首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cost-effective machining of hardened steel components such as a large wind turbine bearing has traditionally posed a significant challenge. This paper presents an approach to machine hardened steel parts efficiently at higher material removal rates and lower tooling cost. The approach involves a two-step process consisting of laser tempering of the hardened workpiece surface followed by conventional machining at higher material removal rates with lower cost ceramic tools to efficiently remove the tempered material. The laser scanning parameters that yield the highest depth of tempered layer are obtained from a kinetic phase change model. Machining experiments are performed to demonstrate the possibility of higher material removal rates and improved tool wear behavior compared to the conventional hard turning process. Tool wear performance, cutting forces, and surface finish of Cubic Boron Nitride (CBN) tools as well as low cost ceramic tools are compared in machining of hardened AISI 52100 steel (~63 HRC). In addition, cutting forces and surface finish are compared for the laser tempering based turning and conventional hard turning processes. Experimental results show the potential benefits of the laser tempering based turning process over the conventional hard turning process.  相似文献   

2.
Sensors capable of providing fast and reliable feedback signals for monitoring and control of existing and emerging machining processes are an important research topic, that has quickly gained academic and industrial interest in recent years. Generally, high-precision machining processes are very sensitive to variation in local machining conditions at the tool–workpiece interface and lack a thorough understanding of fundamental thermomechanical phenomena. Existing sensors to monitor the machining conditions are not suitable for robust in-process control as they are either destructively embedded and/or do not possess the necessary spatial and temporal resolution to monitor local tool internal temperatures during machining at the cutting tip/edge effectively. This paper presents a novel approach for assessing transient tool internal temperature fields in the close vicinity of less than 300 μm of the tool cutting edge. A revised array layout of 10 micro thin film micro thermocouples, fabricated using adapted semiconductor microfabrication methods, has been embedded into polycrystalline cubic boron nitride (PCBN) cutting inserts by means of a modified diffusion bonding technique. Scanning electron microscopy was used to examine material interactions at the bonding interface and to determine optimal bonding parameters. Sensor performance was statically and dynamically characterized. They show good linearity, sensitivity and very fast response time. Initial machining tests on aluminum alloys are described herein. The tests have been performed to demonstrate the functionality and reliability of tool embedded thin film sensors, and are part of a feasibility study with the ultimate goal of applying the instrumented insert in hard machining operations. The microsensor array was used for the acquisition of tool internal temperature profiles very close to the cutting tip. The influence of varying cutting parameters on transient tool internal temperature profiles was measured and discussed. With further study, the described instrumented cutting inserts could provide more valuable insight into the process physics and could improve various aspects of machining processes, e.g. reliability, tool life, and workpiece quality.  相似文献   

3.
This paper presents a case-study that highlights the importance of sustainable machining technologies in achieving sustainable development objectives. A technology evaluation was undertaken to understand the likely impacts of the use of technology on sustainability performance measures. The evaluation is more than an experimental method for supporting the design of technology and an instrument for supporting decision-making. It is also a tool for supporting technology policy and for encouraging its adoption and application in industry. More specifically, a sustainability evaluation of cryogenic and high pressure jet-assisted machining in comparison to conventional machining is examined. Sustainability performance measures refer to environmental impact, energy consumption, safety, personal health, waste management, and cost. The case-study refers to the machining of high-temperature Ni-alloy (Inconel 718). It is shown that tooling costs represent the major contribution to the overall production cost, which contradicts previous analyses, and that sustainable machining alternatives offer a cost-effective route to improving economic, environmental, and social performance in comparison to conventional machining.  相似文献   

4.
Potassium dihydrogen phosphate (KDP) crystal, widely used for important electro-optic parts, is a typical hard-to-machine material because of its soft, brittle, and anisotropic properties. High quality is usually required for machined surfaces on KDP parts. Reported machining methods for KDP crystal include diamond turning, grinding, magnetorheological finishing, and polishing. Each of these methods has its limitations. Therefore, it is desirable to develop new machining methods for KDP crystal. This paper presents an experimental investigation on surface roughness in rotary ultrasonic machining (RUM) of KDP. It was found that the surface roughness obtained when using a tool with a chamfered corner was lower than that obtained using tools with right-angle corners. Other process variables (spindle speed, feedrate, and ultrasonic power) also affected the surface roughness obtained.  相似文献   

