首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Because of continued habitat destruction and species extirpations, the need to use captive breeding for conservation purposes has been increasing steadily. However, the long-term demographic and genetic effects associated with releasing captive-born individuals with varied life histories into the wild remain largely unknown. To address this question, we developed forward-time, agent-based models for 4 species with long-running captive-breeding and release programs: coho salmon (Oncorhynchus kisutch), golden lion tamarin (Leontopithecus rosalia), western toad (Anaxyrus boreas), and Whooping Crane (Grus americana). We measured the effects of supplementation by comparing population size and neutral genetic diversity in supplemented populations to the same characteristics in unaltered populations 100 years after supplementation ended. Releasing even slightly less fit captive-born individuals to supplement wild populations typically resulted in reductions in population sizes and genetic diversity over the long term when the fitness reductions were heritable (i.e., due to genetic adaptation to captivity) and populations continued to be regulated by density-dependent mechanisms over time. Negative effects for species with longer life spans and lower rates of population replacement were smaller than for species with shorter life spans and higher rates of population replacement. Programs that released captive-born individuals over fewer years or that avoided breeding individuals with captive ancestry had smaller reductions in population size and genetic diversity over the long term. Relying on selection in the wild to remove individuals with reduced fitness mitigated some negative demographic effects, but at a substantial cost to neutral genetic diversity. Our results suggest that conservation-focused captive-breeding programs should take measures to prevent even small amounts of genetic adaptation to captivity, quantitatively determine the minimum number of captive-born individuals to release each year, and fully account for the interactions among genetic adaptation to captivity, population regulation, and life-history variation.  相似文献   

2.
Abstract:  Captive breeding of animals is widely used to manage endangered species, frequently with the ambition of future reintroduction into the wild. Because this conservation measure is very expensive, we need to optimize decisions, such as when to capture wild animals or release captive-bred individuals into the wild. It is unlikely that one particular strategy will always work best; instead, we expect the best decision to depend on the number of individuals in the wild and in captivity. We constructed a first-order Markov-chain population model for two populations, one captive and one wild, and we used stochastic dynamic programming to identify optimal state-dependent strategies. The model recommends unique sequences of optimal management actions over several years. A robust rule of thumb for species that can increase faster in captivity than in the wild is to capture the entire wild population whenever the wild population is below a threshold size of 20 females. This rule applies even if the wild population is growing and under a broad range of different parameter values. Once a captive population is established, it should be maintained as a safety net and animals should be released only if the captive population is close to its carrying capacity. We illustrate the utility of this model by applying it to the Arabian oryx ( Oryx leucoryx ). The threshold for capturing the entire Arabian oryx population in the wild is 36 females, and captive-bred individuals should not be released before the captive facilities are at least 85% full.  相似文献   

3.
Abstract:  Because most reintroduced species are rare, data on their dynamics are scarce. Consequently, reintroduction programs often rely on data from other species or captive populations to project the performance of the reintroduced population in the wild. We compared the reproductive success and survival of a Persian fallow deer ( Dama mesopotamica ) population reintroduced in Israel over the first 5 years of the project with the survival and reproduction parameters estimated while planning the reintroduction. In addition, we compared the actual growth of the wild population with the growth originally projected by a computer model in the original reintroduction program. We monitored 74 radio-collared individuals (57 females and 17 males) released semiannually 1996–2001. Survival during the first year after release was lower than later years (0.90 and 0.82 versus 0.95 and 0.88, for females and males, respectively). Such an impact was not anticipated in the original plan, but overall survival was higher than originally projected. As assumed in the reintroduction program, reproductive success improved significantly with time since release and overall, was higher than expected. The mean number of animals released annually was lower than planned. Overall, the growth of the reintroduced population was slower than projected, but the deviation was close to confidence limits and the pattern similar. After 5 years it appears that the original time frame of 8–10 years for project completion can be met or at worst will cause a 1-year delay. Over the short term of 5 years, projection models in reintroduction programs are useful tools for assessing the sustained use of the breeding core, depicting the dynamics of the population in the wild, providing a relatively accurate time frame for the successful completion of the project, and assessing project success.  相似文献   

