首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Chemosphere》2011,82(11):1549-1559
Harmful effects of potentially toxic elements (PTE’s) in soils relate to their geochemically reactive fraction. To assess the degree of the reactivity, specific extractions or models are needed. Here we applied a 0.43 M HNO3 chemical extraction to assess reactive pools of a broad range of PTE’s in 136 contaminated and non-contaminated soils. Furthermore we derived Freundlich-type models based on commonly available soil properties (pH, organic carbon and clay) as well as extended models that used other properties such as amorphous Al and Fe oxides and evaluated their possible use in risk assessment.The approach allowed to predict the reactivity of As, Hg, Co, U, Ba, Se, Sb, Mo, Li, Be (r2: 0.55–0.90) elements not previously included in such studies, as well as that of Cd, Zn, Cu, Pb, Ni and Cr (r2: 0.73–0.90). The inclusion of pH, organic carbon and clay improved the performance of all models except for Be and Mo, although the role of clay is not completely clear and requires further investigation. The ability of amorphous metal oxides to affect the reactivity of As, Hg, Cu, Ni, Cr, Sb, Mo and Li was expressed by the models in agreement with known geochemical processes leading to the retention of PTE’s by the solid matrix. Hence, such approach can be a useful tool to account for regional differences in soil properties during the identification of risk areas and constitute a significantly more powerful tool than the analysis of total pools of PTE’s in soils.  相似文献   

2.
Knowledge of trace element concentrations and mobility is important in the ecotoxicological assessment of contaminated soils. We analysed soil pore water under field conditions to provide new insights into the mobility of residual contaminants in the surface 50cm of a highly contaminated woodland soil. Cadmium and Zn were highly mobile in the acidic soil, concentrations increasing with depth in soil pore water, showing considerable downward mobility. High levels of surface organic matter restricted the solubility of Cu, Pb and Sb, with highest concentrations being found close to the surface. Dissolved organic carbon in pore water had a strong influence on mobility of Cu, Zn, Pb and Sb. Elevated As had moved from the organic surface horizons but was largely immobilised in deeper layers and associated with Fe and Al oxides. The measured differential mobility of pollutants in the present study is highly relevant to protection of groundwater and other receptors.  相似文献   

3.
This article provides a critical review of the environmental chemistry of inorganic antimony (Sb) in soils, comparing and contrasting findings with those of arsenic (As). Characteristics of the Sb soil system are reviewed, with an emphasis on speciation, sorption and phase associations, identifying differences between Sb and As behaviour. Knowledge gaps in environmentally relevant Sb data for soils are identified and discussed in terms of the limitations this imposes on understanding the fate, behaviour and risks associated with Sb in environmental soil systems, with particular reference to mobility and bioavailability.  相似文献   

4.
To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE’s) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE’s only to a limited extent.The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Feox) and to the reactivity of PTE’s in soils which in fact control the soluble fraction of the contaminants.The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE’s in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils.  相似文献   

5.
For the assessment of contaminated soils ecotoxicological tests are used to estimate the bioavailability of contaminants in soil samples. Terrestrial tests reveal the habitat function of soils, and parameters applied in tests involving microorganisms include respiration activity and potential ammonium oxidation. For such tests, the threshold values needed to assess the results have already been established in guidelines ISO 17155 and ISO 15685. In this paper, we discuss about the respiration activity and potential ammonium oxidation results obtained from a wide variety of soils with different physico-chemical properties and levels of contamination. These results show that microbial respiration and potential ammonium oxidation have different sensitivities to various classes of contaminants. We demonstrated that both organic and inorganic contaminants influence potential ammonium oxidation, whereas microbial respiration is predominantly affected by biodegradable organic contaminants. These differences might be useful for more detailed assessments of soil contamination, leading to different recommended actions depending on which parameter is affected.  相似文献   

6.
Soil pollution with antimony is of increasing environmental concern worldwide. Measures for its control and to attenuate the risks posed to the ecosystem are required. In this study the application of several iron and aluminium oxides and oxyhydroxides as soil amendments was evaluated in order to assess their feasibility to stabilize Sb in mining polluted soils. Mine soils with different pollution levels were amended with either goethite, ferrihydrite or amorphous Al oxide at various ratios (0–10%). The effectiveness of such treatments was assessed by both batch and column leaching tests. The use of ferrihydrite or amorphous Al oxide proved to be highly effective to stabilize Sb. Immobilization levels of 100% were found when doses of 5% ferrihydrite or 10% amorphous Al oxide were applied, regardless of the soil Sb load. Column leaching studies also showed a high Sb leaching reduction (>75%) when soils were amended with 1% ferrihydrite or 5% amorphous Al oxide. Moreover, such treatments proved to simultaneously immobilize As and Pb in a great extent when soils were also polluted with such toxic elements.  相似文献   