5.
The objective of this work is to characterize the heat transfer in micro end mill tools during machining operations. This analysis will aid in the design of heat dissipation strategies that could potentially increase tool life and machining precision. Tool temperatures, above the unmachined workpiece surface, have been measured using an infrared camera during slot milling of aluminum (6061-T6) and steel (1018) with 300 μm-diameter two-flute tungsten carbide end mills. The measured temperatures compare favorably with temperature distributions predicted by a two-dimensional, transient, heat transfer model of the tool. The heat input is estimated by applying Loewen and Shaw’s heat partitioning analysis. Analysis of heat transfer in the tool found that 46 s into a cut conduction through the length of the tool, storage in the tool, and convection from the surface account for 41.5%, 45%, and 13.5% of the heat generated during machining. Thermal expansion and cooling strategies are discussed.  相似文献   

6.
This paper presents the results of wireless data acquisition experiments from embedded micro thin film sensors in cutting inserts for machining. A bluetooth module is used to acquire data and establish communication with a receiver PC over the serial port profile (SPP). A signal conditioning circuit is designed and developed to increase the signal-to-noise ratio of the embedded micro thin film sensors. Moreover, an averaging filter algorithm is implemented as a software interface. To characterize the wireless data acquisition (DAQ) system, laser heating and turning tests are conducted. Both tests show that the wireless DAQ system is able to provide desirable capabilities as well as the wired one for the embedded thin film sensors in cutting inserts.  相似文献   

7.
Solid Freeform Fabrication (SFF) technologies such as Direct Metal Deposition (DMD) have made it possible to eliminate environmentally polluting supply chain activities in the tooling industry and to repair and remanufacture valuable tools and dies. In this article, we investigate three case studies to reveal the extent to which DMD-based manufacturing of molds and dies can currently achieve reduced environmental emissions and energy consumption relative to conventional manufacturing pathways. It is shown that DMD's greatest opportunity to reduce the environmental impact of tool and die manufacturing will come from its ability to enable remanufacturing. Laser-based remanufacturing of tooling is shown to reduce cost and environmental impact simultaneously, especially as the scale of the tool increases.  相似文献   

8.
The aim of this work is to investigate the effect of metal-working fluid (MWF) concentration on the machining responses including tool life and wear, cutting force, friction coefficient, chip morphology, and surface roughness during the machining of titanium with the use of the ACF spray system. Five different concentrations from 5 to 15% of a water-soluble metalworking fluid (MWF) were applied during turning of a titanium alloy, Ti–6Al–4V. The thermo-physical properties such as viscosity, surface tension and thermal conductivity of these concentrations were also measured. The test results demonstrate that the tool life first extends with the increase in MWF concentration and then drops with further increase. At low concentration (e.g., 5%), a lack of the lubrication effect causes to increase in a higher friction at the tool–chip interface resulting in severe chipping and tool nose/flank wear within a short machining time. On the other hand, at high concentration, the cooling effect is less. This increases cutting temperature and a faster thermal softening/chipping/notching of the tool material and higher friction at the tool–chip–workpiece interaction zones resulting in early tool failure. A good balance between the cooling and the lubrication effects seems to be found at the 10% MWF concentration as it offers the best machining performance. However, machining with flood coolant is observed to perform the best in the range of 5–7%.  相似文献   

9.
Coated tools have improved the performance of both traditional and nontraditional machining processes and have resulted in improved machining characteristics. However, a study on the performance of coated tools in micromachining, particularly in ECM, has not yet been adequately conducted. One possible reason is the difficulties associated with the preparation of coated microtools. This paper describes a method of preparation of nickel coated tungsten microtools by electrodeposition and reports on the performance of these tools in microECM experiments. The tungsten microtool was electroplated with nickel with direct and pulse current. The effect of the various input parameters on the coating characteristics was studied and performance of the coated microtool was evaluated in pulse ECM. The coated tool removed more material than the uncoated tool under similar conditions and was more electrochemically stable. It was concluded that nickel coated tungsten microtool can improve the pulse ECM performance.  相似文献   

10.
This paper presents a summary of recent developments in developing performance-based machining optimization methodologies for turning operations. Four major machining performance measures (cutting force, tool wear/tool life, chip form/chip breakability, and surface roughness) are considered in the present work, which involves the development and integration of hybrid models for single and multi-pass turning operations with and without the effects of progressive tool wear. Nonlinear programming techniques were used for single-pass operations, while a genetic algorithms approach was adopted for multi-pass operations. This methodology offers the selection of optimum cutting conditions and cutting tools for turning with complex grooved tools.  相似文献   