4.
Genetic Effects of Multiple Generations of Supportive Breeding   总被引:11,自引:0,他引:11  
Abstract: The practice of supporting weak wild populations by capturing a fraction of the wild individuals, bringing them into captivity for reproduction, and releasing their offspring into the natural habitat to mix with wild ones is called supportive breeding and has been widely applied in the fields of conservation biology and fish and wildlife management. This procedure is intended to increase population size without introducing exogenous genes into the managed population. Previous work examining the genetic effects of a single generation of supportive breeding has shown that although a successful program increases the census population size, it may reduce the genetically effective population size and thereby induce excessive inbreeding and loss of genetic variation. We expand and generalize previous analyses of supportive breeding and consider the effects of multiple generations of supportive breeding on rates of inbreeding and genetic drift. We derived recurrence equations for the inbreeding coefficient and coancestry, and thereby equations for inbreeding and variance effective sizes, under three models for selecting captive breeders: at random, preferentially among those born in captivity, and preferentially among those born in the wild. Numerical examples indicate that supportive breeding, when carried out successfully over multiple generations, may increase not only the census but also the effective size of the supported population as a whole. If supportive breeding does not result in a substantial and continuous increase of the census size of the breeding population, however, it might be genetically harmful because of elevated rates of inbreeding and genetic drift.  相似文献   

5.
Abstract: Reintroduction of captive‐reared animals has become increasingly popular in recent decades as a conservation technique, but little is known of how demographic factors affect the success of reintroductions. We believe whether the increase in population persistence associated with reintroduction is sufficient to warrant the cost of rearing and relocating individuals should be considered as well. We examined the trade‐off between population persistence and financial cost of a reintroduction program for Crested Coots (Fulica cristata). This species was nearly extirpated from southern Europe due to unsustainable levels of hunting and reduction in amount and quality of habitat. We used a stochastic, stage‐based, single‐sex, metapopulation model with site‐specific parameters to examine the demographic effects of releasing juveniles or adults in each population for a range of durations. We parameterized the model with data from an unsuccessful reintroduction program in which juvenile captive‐bred Crested Coots were released between 2000 and 2009. Using economic data from the captive‐breeding program, we also determined whether the strategy that maximized abundance coincided with the least expensive strategy. Releasing adults resulted in slightly larger final abundance than the release of nonreproductive juveniles. Both strategies were equally poor in achieving a viable metapopulation, but releasing adults was 2–4 times more expensive than releasing juveniles. To obtain a metapopulation that would be viable for 30 years, fecundity in the wild would need to increase to the values observed in captivity and juvenile survival would need to increase to almost unity. We suggest that the most likely way to increase these vital rates is by increasing habitat quality at release sites.  相似文献   

6.
Artificial propagation strategies often incur selection in captivity that leads to traits that are maladaptive in the wild. For propagation programs focused on production rather than demographic contribution to wild populations, effects on wild populations can occur through unintentional escapement or the need to release individuals into natural environments for part of their life cycle. In this case, 2 alternative management strategies might reduce unintended fitness consequences on natural populations: (1) reduce selection in captivity as much as possible to reduce fitness load (keep them similar), or (2) breed a separate population to reduce captive‐wild interactions as much as possible (make them different). We quantitatively evaluate these 2 strategies with a coupled demographic–genetic model based on Pacific salmon hatcheries that incorporates a variety of relevant processes and dynamics: selection in the hatchery relative to the wild, assortative mating based on the trait under selection, and different life cycle arrangements in terms of hatchery release, density dependence, natural selection, and reproduction. Model results indicate that, if natural selection only occurs between reproduction and captive release, the similar strategy performs better. However, if natural selection occurs between captive release and reproduction, the different and similar strategies present viable alternatives to reducing unintended fitness consequences because of the greater opportunity to purge maladaptive individuals. In this case, the appropriate approach depends on the feasibility of each strategy and the demographic goal (e.g., increasing natural abundance, or ensuring that a high proportion of natural spawners are naturally produced). In addition, the fitness effects of hatchery release are much greater if hatchery release occurs before (vs. after) density‐dependent interactions. Given the logistical challenges to achieving both the similar and different strategies, evaluation of not just the preferred strategy but also the consequences of failing to achieve the desired target is critical. Evaluación de Estrategias Alternativas para Minimizar las Consecuencias No Inesperadas en la Adecuación de Individuos Criados en Cautiverio sobre Poblaciones Silvestres  相似文献   

