在长江上游实施已有十余年,剖析重大生态建设工程实施以来长江上游植被覆盖时空变化特征与生态建设投入间的响应关系,对区内未来生态建设的布局具有重要指导意义。以年际时间序列的SPOT-VEGETATION NDVI遥感数据为基础,利用遥感及地理信息系统技术,趋势拟合等方法,研究长江上游地区2002年至2013年植被覆盖时空动态变化特征。并以县级行政区为单元,分析长江上游植被覆盖时空变化与生态建设工程投入的响应关系。结果表明:研究区内植被指数NDVI(Normalized Difference Vegetation Index)整体呈现缓慢增加趋势,年均增长率为1.06%,主要体现为中等植被覆盖向高植被覆盖转化;植被覆盖增加区域远远大于植被覆盖减少区域,其中增加的区域占整个长江上游流域的86.02%,主要分布于秦巴山地以北、云贵高原以及横断山区中小起伏的山地;植被覆盖减少区域占6.09%,主要分布于汶川地震灾区以及成都,重庆、昆明等大型城市群及其周边。其次,近10 a生态建设重大工程投资对长江上游植被覆盖增长起促进作用,在研究区内有261个县级行政区具有较好的造林效率,达县级行政区总数的90%,集中分布于云贵、川陕交界处及西部高山、高原区。  相似文献   

10.
土壤碳库管理指数(CPMI)是表征土壤碳库变化的一个重要量化指标,能够反映土壤的碳库变化和碳库质量。选取庐山8种森林植被类型土壤为研究对象,对其土壤有机碳库特征及碳库管理指数进行系统研究。结论表明:(1)土壤有机碳(SOC)主要分布于0~20 cm土层中,随着土层深度增加,不同森林植被类型下SOC含量急剧下降;在0~60 cm土层中,不同森林植被类型下SOC含量的平均值排序为:马尾松林常绿阔叶林灌丛针阔混交林常绿-落叶混交林黄山松林落叶阔叶林竹林。(2)不同森林植被类型下活性有机碳(ASOC)含量为0.24~0.57 g·kg–1,总有机碳(TOC)含量为9.72~14.74 g·kg–1,土壤碳库指数(CPI)为1.63~2.48,碳库活度(A)为0.019~0.062,碳库活度指数(AI)为0.388~1.265。不同森林植被类型下ASOC含量排序:落叶阔叶林黄山松林常绿-落叶阔叶混交林灌丛针阔混交林常绿阔叶林竹林马尾松林;不同森林植被类型下ASOC/TOC(%)排序:落叶阔叶林黄山松林常绿-落叶阔叶混交林竹林灌丛针阔混交林常绿阔叶林马尾松林;不同森林植被类型下CPMI排序为:落叶阔叶林黄山松林常绿-落叶阔叶混交林灌丛针阔混交林常绿阔叶林竹林马尾松林。  相似文献   

11.
基于MODIS NDVI的攀枝花市植被覆盖变化及其驱动力   总被引:4,自引:0,他引:4  
攀枝花市位于金沙江与雅砻江的交汇处是长江上游生态脆弱区,也是天然林保护工程和退耕还林工程等的重点实施区。基于2001~2010年MODIS-NDVI数据,以及同时期的气象数据和其他辅助数据,利用最大值合成法(MVC)、趋势分析法以及线性相关分析等方法研究了攀枝花市植被覆盖时空变化及其与气候因素和人类活动的关系。研究结果表明:攀枝花市植被覆盖整体较高,属于高植被覆盖区域,年际尺度上,植被覆盖呈上升的趋势,增长速率为0.02/10 a;从年内来看,9月NDVI达到最大值,NDVI最小值出现在3月;植被覆盖在水平空间上呈"南低北高"的分布特征,并在垂直空间上呈现出显著的差异性,研究区植被覆盖分别在海拔2 000~3 000 m、坡度30°~40°达到最大值;受水热条件的影响,阴坡(0°~45°,315°~360°)植被覆盖高于阳坡(135°~225°),而平地(-1°)植被覆盖度最低;就整个研究区而言,植被退化的面积与增加的面积分别占0.7%和44.4%,增加的面积远大于退化的面积;年际尺度上植被受气温的影响高于受降水的影响;大规模生态工程建设是研究区植被覆盖增加的主要驱动因素。  相似文献   