11.
Laminated tooling is a relatively fast and simple method to make metal tools directly for injection molding or resin transfer molding in the rapid prototyping field. Metal sheets are usually cut, stacked, aligned, and joined. Joining of metal sheets is usually accomplished by brazing or soldering. In the joining process, all the metal sheet layers should be rigidly joined, and thus heat should be applied to the whole volume of the laminate. Therefore, furnace brazing or diffusion bonding processes are considered suitable in laminated tooling.In this study, a rapid laminated tooling system composed of a CO2 laser, a furnace, and a high-speed milling machine was developed. From the three-dimensional information of a product, slicing into two-dimensional contours was performed and low-carbon steel sheets were cut with the CO2 laser along the paths that were created from the slicing results. The metal sheets were joined by furnace brazing and by dip soldering. Furnace brazing was for relatively high-temperature tooling processes such as injection molding, and dip soldering was for low-temperature tooling processes such as reactive injection molding (RIM). Dip soldering was introduced as a new, simple, and fast joining process of steel laminates. In both joining methods, wetting experiments were performed to ensure the optimal values of the process parameters. Finally, laminate tools were machined with a high-speed milling machine to improve the surface quality.  相似文献   

12.
Since the first CNC-type hexapod machine tool prototypes were presented at the 1994 International Machine Tool Show (IMTS) in Chicago, much debate has ensued on whether or not these machine tools will ever reach the place where they challenge traditional machining centers. This paper presents a review of research topics in the field of parallel kinematic machining for manufacturing, as well as a parallel view of the state of the art of traditional multiaxis machining. After discussing similarities as well as differences in issues faced by parallel kinematic machines and traditional machining centers, a survey of existing prototypes is provided.  相似文献   

13.
High speed machining (HSM) of tool steels in their hardened state is emerging as an attractive approach for the mold and die industry due to its potential for significant cost savings and productivity improvement. An experimental study was conducted to investigate the tool wear mechanism and surface integrity in high speed ball nose end milling of hardened AISI A2 tool steel using coated tungsten carbide and polycrystalline cubic boron nitride (PCBN) tools. It is found that coated carbide tools can only be used at low speed (120 m/min) while high content PCBN tools are suitable for HSM range (470 m/min). PCBN tools produce a damage free workpiece with better surface finish and less work hardening. Despite the higher tool cost, HSM with PCBN tools lead to reduction in both total cost and production time per part.  相似文献   

14.
This paper describes the characteristics and the cutting parameters performance of spindle speeds (n, rpm) and feed-rates (f, mm/s) during three interval ranges of machining times (t, minutes) with respect to the surface roughness and burr formation, by using a miniaturized micro-milling machine. Flat end-mill tools that have two-flutes, made of solid carbide with Mega-T coated, with 0.2 mm in diameter were used to cut Aluminum Alloy AA1100. The causal relationship among spindle speeds, feed-rates, and machining times toward the surface roughness was analyzed using a statistical method ANOVA. It is found that the feed-rate (f) and machining time (t) contribute significantly to the surface roughness. Lower feed-rate would produce better surface roughness. However, when machining time is transformed into total cut length, it is known that a higher feed-rate, that consequently giving more productive machining since produce more cut length, would not degrade surface quality and tool life significantly. Burr occurrence on machined work pieces was analyzed using SEM. The average sizes of top burr for each cutting parameter selection were analyzed to find the relation between the cutting parameters and burr formation. In this research, bottom burr was found. It is formed in a longer machining time compare the formation of top burr, entrance burr and exit burr. Burr formation is significantly affected by the tool condition, which is degrading during the machining process. This knowledge of appropriate cutting parameter selection and actual tool condition would be an important consideration when planning a micro-milling process to produce a product with minimum burr.  相似文献   

15.
The application of controlled, low-frequency modulation (~100 Hz) superimposed onto the cutting process in the feed-direction – modulation-assisted machining (MAM) – is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining compacted graphite iron (CGI) at high machining speeds (>500 m/min). The tool life is at least 20 times greater than in conventional machining. This significant reduction in wear is a consequence of the multiple effects realized by MAM, including periodic disruption of the tool–workpiece contact, formation of discrete chips, enhanced fluid action and lower cutting temperatures. The propensity for thermochemical wear of CBN, the principal wear mode at high speeds in CGI machining, is thus reduced. The tool wear in MAM is also found to be smaller at the higher cutting speeds (730 m/min) tested. The feed-direction MAM appears feasible for implementation in industrial machining applications involving high speeds.  相似文献   