7.
Guidelines for Subspecific Substitutions in Wildlife Restoration Projects   总被引:2,自引:0,他引:2  
Reintroduction of animals is becoming increasingly popular as a means of restoring populations of threatened species. Sometimes depletion of wild populations leaves only captive populations from which reintroduction projects can obtain founders for releases. The World Conservation Union guidelines on reintroductions recommend that the individuals to be reintroduced should be of the same subspecies as those that were extirpated. In some cases, however, a subspecies may have become extinct in the wild and in captivity. A substitute form may then be chosen for possible release. Such substitutions are actually a form of benign introduction. Considerations include assessment of the value of a substitution project and the selection of a suitable substitute. Species substitutions increase biodiversity, conserve related forms, improve public awareness of conservation issues, educate the public, and may be implemented for aesthetic or economic reasons. Selection of a suitable substitute should focus on extant subspecies and consider genetic relatedness, phenotype, ecological compatibility, and conservation value of potential candidates. An example of a substitution project is the reintroduction of the North African Red-necked Ostrich (  Struthio camelus camelus ) into areas once occupied by the now extinct Arabian Ostrich (  Struthio camelus syriacus ). S. c. camelus was chosen as a substitute because of its geographic proximity, phenotypic similarity, and conservation value. The World Conservation Union's reintroduction guidelines should be consulted before a project is begun.  相似文献   

8.
Demography of the California Condor: Implications for Reestablishment   总被引:3,自引:0,他引:3  
Abstract: The remnant wild population of California Condors ( Gymnogyps californianus ) of the 1980s exhibited a rapid population decline caused by high mortality rates among adult and immature birds. The most prominent mortality factor was lead poisoning resulting from ingestion of bullet fragments in carcasses. Successful captive breeding has allowed many birds to be released to the wild since 1992, based originally on an assumption that exposure to lead could be prevented by food subsidy. The mortality of released birds, however, has generally exceeded levels needed for population stability calculated from simple population models. Collision with overhead wires was the most frequent cause of death in releases before 1994. Lead poisoning again surfaced as a problem starting in 1997 as older birds began feeding on carcasses outside the subsidy program. Although poisonings have been treated successfully by chelation therapy in recaptured birds, food subsidy is proving an ineffective solution to lead exposure. The best long-term solution appears to be either the creation of large reserves where hunting is prohibited or the restriction of hunting to nontoxic ammunition in release areas. Until sources of lead contamination are effectively countered, releases cannot be expected to result in viable populations. In addition, problems involving human-oriented behavior have resulted in the permanent removal of many released birds from the wild. The most promising reduction in human-oriented behavior has been achieved in one release of aversively conditioned, parent-reared birds. Rigorous evaluation of the factors reducing attraction to humans and human structures has been hampered by confounding of techniques in releases. Behavioral problems could be more quickly overcome by adoption of a comprehensive experimental approach.  相似文献   

9.
Ex situ conservation tools, such as captive breeding for reintroduction, are considered a last resort to recover threatened or endangered species, but they may also help reduce anthropogenic threats where it is difficult or impossible to address them directly. Headstarting, or captive rearing of eggs or neonate animals for subsequent release into the wild, is controversial because it treats only a symptom of a larger conservation problem; however, it may provide a mechanism to address multiple threats, particularly near population centers. We conducted a population viability analysis of Australia's most widespread freshwater turtle, Chelodina longicollis, to determine the effect of adult roadkill (death by collision with motor vehicles), which is increasing, and reduced recruitment through nest predation from introduced European red foxes (Vulpes vulpes). We also modeled management scenarios to test the effectiveness of headstarting, fox management, and measures to reduce mortality on roads. Only scenarios with headstarting from source populations eliminated all risks of extinction and allowed population growth. Small increases in adult mortality (2%) had the greatest effect on population growth and extinction risk. Where threats simultaneously affected other life‐history stages (e.g., recruitment), eliminating harvest pressures on adult females alone did not eliminate the risk of population extinction. In our models, one source population could supply enough hatchlings annually to supplement 25 other similar‐sized populations such that extinction was avoided. Based on our results, we believe headstarting should be a primary tool for managing freshwater turtles for which threats affect multiple life‐history stages. We advocate the creation of source populations for managing freshwater turtles that are greatly threatened at multiple life‐history stages, such as depredation of eggs by invasive species and adult mortality via roadkill.  相似文献   

