首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interest in coupled biodegradation and transport of organic contaminants has expanded greatly in the past several years. In a system in which biodegradation is coupled with solute transport, the magnitude and rate of biodegradation is influenced not only by properties of the microbial population and the substrate, but also by hydrodynamic properties (e.g., residence time, dispersivity). By nondimensionalizing the coupled-process equations for transport and nonlinear biodegradation, we show that transport behavior is controlled by three characteristic parameters: the effective maximum specific growth rate, the relative half-saturation constant, and the relative substrate-utilization coefficient. The impact on biodegradation and transport of these parameters, which constitute various combinations of factors reflecting the influences of biotic and hydraulic properties of the system, are examined numerically. A type-curve diagram based on the three characteristic parameters is constructed to illustrate the conditions under which steady and non-steady transport is observed, and the conditions for which the linear, first-order approximation is valid for representing biodegradation. The influence of constraints to microbial growth and substrate utilization on contaminant transport is also briefly discussed. Additionally, the impact of biodegradation, with and without biomass growth, on spatial solute distribution and moments is examined.  相似文献   

2.
Miscible-displacement experiments were conducted to examine the impact of microbial lag and bacterial cell growth on the transport of salicylate, a model hydrocarbon compound. The impacts of these processes were examined separately, as well as jointly, to determine their relative effects on biodegradation dynamics. For each experiment, a column was packed with porous medium that was first inoculated with bacteria that contained the NAH plasmid encoding genes for the degradation of naphthalene and salicylate, and then subjected to a step input of salicylate solution. The transport behavior of salicylate was non-steady for all cases examined, and was clearly influenced by a delay (lag) in the onset of biodegradation. This microbial lag, which was consistent with the results of batch experiments, is attributed to the induction and synthesis of the enzymes required for biodegradation of salicylate. The effect of microbial lag on salicylate transport was eliminated by exposing the column to two successive pulses of salicylate, thereby allowing the cells to acclimate to the carbon source during the first pulse. Elimination of microbial lag effects allowed the impact of bacterial growth on salicylate transport to be quantified, which was accomplished by determining a cell mass balance. Conversely, the impact of microbial lag was further investigated by performing a similar double-pulse experiment under no-growth conditions. Significant cell elution was observed and quantified for all conditions/systems. The results of these experiments allowed us to differentiate the effects associated with microbial lag and growth, two coupled processes whose impacts on the biodegradation and transport of contaminants can be difficult to distinguish.  相似文献   

3.
Mineralogical compositions and their spatial distributions are important initial conditions for reactive transport modeling. However, popular Kd-based "reactive" transport models only require contaminant concentrations in the pore fluids as initial conditions, and minerals implicitly represent infinite sources and sinks in these models. That situation results in a general neglect of mineralogical characterization in site investigations. This study uses a coupled multi-component reactive mass transport model to predict the natural attenuation of a ground water plume at a uranium mill tailings site in western USA. Numerous ground water geochemistry data are available at this site, but mineralogical data are sketchy. Even given the well-defined pore fluid chemistry, variations of secondary mineral species and mineral abundances in the aquifer resulted in significantly different modeling outcomes. Results show that the amount of calcite in the aquifer determines the distances of plume migration. The possible presence of jurbanite, an aluminum sulfate phase, can store acidity temporarily but cause more severe contamination on a later date. The surfaces of iron oxyhydroxides can store significant amounts of sulfate and protons and serve as a second source for prolonged contamination. These simulations under field conditions illustrate that mineralogical compositions are an essential requirement for accurate prediction of contaminant fate and transport.  相似文献   

4.
The migration of Dense, Non-Aqueous Phase Liquid (DNAPL) and dissolved phase contamination through a fractured heterogeneous porous medium has been investigated through the use of a multiphase compositional model. The sensitivity of the timescales of migration and the distribution of contaminant in the subsurface to the mean permeability, the variance of the permeability, and the degree of fracturing of the domain were examined. It was found that increasing the mean permeability of the domain allowed the DNAPL to penetrate deeper into the subsurface, while decreasing the mean permeability caused the DNAPL to pool at shallower depths. The presence of fractures within the system was found to control the infiltration only in the most fractured domain. Moment analysis of the nonwetting phase showed that large-scale movement had ceased after approximately 9 years (maximum duration of the source-on condition was approximately 4.5 years). This tended to be due to a redistribution of the DNAPL towards a residual configuration, as was evidenced by the gradual trending of average nonwetting phase saturations within the domain to a static value. The dissolved phase plume was found to migrate at essentially the same rate as the nonwetting phase, due to the reduced relative permeability of lenses containing DNAPL, and due to diffusive losses of mass to the matrix of fractured clay and silty-clay lenses. Some exceptions to this were found when the DNAPL could not overcome the displacement pressure of a lens, and could not by-pass the lens due to the lack of available driving force after the source had been shut off.  相似文献   