12.
探明区域长时期陆地生态系统碳储量时空变化及其影响因素对于碳中和目标实现具有重要的理论与现实意义。研究耦合PLUS-InVEST-Geodector模型,探究三峡库区1990~2035年不同情景下碳储量时空变化规律,并从土地利用变化以及自然-社会经济复合关系角度定量揭示其影响碳储量变化归因。结果表明:(1)1990~2020年三峡库区碳储量表现为“减少-增加-减少”的波动性,整体减少6.66 Tg,减幅为1.25%,其中耕地大面积转移至建设用地是导致碳储量减少的主要原因;(2)1990~2035年三峡库区碳储量空间分布与土地利用变化具有高度一致性,其空间异质性较为显著,总体呈现出“东高西低,南低北高且库首>库腹>库尾”的分布特征;(3)2035年自然发展情景和生态保护情景碳储量较2020年分别减少7.53和0.37 Tg,生态保护情景较自然发展情景能显著降低库区碳储量损失;(4)影响碳储量时空变化因素较为显著,其中土地利用变化是其主导因子,其次则为温度、人口密度、高程和土壤类型,且各因子交互作用均对碳储量变化解释力增强。研究可为库区碳库管理以及碳储功能的可持续发展提供科学参考...  相似文献   

13.
扬子江城市群是江苏省城市化进程最快,土地利用变化最明显的区域。研究该地区地利用变化及其对陆地生态系统有机碳储量的影响,对江苏省低碳土地利用研究具有重要意义。该文利用五期30 m土地利用栅格数据、土壤样点数据、林地植被清查数据、农作物数据以及经验数据,分析了1995~2015年扬子江城市群土地利用时空变化、核算了其对有机碳储量的影响。主要结果如下:(1) 1995~2015年间,扬子江城市群约有15. 90%的土地发生了转移,其中,耕地作为主要的转出者,建设用地作为主要的转入者,耕地转移为建设用地的面积约为4 161. 78 km~2,占扬子江城市群耕地转出面积的85. 86%,是主要的土地转移类型;(2) 1995~2015年间,由于土地利用类型转移变化,扬子江城市群有机碳储量总量减少了472. 63×10~4t,其中土壤有机碳储量总量增加110. 28×10~4t,植被碳储量总量减少582. 91×10~4t;(3)建设用地占用耕地是区域有机碳储量减少的主要原因,导致有机碳储量减少406. 40×10~4t,占整个区域有机碳储量减少总量的85. 99%;(4)未来扬子江城市群可通过增加生态用地、控制建设用地、优化土地利用结构,提高区域碳储量,减少对陆地生态系统碳平衡的扰动。  相似文献   

14.
川中丘陵区是长江上游重要的生态屏障,也是国家退耕还林还草和天然林资源保护工程重点实施区。近年来,由于气候变化与人类活动的影响,该区植被覆盖及生态发生了较大变化。利用该地区2000~2015年MODIS NDVI数据、气象和土地利用数据以及研究区统计数据,采用最大值合成法(MVC)、趋势分析法和相关系数法,分析了川中丘陵区经国家生态工程建设后的植被动态变化特征,并探讨了气候变化和人类活动对植被覆盖的影响。研究结果表明:近15年,川中丘陵区植被呈增加的趋势,增速为5. 84/10 a(P0. 01);31. 58%的区域植被NDVI显著增加,主要分布在嘉陵江中游和岷江中下游,2. 90%的区域植被NDVI显著减少,主要分布在城市中心及周边;研究区植被对降水的敏感性较气温更强,22. 08%的区域面积NDVI与降水是呈显著相关的,仅7. 69%区域面积NDVI与气温是显著的;森林、灌木和草地的NDVI增加明显,各自增加比例超过60%,而建设用地和湿地是NDVI减少最明显的土地利用类型;退耕还林还草和天然林资源保护工程的建设,对川中丘陵区植被覆盖的增长起到了积极作用。  相似文献   