10.
Source-sink dynamics have been suggested to characterize the population structure of many species, but the prevalence of source-sink systems in nature is uncertain because of inherent challenges in estimating migration rates among populations. Migration rates are often difficult to estimate directly with demographic methods, and indirect genetic methods are subject to a variety of assumptions that are difficult to meet or to apply to evolutionary timescales. Furthermore, such methods cannot be rigorously applied to high-gene-flow species. Here, we employ genetic parentage assignments in conjunction with demographic simulations to infer the level of immigration into a putative sink population. We use individual-based demographic models to estimate expected distributions of parent-offspring dyads under competing sink and closed-population models. By comparing the actual number of parent-offspring dyads (identified from multilocus genetic profiles) in a random sample of individuals taken from a population to expectations under these two contrasting demographic models, it is possible to estimate the rate of immigration and test hypotheses related to the role of immigration on population processes on an ecological timescale. The difference in the expected number of parent-offspring dyads between the two population models was greatest when immigration into the sink population was high, indicating that unlike traditional population genetic inference models, the highest degree of statistical power is achieved for the approach presented here when migration rates are high. We used the proposed genetic parentage approach to demonstrate that a threatened population of Marbled Murrelets (Braclhyrarmphus marmotus) appears to be supplemented by a low level of immigration (approximately 2-6% annually) from other populations.  相似文献   

11.
Abstract:  Captive breeding is a commonly used strategy for species conservation. One risk of captive breeding is domestication selection—selection for traits that are advantageous in captivity but deleterious in the wild. Domestication selection is of particular concern for species that are bred in captivity for many generations and that have a high potential to interbreed with wild populations. Domestication is understood conceptually at a broad level, but relatively little is known about how natural selection differs empirically between wild and captive environments. We used genetic parentage analysis to measure natural selection on time of migration, weight, and morphology for a coho salmon ( Oncorhynchus kisutch ) population that was subdivided into captive and natural components. Our goal was to determine whether natural selection acting on the traits we measured differed significantly between the captive and natural environments. For males, larger individuals were favored in both the captive and natural environments in all years of the study, indicating that selection on these traits in captivity was similar to that in the wild. For females, selection on weight was significantly stronger in the natural environment than in the captive environment in 1 year and similar in the 2 environments in 2 other years. In both environments, there was evidence of selection for later time of return for both males and females. Selection on measured traits other than weight and run timing was relatively weak. Our results are a concrete example of how estimates of natural selection during captivity can be used to evaluate this common risk of captive breeding programs.  相似文献   

12.
Abstract:  Captive populations can exhibit more behavioral variation than their wild counterparts as a result of relaxed selective pressures in the captive environment. This increased variation can translate into decreased survivorship upon reintroduction to native habitats. Data show that captive populations of oldfield mice ( Peromyscus polionotus subgriseus ) exhibit such an increase in variation. Motivated by these results, we developed a series of calculations for a "release ratio" that can be used to determine the number of captive-bred animals needed to compensate for the increased variance. We present calculations of release ratios for behavioral and morphological variables with different distributions and illustrate the functional relationship between release numbers, increased variation, and change in average behavior and morphology. Our calculations indicated that the release of 130–150 captive-bred oldfield mice is equivalent to the release of 100 wildlike animals. Release ratios will vary among species, however, and perhaps among different populations of the same species and should be calculated separately for each situation. Development of the release ratio is the first rigorous effort to incorporate behavioral and morphological changes due to captivity into reintroduction planning. Release ratios will help conservation biologists ensure that the appropriate number of animals is released, thus increasing the success of reintroduction programs.  相似文献   

13.
Abstract:  We integrated genetics and demography into population modeling in the context of species restorations, in which both the origin of released individuals and the management strategy may influence the success of introduction. Through an explicit individual-based simulation approach, we investigated the effects of the age of released individuals by exploring the relative merits of releasing juveniles or adults to establish populations. We included the effect of genetic variability responsible for inbreeding depression and mutational meltdown. Our general analysis uncovered an interaction between the age of founders and the extent of intrapopulation fitness variability, which substantially influenced the efficiency of selection in populations founded by juveniles and had subsequent positive consequences for long-term persistence compared with the case in which adults were released. We then applied the model to the case of the reintroduction of the Griffon Vulture ( Gyps fulvus fulvus ) to southern France, for which post-release data were available. The demographic aspects of this reintroduction were already analyzed and published, suggesting that it is more efficient to release adults than juveniles, despite an observed reduction of demographic parameters following the release of adults. In that context, the inclusion of genetic considerations qualitatively changes the conclusion, predicting reduced long-term extinction risk if juveniles rather than adults are released.  相似文献   