5.
The effects of biofilm growth on flow and solute transport through a sandblasted glass parallel plate fracture was investigated. The fracture was inoculated using soil microorganisms. Glucose, oxygen and other nutrients were supplied to support growth. The biomass initially formed discrete clusters attached to the glass surfaces, but over time formed a continuous biofilm. From dye tracer tests conducted during biofilm growth, it was observed that channels and low-permeability zones dominated transport. The hydraulic conductivity of the fracture showed a sigmoidal decrease with time. The hydraulic conductivity was reduced by a factor of 0.033, from 18 to 0.6 cm/s, corresponding to a 72% decrease in the hydraulic aperture, from 500 to 140 microm. In contrast, the mass balance aperture, determined from fluoride tracer tests, remained relatively constant, indicating that the impact of biomass growth on effective fracture porosity was much less than the effect on hydraulic conductivity. Analyses of pre-biofilm tracer tests revealed that both Taylor dispersion and macrodispersion were influencing transport. During biofilm growth, only macrodispersion was dominant. The macrodispersion coefficient alpha(macro) was found to increase logarithmically with hydraulic conductivity reduction.  相似文献   

6.
Optimizing real-time sensor systems to detect and identify relevant characteristics of an indoor contaminant event is a challenging task. The interpretation of incoming sensor data is confounded by uncertainties in building operation, in the forces driving contaminant transport, and in the physical parameters governing transport. In addition, simulation tools used by the sensor interpretation algorithm introduce modeling uncertainties. This paper explores how the time scales inherent in contaminant transport influence the information that can be extracted from real-time sensor data. In particular, we identify three time scales (within room mixing, room-to-room transport, and removal from the building) and study how they affect the ability of a Bayesian Monte Carlo (BMC) sensor interpretation algorithm to identify the release location and release mass from a set of experimental data, recorded in a multi-floor building. The research shows that some limitations in the BMC approach do not depend on details of the models or the algorithmic implementation, but rather on the physics of contaminant transport. These inherent constraints have implications for the design of sensor systems.  相似文献   

7.
On the hydro-dispersive equivalence between multi-layered mineral barriers   总被引:2,自引:0,他引:2  
In the context of municipal solid waste and hazardous waste disposal, the notion of "equivalence" between different barrier designs appears in regulatory documents from several industrialized countries. While in the past, equivalence has been thought of mainly in terms of contaminant travel times, in recent years it has been defined more in terms of the magnitude of a disposal site's potential impact on groundwater resources. This paper presents some original analytical solutions to the problem of contaminant migration through a multi-layered mineral barrier. The solutions account for the two major mechanisms of subsurface contaminant migration, namely, advection and diffusion-dispersion. An example application using the proposed solutions and a numerical model illustrates how one multi-layered mineral barrier can be considered superior to another from a strictly hydro-dispersive viewpoint. The influence of partial saturation of the mineral barrier is investigated using a numerical solution to the Richards equation for unsaturated flow. It is emphasized that conclusions relative to the superiority of one multi-layered barrier, with respect to another, should not only consider hydro-dispersive aspects, but also other processes such as the mechanical and chemical evolutions of the different barrier components. Although such phenomena are poorly addressed by existing models, failure to take them into account, at least in a qualitative fashion, may lead to unconservative conclusions with respect to barrier equivalence.  相似文献   

8.
Theory for reactive solute transport through clay membrane barriers   总被引:1,自引:0,他引:1  
The theoretical development for one-dimensional, coupled migration of solutes with different ionic mobilities through clay soils that behave as ion-restrictive membranes, referred to as clay membrane barriers (CMBs), is presented. The transport formulation is based on principles of irreversible thermodynamics and accounts explicitly for coupling effects of hyperfiltration (ultrafiltration) and chemico-osmotic counter-advection associated with clay membrane behavior in the absence of electrical current. Since, by definition, no solute can enter a "perfect" or "ideal" membrane, the concept of an implicit coupling effect, such that the effective salt-diffusion coefficient, Ds* approaches zero as the chemico-osmotic efficiency coefficient, omega approaches unity is introduced. The theoretical development also illustrates that, even in the absence of membrane behavior, traditional advective-dispersive transport theory based on a constant value of Ds* for the solutes may not be appropriate for simulating transient transport in reactive (ion exchanging) systems. This potential limitation is illustrated through simulations for solute mass flux involving the migration of a binary salt solution (KCl) through a clay barrier with exchange sites saturated with a single exchangeable cation (e.g., Na+) that enters the pore solution upon ion exchange with the salt cation (K+).  相似文献   