15.
长江上游长薄鳅生长和种群参数的估算   总被引:1,自引:0,他引:1  
2010年9月~2012年8月在长江上游攀枝花等9个采样点收集到长薄鳅(Leptobotia elongata Bleeker)样本1 528尾,基于体长频率数据采用世界粮农组织(FAO)开发的FiSAT II软件研究了长江上游长薄鳅的生长与种群参数。估算结果显示长薄鳅的极限体长(L∞)为656.1mm,生长系数(k)为0.15/a,理论生长起点年龄(t0)为-0.048a。采用Pauly的经验公式估算长薄鳅的自然死亡系数(M)为0.33(其中长江上游年平均水温为18.4℃),总死亡系数(Z)、捕捞死亡系数(F)和开发率(E)分别为0.85、0.53和0.62。2010~2011年长江上游长薄鳅年均资源重量和资源数量分别为13.21t和162 862尾,最大可持续产量(MSY)为5.17t。经相关估算参数和相对单位补充渔获量分析得出,当前长江上游长薄鳅已处于过度捕捞状态,有必要采取有效保护措施。  相似文献   

16.
攀枝花市位于金沙江与雅砻江的交汇处是长江上游生态脆弱区,也是天然林保护工程和退耕还林工程等的重点实施区。基于2001~2010年MODIS NDVI数据,以及同时期的气象数据和其他辅助数据,利用最大值合成法(MVC)、趋势分析法以及线性相关分析等方法研究了攀枝花市植被覆盖时空变化及其与气候因素和人类活动的关系。研究结果表明:攀枝花市植被覆盖整体较高,属于高植被覆盖区域,年际尺度上,植被覆盖呈上升的趋势,增长速率为0.02/10 a;从年内来看,9月NDVI达到最大值,NDVI最小值出现在3月;植被覆盖在水平空间上呈“南低北高”的分布特征,并在垂直空间上呈现出显著的差异性,研究区植被覆盖分别在海拔2 000~3 000 m、坡度30°~40°达到最大值;受水热条件的影响,阴坡(0°~45°, 315°~360°)植被覆盖高于阳坡(135°~225°),而平地(-1°)植被覆盖度最低;就整个研究区而言,植被退化的面积与增加的面积分别占0.7%和44.4%,增加的面积远大于退化的面积;年际尺度上植被受气温的影响高于受降水的影响;大规模生态工程建设是研究区植被覆盖增加的主要驱动因素。 关键词: 植被覆盖变化;归一化植被指数;气候变化;人类活动;攀枝花市  相似文献   

17.
干旱对湖北省森林植被净初级生产力的影响   总被引:2,自引:0,他引:2  
20世纪初至今中纬度地区气象干旱频发,而干旱对生态系统生产力及碳循环产生重要影响,森林生态系统作为陆地生态系统最大的碳库,在应对气候变化中发挥着不可替代的作用。净初级生产力作为陆地生态系统碳储备的首要环节,直接表征了区域生产能力和碳平衡调节能力。基于CASA模型估算了2001~2010年湖北省森林植被净初级生产力,基于SPI指数和SAINPP指数探究了干旱对其生产力的影响。结果表明,湖北省气象干旱的范围和强度对森林生态系统净初级生产力影响显著:(1)发生轻度、中度和重度干旱时,NPP分别会降低26.09%,32.67%和38.28%;(2)在大面积遭遇干旱的年份,NPP低值的森林面积明显增加,且干旱范围越广,植被生产力均值越低;(3)森林生态系统生产力降低的面积比例随干旱强度的增加呈线性趋势上升,SPI值小于-0.4,森林生态系统将有一半区域生产力水平降低;当SPI小于-1.6,超过80%的森林生产力都会降低。  相似文献   