14.
Abstract: The Italian wolf ( Canis lupus ) population has declined continuously over the last few centuries and become isolated as a result of the extermination of other populations in central Europe and the Alps during the nineteenth century. In the 1970s, approximately 100 wolves survived in 10 isolated areas in the central and southern Italian Apennines. Loss of genetic variability, as suggested by preliminary studies of mitochondrial DNA (mtDNA) sequences, hybridization with feral dogs, and the illegal release of captive, non-native wolves are considered potential threats to the viability of the Italian wolf population. We sequenced 546 base pairs of the mtDNA control region in a comprehensive set of Italian wolves and compared them to those of dogs and other wolf populations from Europe and the Near East. Our data confirm the absence of mtDNA variability in Italian wolves: all 101 individuals sampled across their distribution in Italy had the same, unique haplotype, whereas seven haplotypes were found in only 26 wolves from an outbred population in Bulgaria. Most haplotypes were specific either to wolves or dogs, but some east European wolves shared haplotypes with dogs, indicative of hybridization. In contrast, neither hybridization with dogs nor introgression of non-native wolves was detected in the Italian population. These findings exclude the introgression of dog genes via matings between male wolves and female dogs, the most likely direction of hybridization. The observed mtDNA monomorphism is the possible outcome of random drift in the declining and isolated Italian wolf population, which probably existed at low effective population size during the last 100–150 years. Low effective population size and the continued loss of genetic variability might be a major threat to the long-term viability of Italian wolves. A controlled demographic increase, leading to recolonization of the historical wolf range in Italy, should be enforced.  相似文献   

15.
Contraception has an established role in managing overabundant populations and preventing undesirable breeding in zoos. We propose that it can also be used strategically and selectively in conservation to increase the genetic and behavioral quality of the animals. In captive breeding programs, it is becoming increasingly important to maximize the retention of genetic diversity by managing the reproductive contribution of each individual and preventing genetically suboptimal breeding through the use of selective contraception. Reproductive suppression of selected individuals in conservation programs has further benefits of allowing animals to be housed as a group in extensive enclosures without interfering with breeding recommendations, which reduces adaptation to captivity and facilitates the expression of wild behaviors and social structures. Before selective contraception can be incorporated into a breeding program, the most suitable method of fertility control must be selected, and this can be influenced by factors such as species life history, age, ease of treatment, potential for reversibility, and desired management outcome for the individual or population. Contraception should then be implemented in the population following a step‐by‐step process. In this way, it can provide crucial, flexible control over breeding to promote the physical and genetic health and sustainability of a conservation dependent species held in captivity. For Tasmanian devils (Sarcophilus harrisii), black‐flanked rock wallabies (Petrogale lateralis), and burrowing bettongs (Bettongia lesueur), contraception can benefit their conservation by maximizing genetic diversity and behavioral integrity in the captive breeding program, or, in the case of the wallabies and bettongs, by reducing populations to a sustainable size when they become locally overabundant. In these examples, contraceptive duration relative to reproductive life, reversibility, and predictability of the contraceptive agent being used are important to ensure the potential for individuals to reproduce following cessation of contraception, as exemplified by the wallabies when their population crashed and needed females to resume breeding.  相似文献   

16.
The success of reintroduction programs greatly depends on the amount of mortality and dispersal of the released individuals. Although local environmental pressures are likely to play an important role in these processes, they have rarely been investigated because of the lack of spatial replicates of reintroduction. In the present study, we analyzed a 25-year data set encompassing 272 individuals released in five reintroduction programs of Griffon Vultures (Gyps fulvus) in France to examine the respective roles of survival and dispersal in program successes and failures. We use recent developments in multi-strata capture-recapture models to take into account tag loss in survival estimates and to consider and estimate dispersal among release areas. We also examined the effects of sex, age, time, area, and release status on survival, and we tested whether dispersal patterns among release areas were consistent with habitat selection theories. Results indicated that the survival of released adults was reduced during the first year after release, with no difference between sexes. Taking into account local observations only, we found that early survival rates varied across sites. However when we distinguished dispersal from mortality, early survival rates became equal across release sites. It thus appears that among reintroduction programs difference in failure and success was due to differential dispersal among release sites. We revealed asymmetrical patterns of dispersal due to conspecific attraction: dispersers selected the closest and the largest population. We showed that mortality can be homogeneous from one program to another while, on the contrary, dispersal is highly dependent on the matrix of established populations. Dispersal behavior is thus of major interest for metapopulation restoration and should be taken into account in planning reintroduction designs.  相似文献   