9.
Simulations of salt (KCl) flux through a 1-m-thick clay membrane barrier (CMB) based on coupled solute transport theory are compared to simulated fluxes based on traditional advective-dispersive transport theory. The simulations are based on measured values for the effective salt-diffusion coefficient (Ds*) and chemico-osmotic efficiency coefficient (omega) for a bentonite-based barrier material subjected to KCl solutions. The results indicate that the exit salt flux is reduced due to both explicit coupling (hyperfiltration and chemico-osmotic counter-advection) and an implicit coupling effect resulting from the decrease in Ds* due to a decrease in the apparent tortuosity factor, tau a, with an increase in omega. Implicit coupling is shown to be more significant than explicit coupling for reducing and retarding salt flux through a CMB under diffusion-dominated conditions. Failure to account for the implicit coupling effect may result in unrealistic results, such as the existence of salt flux through a perfect (ideal) clay membrane (i.e., omega=1).  相似文献   

10.
Transport of soluble toxic substances through porous media lead to some significant geoenvironmental problems, for example, leachate migration from municipal and industrial solid waste resulting from unregulated disposal. Advection, dispersion, diffusion, and decay are reported to be the principal mechanisms in such phenomena. Geotechnical properties of the soil also play a significant role in this deterioration. In the present study, laboratory tests were conducted to formulate an appropriate method for assessment of migration of metal ions, such as nickel, through the soil. Relevant kinetic and process parameters, such as aquifer data, surface area, dielectric constant, pH of zero point charge (pHzpc), and permeability were also studied. One-dimensional mathematical modeling was used to describe the dynamics of the process. The present investigation was carried out at an ash pond site of a thermal power plant situated in West Bengal, India.  相似文献   

11.
Stable colloidal particles can travel long distances in subsurface environments and carry particle-reactive contaminants with them to locations further than predicted by the conventional advective-dispersive transport equation. When such carriers exist in a saturated porous medium, the system can be idealized as consisting of three phases: an aqueous phase, a carrier phase, and a stationary solid matrix phase. However, when colloids are present in an unsaturated porous medium, the system representation should include one more phase, i.e. the air phase. In the work reported, a mathematical model was developed to describe the transport and fate of the colloidal particles and a non-volatile contaminant in unsaturated porous media. The model is based on mass balance equations in a four-phase porous medium. Colloid mass transfer mechanisms among aqueous, solid matrix, and air phases, and contaminant mass transfer between aqueous and colloid phases are represented by kinetic expressions. Governing equations are non-dimensionalized and solved to investigate colloid and contaminant transport in an unsaturated porous medium. A sensitivity analysis of the transport model was utilized to assess the effects of several parameters on model behavior. The colloid transport model matches successfully with experimental data of Wan and Wilson. The presence of air-water interface retards the colloid transport significantly counterbalancing the facilitating effect of colloids. However, the retardation of contaminant transport by colloids is highly dependent on the properties of the contaminant and the colloidal surface.  相似文献   

12.
We investigate the spatial and temporal features of variable-density contaminant plumes migration in porous materials. Our analysis is supported by novel experimental results concerning concentration profiles inside a vertical column setup that has been conceived at CEA to this aim. The experimental method relies on X-ray spectrometry, which allows determining solute profiles as a function of time at several positions along the column. The salient outcomes of the measurements are elucidated, with focus on miscible fluids in homogeneous saturated media. The role of the injected solution molarity is evidenced. As molarity increases, the solutes plume transport progressively deviates from the usual Fickian behavior, and pollutants distribution becomes skewed in the direction dictated by gravity. By resorting to a finite elements approach, we numerically solve the nonlinear equations that rule the pollutants migration: a good agreement is found between the simulated profiles and the experimental data. At high molarity, a strong dependence on initial conditions is found. Finally, we qualitatively explore the (unstable) interfacial dynamics between the dense contaminant plume and the lighter resident fluid that saturates the column, and detail its evolution for finite-duration contaminant injections.  相似文献   