7.
Electrokinetic remediation has been increasingly used in soils and other matrices for numerous contaminants such as inorganic, organic, radionuclides, explosives and their mixtures. Several strategies were tested to improve this technology effectiveness, namely techniques to solubilize contaminants, control soil pH and also couple electrokinetics with other remediation technologies. This review focus in the experimental work carried out in organochlorines soil electroremediation, aiming to systemize useful information to researchers in this field. It is not possible to clearly state what technique is the best, since experimental approaches and targeted contaminants are different. Further research is needed in the application of some of the reviewed techniques. Also a number of technical and environmental issues will require evaluation for full-scale application. Removal efficiencies reported in real contaminated soils are much lower than the ones obtained with spiked kaolinite, showing the influence of other factors like aging of the contamination and adsorption to soil particles, resulting in important challenges when transferring technologies into the field.  相似文献   

8.
The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

9.
Level I and II fugacity approaches were used to model the environmental distribution of benzene, anthracene, phenanthrene, 1-methylphenanthrene and benzo[a]pyrene in a four phase biopile system, accounting for air, water, mineral soil and non-aqueous phase liquid (oil) phase. The non-aqueous phase liquid (NAPL) and soil phases were the dominant partition media for the contaminants in each biopile and the contaminants differed markedly in their individual fugacities. Comparison of three soils with different percentage of organic carbon (% org C) showed that the % org C influenced contaminant partitioning behaviour. While benzene showed an aqueous concentration worthy of note for leachate control during biopiling, other organic chemicals showed that insignificant amount of chemicals leached into the water, greatly reducing the potential extent of groundwater contamination. Level II fugacity model showed that degradation was the dominant removal process except for benzene. In all three biopile systems, the rate of degradation of benzo(a)pyrene was low, requiring more than 12 years for soil concentrations from a spill of about 25 kg (100 mol) to be reduced to a concentration of 0.001 microgg(-1). The removal time of 1-methylphenanthrene and either anthracene or phenanthrene was about 1 and 3 years, respectively. In contrast, benzene showed the highest degradation rate and was removed after 136 days in all biopile systems. Overall, this study confirms the association of risk critical contaminants with the residual saturation in treated soils and reinforces the importance of accounting for the partitioning behaviour of both NAPL and soil phases during the risk assessment of oil-contaminated sites.  相似文献   

10.
Biochars are biological residues combusted under low oxygen conditions, resulting in a porous, low density carbon rich material. Their large surface areas and cation exchange capacities, determined to a large extent by source materials and pyrolysis temperatures, enables enhanced sorption of both organic and inorganic contaminants to their surfaces, reducing pollutant mobility when amending contaminated soils. Liming effects or release of carbon into soil solution may increase arsenic mobility, whilst low capital but enhanced retention of plant nutrients can restrict revegetation on degraded soils amended only with biochars; the combination of composts, manures and other amendments with biochars could be their most effective deployment to soils requiring stabilisation by revegetation. Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability.  相似文献   

11.
A myriad of physical, chemical, and biological processes controls the fate of organic contaminants in soils. The knowledge of bioavailability of a contaminant in soil can be useful to conduct environmental risk assessment. We conducted batch equilibrium experiments to investigate the sorption of cyromazine (CA) and its metabolite melamine (MA) onto five typical soils of China belonging to suborders Ali-Perudic Ferrosols, Udic Argosols, Gleyic-Stagnic Anthrosols, Ustic Cambosols, and Udic Isohumosols. Results showed that sorption of CA and MA onto soils was linear, as indicated by the Freundlich and Langmuir models. Different sorption behaviors of CA and MA were observed on the five agricultural soils, with lgK f values (Freundlich model) of 1.6505–2.6557 and 1.632–2.549, respectively. Moreover, the K f values for CA and MA were positively correlated with soil organic matter (r?=?0.989, r?=?0.976) and significantly negatively correlated with pH (r?=??0.938, r?=??0.964). The free energy of sorption of CA and MA ranged from ?20.8 to ?23.0 kJ mol?1 and ?20.8 to ?22.8 kJ mol?1, respectively, suggesting that the sorption of CA and MA onto the soils is primarily a physical process.  相似文献   

