首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Abstract: Thermoelectric power generation is responsible for the largest annual volume of water withdrawals in the United States although it is only a distant third after irrigation and industrial sectors in consumptive use. The substantial water withdrawals by thermoelectric power plants can have significant impacts on local surface and ground water sources, especially in arid regions. However, there are few studies of the determinants of water use in thermoelectric generation. Analysis of thermoelectric water use data in existing steam thermoelectric power plants shows that there is wide variability in unitary thermoelectric water use (in cubic decimeters per 1 kWh) within and among different types of cooling systems. Multiple‐regression models of unit thermoelectric water use were developed to identify significant determinants of unit thermoelectric water use. The high variability of unit usage rates indicates that there is a significant potential for water conservation in existing thermoelectric power plants.  相似文献   

3.
The study addresses the potential of using concentrated solar power plants (CSPs) as a sustainable alternative of clean energy generation in the Mediterranean region and, in particular, in its North Africa shore. This location presents attractive conditions for the installation of CSPs, in particular high solar irradiation, good manpower concentration, and proximity and availability of water resources for condenser cooling. Energetic, exergetic, and economic analyses were conducted taking into consideration a particular type of CSPs - the parabolic trough concentrated solar power plant, which incorporates the most proven technology and it is already used in Southern Europe (Spain). In addition, the study considered the impact of project financing and incentives on the cost of energy. The combination of higher values for performance and potentially lower levelized cost of electricity (LCE) for the North Africa Mediterranean Rim than the South of Spain region can yield a very favorable return for the invested capital. Tripoli compared to Almeria presented superior performance and potentially lower LCE values ($0.18/kWh versus $0.22/kWh). This is significant, even when it is taken into consideration the fact that the plant in Tripoli, despite a relatively modest capacity factor of 34%, has a large gross power output of 173,886 MWhe. In addition, the implementation at the Tripoli location of a plant similar to the Anadsol plant has a slight advantage (2–3%) in terms of overall efficiency.  相似文献   

4.
ABSTRACT The selection of an evaporator design must reflect the balancing of captial cost (primarily in heat exchanger surface and vessels) against operating cost (primarily steam cost) to achieve minimum cost. In a conjunctive plant the tendency is to select a low-capital cost, high-operating cost plant. In addition, it is advantageous to use a high-capacity plant which needs to be operated much less of the time than a plant which is sized just at the needed rate. For example, in the study of a possible system to satisfy a future increase of 450 MGD in water supply to New York Qty, a plant of 750 MGD capacity was selected as optimum. This plant, of the advanced VTE-MSF process type, would have a performance ratio of 9 lb product/1000 Btu as compared to 10-13 normally used for base-loaded plants. Steam would be supplied by a multi-unit dual-purpose nuclear power plant. The most economical type of energy supply would be “interruptible”; the steam would be used by a low pressure turbine to generate electricity during periods of peak electrical demand but would be available to the desalting plant at other times. The low pressure turbine would be available as spinning reserve during desalting plant operation. It is estimated that the desalting plant would have a load factor of 27 per cent over its life.  相似文献   

5.
ABSTRACT: Many water systems in small cities and rural areas throughout the United States are facing water quality and supply problems. These problems are typically not the result of an unexpected event, but are the result of growth trends or decreasing water quality experienced over several years. This analysis uses the contingent valuation and benefit transfer methods to evaluate the willingness to pay for a rural water system in northcentral Montana. Both of the procedures resulted in similar values, ranging from about $4.05 to $7.50 per household per month for urban residents and $5.40 to $11.50 per household per month for rural residents, which is equal to 11 percent to 23 percent of current average water costs. The willingness to pay estimates do not include non-household water users. This analysis shows that useful planning information can be obtained from relatively inexpensive contingent valuation mail survey data and the benefit transfer method as long as the limitations of the data are understood. The willingness to pay for ensuring good quality rural water supplies in the future is likely to be low compared to the costs of extensive diversion and treatment systems. Willingness to pay estimates provide decision makers with information that can be used to avoid building a large water supply system that water users do not want to connect to because of high costs.  相似文献   