13.
河道污染质垂向迁移对地下水影响的研究   总被引:4,自引:1,他引:4  
包气带是连接地表水和地下水的重要通道,对地下水资源有很好的"屏障"功能,而近年来工农业废水及生活污水的大量排放已影响到了地下水的"安全".为此,在渭河河漫滩进行了模拟河流的垂向入渗试验,并通过建立数学模型对水分和六价铬在具有弱透水层的多层介质中的迁移进行了模拟运算.试验和模拟结果一致表明,弱透水层虽对地下水有很好的保护作用,但在上部土壤层易形成面状污染带,而且由于大的浓度梯度作用,一旦污染质穿透该层将很快污染到地下水.  相似文献   

14.
Characterization of redox conditions in groundwater contaminant plumes   总被引:2,自引:0,他引:2  
Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.  相似文献   

15.
In this paper, we present semi-analytical solutions for two-dimensional equations governing transport of Light Non-Aqueous Phase Liquids (LNAPL) in unconfined aquifers. The proposed model is based on sharp interface displacement and steady groundwater flow assumptions, where both the water–LNAPL interface and the LNAPL–air interface are represented as sharp interfaces. In the case of steady groundwater flow, these equations can be reduced to a two-dimensional nonlinear solute transport equation, with the LNAPL thickness in the free product lens being the primary unknown variable. The linearized form of this solute transport equation falls into the category of two-dimensional transport equation with time-dependent dispersion coefficients. This equation can be solved analytically for an infinite domain region. In this paper, the general form of the analytical solution for the transport equation, as well as the solutions for some specific cases are presented. To demonstrate the utility of the proposed solution, numerical results obtained for two example problems are discussed and presented comparatively with a finite-element solution and other more restrictive solutions available in the literature. Although the solutions discussed in this paper have some simplifying assumptions, such as sharp-interfaces between fluid phases, steady groundwater flow and homogeneous aquifer properties, the semi-analytical solutions presented in this study may be used effectively as bench mark solutions in evaluating LNAPL migration in the subsurface. These solutions are simple and cost effective to implement and may be used in the calibration of other more complex numerical solutions that can be found in the literature.  相似文献   

16.
One possible way of integrating subsurface flow and transport processes with (bio)geochemical reactions is to couple by means of an operator-splitting approach two completely separate codes, one for variably-saturated flow and solute transport and one for equilibrium and kinetic biogeochemical reactions. This paper evaluates the accuracy of the operator-splitting approach for multicomponent systems for typical soil environmental problems involving transient atmospheric boundary conditions (precipitation, evapotranspiration) and layered soil profiles. The recently developed HP1 code was used to solve the coupled transport and chemical equations. For steady-state flow conditions, the accuracy was found to be mainly a function of the adopted spatial discretization and to a lesser extent of the temporal discretization. For transient flow situations, the accuracy depended in a complex manner on grid discretization, time stepping and the main flow conditions (infiltration versus evaporation). Whereas a finer grid size reduced the numerical errors during steady-state flow or the main infiltration periods, the errors sometimes slightly increased (generally less than 50%) when a finer grid size was used during periods with a high evapotranspiration demand (leading to high pressure head gradients near the soil surface). This indicates that operator-splitting errors are most significant during periods with high evaporative boundary conditions. The operator-splitting errors could be decreased by constraining the time step using the performance index (the product of the grid Peclet and Courant numbers) during infiltration, or the maximum time step during evapotranspiration. Several test problems were used to provide guidance for optimal spatial and temporal discretization.  相似文献   

17.
The methods presented in this work provide a potential tool for characterizing contaminant source zones in terms of mass flux. The problem was conceptualized by considering contaminant transport through a vertical "flux plane" located between a source zone and a downgradient region where contaminant concentrations were measured. The goal was to develop a robust method capable of providing a statement of the magnitude and uncertainty associated with estimated contaminant mass flux values. In order to estimate the magnitude and transverse spatial distribution of mass flux through a plane, the problem was considered in an optimization framework. Two numerical optimization techniques were applied, simulated annealing (SA) and minimum relative entropy (MRE). The capabilities of the flux plane model and the numerical solution techniques were evaluated using data from a numerically generated test problem and a nonreactive tracer experiment performed in a three-dimensional aquifer model. Results demonstrate that SA is more robust and converges more quickly than MRE. However, SA is not capable of providing an estimate of the uncertainty associated with the simulated flux values. In contrast, MRE is not as robust as SA, but once in the neighborhood of the optimal solution, it is quite effective as a tool for inferring mass flux probability density functions, expected flux values, and confidence limits. A hybrid (SA-MRE) solution technique was developed in order to take advantage of the robust solution capabilities of SA and the uncertainty estimation capabilities of MRE. The coupled technique provided probability density functions and confidence intervals that would not have been available from an independent SA algorithm and they were obtained more efficiently than if provided by an independent MRE algorithm.  相似文献   