17.
Role of Genetic Background in the Success of Reintroduced Peregrine Falcons   总被引:2,自引:0,他引:2  
Abstract: Peregrine Falcons (    Falco peregrinus ) of seven subspecies from four continents were bred in captivity, and approximately 1173 of their progeny were released in the midwestern United States and adjacent regions of Ontario and Manitoba in an attempt to replace the original population that was extirpated by chlorinated hydrocarbon poisoning in the 1950s. We analyzed the success of individuals of the different subspecies introduced to the Midwest. Five of the seven subspecies released have contributed to the current breeding population. Subspecies of breeding Peregrine Falcons were equally represented when breeding birds of high productivity were compared with less prolific breeders. The subspecific makeup of the breeding population did not differ significantly from that of the released population, suggesting that adaptability in this species was sufficient to override genetic differences between subspecies. Peregrines of widely different genetic stocks have thrived after release, making substantial genetic contributions to the new population.  相似文献   

18.
Levels of variation in eight large captive populations of D. melanogaster (census sizes ∼ 5000) that had been in captivity for periods from 6 months to 23 years (8 to 365 generations) were estimated from allozyme heterozygosities, lethal frequencies, and inversion heterozygosities and phenotypic variances, additive genetic variances ( V A), and heritabilities ( h 2) for sternopleural bristle numbers. Correlations between all measures of variation except lethal frequencies were high and significant. All measures of genetic variation declined with time in captivity, with those for average heterozygosities, V A, and h 2 being significant. The effective population size ( N e) was estimated to be 185–253 in these populations, only 0.037–0.051 of census size (N). Levels of allozyme heterozygosities declined rapidly in two large captive populations founded from another wild stock, being reduced by 86% and 62% within 2.5 years in spite of being maintained at sizes of approximately 1000 and 3500. Estimates of N e/ N for these populations were only 0.016 and 0.004. Two estimates of N e/ N for captive populations of D. pseudoobscura from data in the literature were also low at 0.036 and 0.012. Consequently, the rate of loss of genetic variation in captive populations and endangered species may be more rapid than hitherto recognized. Merely maintaining captive populations at large census sizes may not be sufficient to maintain essential genetic variation.  相似文献   

19.
Abstract: Returning confiscated animals to their native habitats is desirable when it makes a positive contribution to the conservation of the species. Release of captive individuals is complex and controversial, however, particularly when risks are potentially high, as in the case of orphaned apes. We describe the decision-making process that led to the successive release of 20 wild-born orphan chimpanzees (    Pan troglodytes troglodytes ) into the Conkouati Reserve in the Republic of Congo. Recommendations of the Reintroduction Specialist Group of the World Conservation Union's Species Survival Commission were followed closely. The conservation status, ecology, and behavior of wild chimpanzees; the biological, social, economic and political context of the release site; and the health and genetic status of the candidates for release were all taken into account in the planning and execution of the project. Rigorous post-release monitoring of behavior and health allowed documentation of the outcome. The project was of benefit to the chimpanzees that were released but also brought broad benefits to the site through effective protection from poaching and deforestation, and direct and indirect benefits to local people. The genetic and behavioral diversity of chimpanzees require a variety of conservation strategies to reduce threats and maintain as many viable wild populations as possible.  相似文献   

20.
Time is of the essence in conservation biology. To secure the persistence of a species, we need to understand how to balance time spent among different management actions. A new and simple method to test the efficacy of a range of conservation actions is required. Thus, we devised a general theoretical framework to help determine whether to test a new action and when to cease a trial and revert to an existing action if the new action did not perform well. The framework involves constructing a general population model under the different management actions and specifying a management objective. By maximizing the management objective, we could generate an analytical solution that identifies the optimal timing of when to change management action. We applied the analytical solution to the case of the Christmas Island pipistrelle bat (Pipistrelle murrayi), a species for which captive breeding might have prevented its extinction. For this case, we used our model to determine whether to start a captive breeding program and when to stop a captive breeding program and revert to managing the species in the wild, given that the management goal is to maximize the chance of reaching a target wild population size. For the pipistrelle bat, captive breeding was to start immediately and it was desirable to place the species in captivity for the entire management period. The optimal time to revert to managing the species in the wild was driven by several key parameters, including the management goal, management time frame, and the growth rates of the population under different management actions. Knowing when to change management actions can help conservation managers’ act in a timely fashion to avoid species extinction. Determinar Cuándo Cambiar el Rumbo en las Acciones de Manejo  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号