6.
For the option of “carbon capture and storage”, an integrated assessment in the form of a life cycle analysis and a cost assessment combined with a systematic comparison with renewable energies regarding future conditions in the power plant market for the situation in Germany is done.The calculations along the whole process chain show that CCS technologies emit per kWh more than generally assumed in clean-coal concepts (total CO2 reduction by 72–90% and total greenhouse gas reduction by 65–79%) and considerable more if compared with renewable electricity. Nevertheless, CCS could lead to a significant absolute reduction of GHG-emissions within the electricity supply system.Furthermore, depending on the growth rates and the market development, renewables could develop faster and could be in the long term cheaper than CCS based plants.Especially, in Germany, CCS as a climate protection option is phasing a specific problem as a huge amount of fossil power plant has to be substituted in the next 15 years where CCS technologies might be not yet available. For a considerable contribution of CCS to climate protection, the energy structure in Germany requires the integration of capture ready plants into the current renewal programs. If CCS retrofit technologies could be applied at least from 2020, this would strongly decrease the expected CO2 emissions and would give a chance to reach the climate protection goal of minus 80% including the renewed fossil-fired power plants.  相似文献   

7.
This paper presents a novel strategy for developing wind power in large-scale (multi-GW) wind farms in China. It involves combining oversized wind farms, large-scale electrical storage and long-distance transmission lines to deliver 'baseload wind power' to distant electricity demand centers. Baseload wind power is typically more valuable to the electric utility than intermittent wind power, so that storage can be economically attractive even in instances where the cost per kWh is somewhat higher than without storage.
The prospective costs for this approach to developing wind power are illustrated by modifying an oversized wind farm at Huitengxile, Inner Mongolia. The site has an average power density of 580 W/m2 at 50 m hub heights and is located 500 km north of Beijing. Using locally mass-produced wind turbines there are good prospects that wind power would be cost-competitive with coal power, on a lifecycle cost basis, while providing substantial net environmental benefits.
Finally, the institutional challenges related to the prospect of large-scale wind energy development are addressed. Especially important are policies aimed at developing the capacity for mass production of as much of this technology in China as is feasible. Promising instruments for speeding up the introduction of this technology include: (i) international joint ventures between foreign vendors and developers and Chinese manufacturers; and (ii) wind resource development concessions.  相似文献   

8.
Mathematical programming models have been used to optimize the design and management of forest bioenergy supply chains. A deterministic mathematical model is beneficial for making optimum decisions; however, its applicability to real-world problems may be limited because it does not capture all the complexities, including uncertainties in the parameters, in the supply chain. In this paper, a combination of Monte Carlo Simulation and optimization model is used to evaluate the impact of uncertainty in biomass quality, availability and cost, and electricity prices on the supply chain of a forest biomass power plant. The optimization model is a deterministic mixed integer non-linear model with monthly time steps over a 1-year planning horizon. Variability in biomass quality, i.e. moisture content (MC) and higher heating value (HHV), based on the historical data of a real case study is studied in detail and fitted probability distributions are used in the model, while for electricity prices different scenarios are considered. The results show that the impact of variability in the MC on profit is higher than that of uncertainty in HHV. It is observed that the annual profit ranges between $13.3 million and $17.9 million in the presence of all possible uncertainties while its average is $15.5 million. Uncertainty in biomass availability and cost and electricity price results in the risks of having annual profit of less than $14 million and low monthly storage levels.  相似文献   

9.
This paper presents the results of system assessments that were conducted to compare conventional and advanced water–gas shift reactor sections. The latter are specifically tailored for Integrated Gasification Combined Cycles (IGCC) power plants with pre-combustion CO2 capture. The advanced shift reactor section comprises four staged reactors with distributed feeds of synthesis gas and quench water in between the reactors. Conventional shift reactor sections consist of two sequential reactors with intermediate cooling, where the entire synthesis gas stream passes both reactors.The advanced shift reactor section reduces the steam requirement of the water–gas shift reaction up to 70% in comparison with conventional configurations, at carbon dioxide capture ratios of approximately 85%. This reduction allows for lower electric efficiency penalties, thus higher net electric outputs for IGCC power plants with CO2 capture. For each case, the CO2 capture ratio was optimised for the lowest specific lost work per amount of captured CO2. Both the number of reactors and the total catalyst volume are higher for the advanced shift reactor sections, resulting in increased capital expenses. In case of four staged reactors, the additional expenses are expected to be outperformed by the increased revenues associated with the higher net electric output.  相似文献   