18.
The purpose of this work is to present a distributed-domain mathematical model incorporating the primary mass-transfer processes that mediate the transport of immiscible organic liquid constituents in water-saturated, locally heterogeneous porous media. Specifically, the impact of grain/pore-scale heterogeneity on immiscible-liquid dissolution and sorption/desorption is represented in the model by describing the system as comprising a continuous distribution of mass-transfer domains. With this conceptualization, the distributions of the initial dissolution rate coefficient and the sorption/desorption rate coefficient are represented as probability density functions. Several sets of numerical experiments are conducted to examine the effects of heterogeneous dissolution and sorption/desorption on contaminant transport and elution. Four scenarios with different combinations of uniform/heterogeneous rate-limited dissolution and uniform/heterogeneous rate-limited sorption/desorption are evaluated. The results show that both heterogeneous rate-limited sorption/desorption and heterogeneous rate-limited dissolution can significantly increase the time or pore volumes required to elute immiscible-liquid constituents from a contaminated porous medium. However, sorption/desorption has minimal influence on elution behavior until essentially all of the immiscible liquid has been removed. For typical immiscible-liquid constituents that have relatively low sorption, the asymptotic elution tailing produced by heterogeneous rate-limited sorption/desorption begins at effluent concentrations that are several orders of magnitude below the initial steady-state concentrations associated with dissolution of the immiscible liquid. Conversely, the enhanced elution tailing associated with heterogeneous rate-limited dissolution begins at concentrations that are approximately one-tenth of the initial steady-state concentrations. Hence, dissolution may generally control elution behavior of immiscible-liquid constituents in cases wherein grain/pore-scale heterogeneity significantly influences both dissolution and sorption/desorption.  相似文献   

19.
Tracer tests were conducted to evaluate the effect of a complexing sugar flush (CSF) on in-situ biodegradation potential at a site contaminated by jet fuel, solvents, and other organic compounds. Technical-grade hydroxypropyl-beta-cyclodextrin was used during the CSF study, which was conducted in a hydraulically isolated cell emplaced in a surficial aquifer. In-situ biodegradation potential was assessed with the use of tracer tests, which were conducted prior to and immediately following the CSF study. Ethanol, hexanol, and benzoate were used as the biodegradable tracers, while bromide was used as a nonreactive tracer. The results indicate that the biodegradation of benzoate was similar for both tracer tests. Conversely, the biodegradation of ethanol (23% increase) and hexanol (41% increase) was greater for the post-CSF tracer test. In addition, analysis of core samples collected from within the test cell indicates that the population density of aerobic jet-fuel degraders increased in the vicinity of the injection wells during the CSF. These results indicate that the cyclodextrin flush did not deleteriously affect the indigenous microbial community. This study illustrates that tracer tests can be used to evaluate the impact of remediation activities on in-situ biodegradation potential.  相似文献   

20.
Contaminant breakthrough behavior in a variety of heterogeneous porous media was measured in laboratory experiments, and evaluated in terms of both the classical advection-dispersion equation (ADE) and the continuous time random walk (CTRW) framework. Heterogeneity can give rise to non-Fickian transport patterns, which are distinguished by "anomalous" early arrival and late time tails in breakthrough curves. Experiments were conducted in two mid-scale laboratory flow cells packed with clean, sieved sand of specified grain sizes. Three sets of experiments were performed, using a "homogeneous" packing, a randomly heterogeneous packing using sand of two grain sizes, and an exponentially correlated structure using sand of three grain sizes. Concentrations of sodium chloride tracer were monitored at the inflow reservoir and measured at the outflow reservoir. Breakthrough curves were then analyzed by comparison to fitted solutions from the ADE and CTRW formulations. In all three systems, including the "homogeneous" one, subtle yet measurable differences between Fickian and non-Fickian transport were observed. Quantitative analysis demonstrated that the CTRW theory characterized the full shape of the breakthrough curves far more effectively than the ADE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号