12.
ABSTRACT

The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals—As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

13.
Soils in clay pigeon shooting ranges can be seriously contaminated by heavy metals. The pellets contained in ammunition are composed of Pb, Sb, Ni, Zn, Mn and Cu. The total concentrations of these metals in soils, and the effects of their increasing levels on the arthropod community were investigated at seven sampling sites in a clay pigeon shooting range and compared with two controls. Research revealed that the spatial distribution of Pb and Sb contamination in the shot-fall area was strongly correlated with the flight path of the pellets. Ordination obtained through Redundance Analysis showed that Collembola, Protura and Diplura were positively correlated with major detected contaminants (Pb, Sb), while Symphyla showed a negative correlation with these pollutants. Determination of the soluble lead fraction in soil, and of its bioaccumulation in the saprophagous Armadillidium sordidum (Isopoda) and the predator Ocypus olens (Coleoptera), showed that a significant portion of metallic Pb from spent pellets is bioavailable in the soil and can be bioaccumulated by edaphic organisms, entering the soil trophic network, but without biomagnification.  相似文献   

14.
An attempt has been made to elucidate the effects of soil properties on arsenate adsorption by modeling the relationships between adsorption capacity and the properties of 16 Chinese soils. The model produced was validated against three Australian and three American soils. The results showed that nearly 93.8% of the variability in arsenate adsorption on the low-energy surface could be described by citrate-dithionite extractable Fe (Fe(CD)), clay content, organic matter content (OM) and dissolved organic carbon (DOC); nearly 87.6% of the variability in arsenate adsorption on the high-energy surface could be described by Fe(CD), DOC and total arsenic in soils. Fe(CD) exhibited the most important positive influence on arsenate adsorption. Oxalate extractable Al (Al(OX)), citrate-dithionite extractable Al (Al(CD)), extractable P and soil pH appeared relatively unimportant for adsorption of arsenate by soils.  相似文献   

15.
Speciation of zinc in contaminated soils   总被引:1,自引:0,他引:1  
The chemical speciation of zinc in soil solutions is critical to the understanding of its bioavailability and potential toxic effects. We studied the speciation of Zn in soil solution extracts from 66 contaminated soils representative of a wide range of field conditions in both North America and Europe. Within this dataset, we evaluated the links among the dissolved concentrations of zinc and the speciation of Zn(2+), soil solution pH, total soil Zn, dissolved organic matter (DOM), soil organic matter (SOM) and the concentrations of different inorganic anions. The solid-liquid partitioning coefficient (K(d)) for Zn ranged from 17 to 13,100Lkg(-1) soil. The fraction of dissolved Zn bound to DOM varied from 60% to 98% and the soil solution free Zn(2+) varied from 40% to 60% of the labile Zn. Multiple regression equations to predict free Zn(2+), dissolved Zn and the solid-liquid partitioning of Zn are given for potential use in environmental fate modeling and risk assessment. The multiple regressions also highlight some of the most important soil properties controlling the solubility and chemical speciation of zinc in contaminated soils.  相似文献   

16.
Leitgib L  Kálmán J  Gruiz K 《Chemosphere》2007,66(3):428-434
The harmful effects of contaminants on the ecosystems and humans are characterised by their environmental toxicity. The aim of this study was to assess applicability and reliability of several environmental toxicity tests, comparing the result of the whole soils and their water extracts. In the study real contaminated soils were applied from three different inherited contaminated sites of organic and inorganic pollutants. The measured endpoints were the bioluminescence inhibition of Vibrio fischeri (bacterium), the dehydrogenase activity inhibition of Azomonas agilis (bacterium), the reproduction inhibition of Tetrahymena pyriformis (protozoon), and Panagrellus redivivus (nematode), the mortality of Folsomia candida (springtail), the root and shoot elongation inhibition of Sinapis alba (plant: white mustard) and the nitrification activity inhibition of an uncontaminated garden soil used as "test organism". Besides the standardised or widely used methods some new, direct contact ecotoxicity tests have been developed and introduced, which are useful for characterisation of the risk of contaminated soils due to their interactive nature. Soil no. 1 derived from a site polluted with transformer oil (PCB-free); Soil no. 2 originated from a site contaminated with mazout; Soil no. 3 was contaminated with toxic metals (Zn, Cd, Cu, Pb, As). In most cases, the interactive ecotoxicity tests indicated more harmful effect of the contaminated soil than the tests using soil extracts. The direct contact environmental toxicity tests are able to meet the requirements of environmental toxicology: reliability, sensibility, reproducibility, rapidity and low cost.  相似文献   