10.
Existing coal-fired power plants were not designed to be retrofitted with carbon dioxide post-combustion capture (PCC) and have tended to be disregarded as suitable candidates for carbon capture and storage on the grounds that such a retrofit would be uneconomical. Low plant efficiency and poor performance with capture compared to new-build projects are often cited as critical barriers to capture retrofit. Steam turbine retrofit solutions are presented that can achieve effective thermodynamic integration between a post-combustion CO2 capture plant and associated CO2 compressors and the steam cycle of an existing retrofitted unit for a wide range of initial steam turbine designs. The relative merits of these capture retrofit integration options with respect to flexibility of the capture system and solvent upgradability will be discussed. Provided that effective capture system integration can be achieved, it can be shown that the abatement costs (or cost per tonne of CO2 to justify capture) for retrofitting existing units is independent of the initial plant efficiency. This then means that a greater number of existing power plants are potentially suitable for successful retrofits of post-combustion capture to reduce power sector emissions. Such a wider choice of retrofit sites would also give greater scope to exploit favourable site-specific conditions for CCS, such as ready access to geological storage.  相似文献   

11.
Supply to electrical pumpsets for irrigation purposes accounts for about 25% of the total electricity sold in India. The number of electrical pumpsets is expected to increase from 8.5 million in 1989–90 to 10.5 million in 1994–95. Low load factors (10–12%) and low densities (1–4 pumpsets/km2) mean large investments for the electric utility in order to supply electricity for irrigation. It is reported that there exists a potential to save at least 10% of the electricity supplied to this sector by means of simple retrofit measures. However, conditions in the field pose constraints to such retrofits. Some of those constraints are highlighted in this paper. It is also suggested that immediate attempts be made to ensure that all new connections are energy efficient. This paper suggests that the additional cost incurred to ensure new energy efficient connections and to maintain retrofit energy efficient pumpsets must be looked on as a necessary cost for energy efficiency.  相似文献   

12.
Given the dominance of power plant emissions of greenhouse gases, and the growing worldwide interest in CO2 capture and storage (CCS) as a potential climate change mitigation option, the expected future cost of power plants with CO2 capture is of significant interest. Reductions in the cost of technologies as a result of learning-by-doing, R&D investments and other factors have been observed over many decades. This study uses historical experience curves as the basis for estimating future cost trends for four types of electric power plants equipped with CO2 capture systems: pulverized coal (PC) and natural gas combined cycle (NGCC) plants with post-combustion CO2 capture; coal-based integrated gasification combined cycle (IGCC) plants with pre-combustion capture; and coal-fired oxyfuel combustion for new PC plants. We first assess the rates of cost reductions achieved by other energy and environmental process technologies in the past. Then, by analogy with leading capture plant designs, we estimate future cost reductions that might be achieved by power plants employing CO2 capture. Effects of uncertainties in key parameters on projected cost reductions also are evaluated via sensitivity analysis.  相似文献   

13.
/ The travel cost method was used to estimate the economic value of seven major power boating resources in Pennsylvania. A significant relationship between number of visitor trips and cost per visitor trip existed for five of the seven water bodies. The annual total value for those five resources was $396 million, which was 2.5 times greater than the total out-of-pocket expenditures of approximately $157 million visitors spent to visit them. Research results can help resource managers plan and craft programs and policies that are founded on economic values of the natural resources involved.  相似文献   

14.
An evaluation of the economic and environmental costs and benefits that would result if the Zorinsky Federal Building, located in Omaha, Nebraska, USA, converted its current lighting system to a more energy-efficient system (i.e., joined the EPA's Green Lights Program) was conducted. Lighting accounts for 20–25 percent of all electricity sold in the United States. Costs considered in the study included the cost of retrofitting the building's existing lighting system and the cost of disposal of the current lamps and ballast fixtures. Benefits included a reduction of electric utility costs and a reduction of emissions of SO2, NO x , CO2, and CO from electric utility power plants. Environmental and health issues for air pollutant emissions were also addressed. The results showed that significant reductions in utility bills as well as reductions in air emissions would result from a major building converting to a more energy efficient lighting system. The results showed that conversion of this large building would reduce SO2 emissions by 14.6 tons/yr and NO x emissions by 6.3 tons/yr. In addition, the conversion would reduce annual energy costs by approximately $114,000.  相似文献   