16.
The surface characteristics of a machined product strongly influence its functional performance. During machining, the grain size of the surface is frequently modified, thus the properties of the machined surface are different to that of the original bulk material. These changes must be taken into account when modeling the surface integrity effects resulting from machining. In the present work, grain size changes induced during turning of AA7075-T651 (160 HV) alloy are modeled using the Finite Element (FE) method and a user subroutine is implemented in the FE code to describe the microstructural change and to simulate the dynamic recrystallization, with the consequent formation of new grains. In particular, a procedure utilizing the Zener–Hollomon and Hall–Petch equations is implemented in the user subroutine to predict the evolution of the material grain size and the surface hardness when varying the cutting speeds (180–720 m/min) and tool nose radii (0.4–1.2 mm). All simulations were performed for dry cutting conditions using uncoated carbide tools. The effectiveness of the proposed FE model was demonstrated through its capability to predict grain size evolution and hardness modification from the bulk material to machined surface. The model is validated by comparing the predicted results with those experimentally observed.  相似文献   

17.
A new approach for the machining of tantalum is presented. The new approach is a combination of traditional turning and cryogenically enhanced machining (CEM). In the tests, CEM was used to reduce the temperature at the cutting tool/workpiece interface, and thus reduce the temperature-dependent tool wear to prolong cutting tool life. The new method resulted in a reduction of surface roughness of the tantalum workpiece by 200% and a decrease of cutting forces by approximately 60% in experiments. Moreover, cutting tool life was extended up to 300% over that in the conventional machining.  相似文献   

18.
为了准确核算厦门市绿色植被降温服务功能,收集厦门市2010年和2015年18个气象站点数据,采用30 m空间分辨率Landsat卫星数据和250 m空间分辨率、16 d合成的MODIS植被指数产品,在已有基于能量平衡估算模型的基础上,通过考虑植被覆盖及降温服务时长,构建了绿色植被降温服务功能核算的改进模型,并对厦门市2010—2015年绿色植被降温服务功能时空动态特征进行分析.结果表明:①改进模型能够较为准确且合理地描述绿色植被降温服务功能的时空变化特征.②厦门市北部山区由于高植被覆盖度降温服务功能高于南部城市建成区,而城市建成区中的城市绿地也具有明显的降温作用.③2010—2015年各区降温服务功能实物量整体呈增加趋势.其中,同安区降温服务功能实物量变化量最多,为166.12×106 kW·h;湖里区变化量最少,为9.72×106 kW·h;其余各区变化量都在40×106~75×106 kW·h范围内.④森林在降温服务中贡献最大,达60%以上.相比2010年,2015年降温服务功能实物量除了灌木林地变化率为-4.29%外,其余绿色植被类型均呈增长趋势,如森林和农田的增长率为11.97%、14.23%,草地和城市绿地的增长率为87.45%、92.11%.研究显示,厦门市2010—2015年的绿色植被降温服务功能总体呈明显增强趋势,其中城市绿地的降温服务功能增强尤为明显.   相似文献   

19.
Finite element analysis (FEA) has become an invaluable tool in the design of sheet metal stamping dies and processes. FEA has gained widespread acceptance as the best method of optimizing dies for conventional stamping processes. More recently, FEA has been shown to be an effective method of designing tooling for sheet forming processes. In this work, an FEA based approach is applied to the warm stamping (warm forming) process. This work introduces a new thermal finite element analysis software called PASSAGE®/Forming (PASSAGE) that enables the up-front design of the thermal management of warm forming dies. This thermal finite element analysis software is designed to specifically handle the forming and optimization scenarios related to the heating of a stamping die while minimizing user interface time. In this work, PASSAGE has been applied to a simple block of steel embedded with cartridge heaters to validate the prediction capability of this software under two different heating conditions. The results show that PASSAGE is capable of predicting the actual steady-state temperature distribution within the block with an acceptable level of accuracy while yielding notable information to the user with respect to specifying power requirements. A finite element software package like PASSAGE is a valuable tool that will aid greatly in the implementation of warm forming as a manufacturing process beyond the scope of the laboratory and into production.  相似文献   

20.
The conventional additives in metalworking fluids (MWFs) have effects in improving the machining conditions. However, many additives can lead to environmental contamination and health problems. In this paper, lignin obtained from wood is considered as a new “green” additive in MWFs. Lignin has been used as additives in other areas like pasted lead electrodes and polypropylene/coir composites but has never been applied in cutting fluids. In this paper, lignin is dissolved in 5% conventional MWF aqueous solutions in 8 different concentrations through injection and atomization methods. Then, experiments are conducted to evaluate the effectiveness of lignin containing MWFs in micro-milling operations. The performance is compared with that of 5% conventional cutting fluid in terms of machining forces, tool wears, and burr formations. The results show that the concentration of 0.015% lignin leads to the least cutting forces, tool wear and burrs. The results also show that an appropriate concentration of lignin in MWFs can help to improve the cooling and lubrication performances during machining. The results of this paper thus indicate that lignin has a potential to be used as an additive in metalworking fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号