18.
生态工程建设背景下贵州高原的植被变化及影响因素分析   总被引:1,自引:0,他引:1  
基于MODIS-NDVI和气象数据,运用趋势分析、偏相关分析和残差分析等方法,对生态工程建设背景下贵州高原的植被变化及影响因素进行分析,并定量探讨气候因素与人类活动对植被变化的影响。结果表明:(1)2000~2016年期间,贵州高原植被NDVI在空间上呈东高西低的分布特征,高值分布于野生动植物及自然保护区等,低值分布于湿地保护工程区。NDVI总体呈上升趋势,湿地保护工程区、退耕还林工程区等植被覆盖上升速率较快,野生动植物及自然保护区呈略微的下降趋势。(2)植被改善区域(83.74%)分布于研究区边缘及西北部,退化区域(16.26%)分布于研究区中部和东南部,其中退耕还林还草工程区植被改善最为明显,野生动植物保护及自然保护区和速生丰产工程区改善效果较差。(3)从气侯因素分析来看,气温和降水在总体上与NDVI均呈正相关,气温对贵州高原植被生长的影响大于降水。(4) 从人类活动分析来看,人类活动对植被的建设作用强于破坏作用,人类活动正作用(76.68%)主要分布于西北部,负作用(23.32%)集中分布于东南部。植被覆盖增加是气候因素和人类活动共同作用的结果,人类活动对植被的贡献率为75.53%,气候因素为24.47%。  相似文献   

19.
金沙江流域植被覆盖时空变化特征   总被引:1,自引:0,他引:1  
金沙江流域是长江上游生态脆弱地区,是长江上游水土保持重点防治工程、天然林保护工程和退耕还林工程等生态建设工程的重点实施区。首次利用遥感数据的归一化差值植被指数,采取线性相关分析方法,借助地理信息系统软件,定量化的分析金沙江流域生态建设工程对流域植被的影响。研究结果表明:1999~2008年,金沙江流域年均NDVI在波动中呈显著增加趋势,变化趋势的空间分布存在明显的区域差异,增加速率最快的是农田植被,增加趋势最显著的是灌丛植被;季节平均的NDVI空间分布与年内变化具有明显的空间分异性,不同季节NDVI的变化趋势也存在空间分异性,春、夏、秋和冬季金沙江流域NDVI呈增加趋势的像元分别占总像元的1650%、830%、1170%和1403%;春、夏和秋季都是灌丛NDVI的增加占主导地位,冬季则是草地NDVI的增加占主导地位。基于分析,在“长治”工程、天然林保护工程和退耕还林工程等生态建设工程的综合治理和气候变化的双重影响下,金沙江流域环境向有利的方向发展  相似文献   

20.
土地利用变化及林业(LUCF)活动是生态固碳最重要手段。研究确定LUCF温室气体排放核算制度和方法,对平衡碳排放、开展全国统一碳市场交易具有重要基础作用。在综述LUCF温室气体核算理论和方法基础上,借鉴IPCC指南和《省级温室气体清单编制指南(试行)》推荐的基本方法,构建了符合地域特色的LUCF温室气体排放核算制度和方法。采用2014年第九次国家森林资源清查数据,以全国低碳试点省陕西省为实证对象,初步核算了陕西省LUCF温室气体的净排放量,并从排放能力、排放结构和空间特征等角度揭示了陕西省LUCF温室气体的排放特征。结果显示:(1)2014年,陕西省LUCF温室气体净吸收量为1 698.42万t CO_2e,其中森林及其他木质生物质碳贮量净吸收1 852.67万t CO2e,森林转化净排放154.25万t CO_2e。(2)乔木林等优势树种,是陕西省LUCF温室气体排放中重要的固碳源(吸收源)。(3)陕南地区是重要固碳贡献区,陕北地区森林固碳能力较差。最后,针对LUCF温室气体排放核算制度和方法不够完善、森林固碳能力差异较大、区域固碳分化严重等问题,提出了健全温室气体核算制度、平衡森林资源空间分布、改善固碳树种结构等加强陕西省LUCF活动应对气候变化统计核算制度和能力建设的基本措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号