15.
At a time when future sources of energy are under close scrutiny, both in terms of availability and suitability, geothermal energy ranks among the candidates for inclusion in any appraisal of alternative forms of supply. The use of geothermal energy for the production of electricity and for supplying domestic and industrial heat is a comparatively recent phenomenon, and its application remains closely constrained by favourable geological conditions. Yet exploration in several countries shows that geothermal energy may emerge as an important adjunct to total energy supply in many localities. McNitt outlines some of the economic and technological parameters of this energy source. Small scale geothermal power stations are more economic and less capital intensive than conventional plants, which make them of particular interest for developing countries with small electricity systems and competing demands on limited capital resources. The principal capital expenditures in the development of geothermal sources include exploration, steam production, installation of generating plant and the cost of effluent disposal. The wider use of low grade geothermal heat is also examined, in addition to the environmental problems occurring to the development of geothermal energy. The scope for technical co-operation in the development of geothermal energy is substantial, and it is likely that this source of energy will undergo more intensive development on the local scale in the future.  相似文献   

16.
ABSTRACT: Controlling phosphorus sources, such as laundry detergents, for eutrophication control has been the aim of water resources management in many areas. However, the advisability of limiting phosphorus in raw wastewater continues to be debated. One aspect that has received little attention is the cost savings at sewage treatment plants practing phosphorus removal. It is estimated, based on available data and observations where detergent phosphorus has been reduced, that cost savings could range from about $0.20 to $1.70 per capita per year for an influent reduction of about 1.5 mg/L of phosphorus. These savings result mostly from a decrease in the amount of chemicals needed to remove phosphorus at the plant as well as a decrease in sludge production. For the U.S. Great Lakes basin, total annual savings amounting to several million dollars are projected given a basin-wide ban. Although estimates of cost savings are presented for the Great Lakes basin, the results are applicable to other areas where phosphorus controls are being considered.  相似文献   

17.
The problems and prospects of solar and wind energy technologies for rural energy supply in developing countries are examined, followed by an overview of key attributes of these technologies. The application of wind and solar systems for cooking, water pumping, drying, water heating, and electric power supply are reviewed. Two detailed case studies are given, the first discussing the potential of solar and wind systems for rural water pumping in Morocco, and the second, examining the "wind farms" producing electric power in California and the potential for their use in developing countries.  相似文献   

18.
The Indian sugar industry has massive potential for the cogeneration of electrical power. The sugar manufacturing process generates bagasse as a byproduct from cane-crushing. This bagasse can be used as a fuel for the boilers employed in steam raising for the process use and cogeneration. In this study, the potential for power cogeneration in a typical plant under the existing boiler-turbine configuration has been estimated. An alternative configuration requiring capital investment in machinery has also been studied. The cost of cogenerating power, including the cost of fuel, operations and capital services wherever necessary, has been calculated for both these cases, using a linear optimisation method. The exercise allows for the use of multiple fuels, namely bagasse and coal, for cogeneration throughout the year including the cane-crushing season and the off-season. The per unit supply price of cogenerated power thus computed has been compared with the utility's own cost with a view to selling the surplus cogenerated power to the grid.  相似文献   

19.
Texas water resources, already taxed by drought and population growth, could be further stressed by possible listings of endangered aquatic species. This study estimated potential economic impacts of environmental flows (EFs) for five freshwater unionid mussels in three Central Texas basins (Brazos, Colorado, and Guadalupe‐San Antonio Rivers) that encompass 36% of Texas (~246,000 km2). A water availability model projected reductions in water supply to power, commercial and industrial, municipal, and agriculture sectors in response to possible EFs for mussels. Single‐year economic impacts were calculated using publicly available data with and without water transfers. Benefits of EFs should also be assessed, should critical habitat be proposed. Potential economic losses were highest during droughts, but were nominal (<$1 M) in wetter years — even with high EFs. Reduced supplies to San Antonio area power plants caused worst‐case impacts of a single‐year shutdown up to $107 million (M) during drought with high EFs. For other sectors in the study area, water transfers reduced worst‐case losses from $80 to $11 M per year. Implementing innovative water management strategies such as water markets, conjunctive use of surface water and groundwater, aquifer storage and recovery could mitigate economic impacts if mussels — or other widely distributed aquatic species — were listed. However, approaches for defining EFs and strategies for mitigating economic impacts of EFs are needed.  相似文献   

20.
Abstract: Two CVM surveys were administered to 211 urban households and 188 rural farmer‐irrigators in the Comarapa watershed in Bolivia, South America, to estimate stakeholder willingness to pay (WTP) for a proposed upper watershed restoration program. Mean monthly household WTP to improve drinking water was $1.95 (65% of current charges), while mean annual WTP among farmer‐irrigators to improve irrigation water was $17 per hectare (34% of current costs). Aggregated to the entire population of households and farmer‐irrigators total WTP is $77,400 per year, which is 77% of the minimum cost to implement a watershed restoration program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号