17.
Jiang JQ  Zeng Z 《Chemosphere》2003,53(1):53-62
This paper builds on the preceding researches to study the effects of the type of clays (montmorillonites K10, KSF) and modifying conditions on the structure and adsorption behavior of resulting clay adsorbents. The raw clays were modified by polymeric Al/Fe species, hexadecyl-trimethylammonium (HDTMA) surfactant and a complex of polymeric Al/Fe-HDTMA. X-ray diffraction spectra was applied to analyze the structure of the raw and modified clays. After modification, the basal spacing of the clays varied, depending on the types of raw clay and modification conditions. Copper and phenol were selected as adsorbates for evaluating the adsorption performance of various clays, which was affected significantly by the types of raw clay and modification conditions. In general the inorganic contaminant (e.g., Cu) tend to be adsorbed by the polymeric Al/Fe modified clay and the organic impurities (e.g., phenol) will be preferably captured by the surfactant modified clay; both due to the specific surface properties resulting from introducing the modifiers. The complex modified clays possessed the ability of adsorbing both inorganic and organic contaminants. In addition, the d 0 0 1 spacing of modified KSF was greater than that of K10; the adsorption performance with modified KSF was thus greater than that with the modified K10. Finally, the ratio of modifiers to the clay (metal:surfactant:clay) has been observed to affect the adsorption performance; the optimal conditions have been defined.  相似文献   

18.
14C-terbuthylazine was applied to three Brazilian soils in closed aerated laboratory microcosms, both under standardized and under natural Brazilian climate conditions. Volatilization from soil to air, leaching from soil to percolate water, and transport from upper to deeper soil layers were higher in sandy soil than in clay soil and in organic soil. Mineralization of 14C-terbuthylazine to 14CO2 was higher in sandy soil than in clay and organic soils under standardized climatic conditions, whereas it was higher in organic soil than in sandy soil under Brazilian summer conditions. Under natural Brazilian summer conditions, leaching as well as vertical transport within the soil were enhanced as compared to standardized climate conditions comprising lower precipitation rates; volatilization was strongly reduced under high irrigation conditions.  相似文献   

19.
Black carbon: the reverse of its dark side   总被引:16,自引:0,他引:16  
The emission of black carbon is known to cause major environmental problems. Black carbon particles contribute to global warming, carry carcinogenic compounds and cause serious health risks. Here, we show another side of the coin. We review evidence that black carbon may strongly reduce the risk posed by organic contaminants in sediments and soils. Extremely efficient sorption to black carbon pulls highly toxic polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxins, polybrominated diphenylethers and pesticides into sediments and soils. This increased sorption is general, but strongest for planar (most toxic) compounds at environmentally relevant, low aqueous concentrations. Black carbon generally comprises about 9% of total organic carbon in aquatic sediments (median value of 300 sediments), and then may reduce uptake in organisms by up to two orders of magnitude. This implies that current environmental risk assessment systems for these contaminants may be unnecessarily safe.  相似文献   

20.
Soil diffuse contamination is one the major soil threats, especially in regions with a high population density and strong industrialization. In this work agricultural, natural, and periurban soils of an Italian Province (858 km(2)) were sampled and analyzed. Overall, 140 samples were taken at two depths and analyzed for 10 trace elements, 13 rare earth elements and for organic contaminants (PCBs, PCDDs and PAHs). The aim of this work was to obtain an appraisal of soil diffuse contamination in a large Italian Province by applying and validating available tools to quantify background values and evaluate the intensity of contamination. Data were processed, background values estimated, and enrichment and contamination factors calculated. For some contaminants the results allowed a discrimination between natural or anthropic-derived contaminants. Some contaminants revealed clear trends of enrichment in function of the land use (in particular for periurban soils). REEs were found to mostly derive from parent material. The results obtained in this study show the importance of merging the quantification of contaminants with the elaboration of indices of contamination. These require an accurate quantification of background values to be able to discriminate the anthropic contribution. Enrichment factor resulted to be more accurate than contamination factor but it cannot be applied to organic contaminants and requires a careful selection of the reference element to be adopted. This study revealed that some contaminants - Sb, Sn, Pb, and organic contaminants - can be used as tracers of diffuse contamination, and should be therefore always included in similar studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号