首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model is developed for hydrocarbon biodegradation, which includes saturated and unsaturated flow, multi-species transport, heat transport, and bacterial growth processes. Numerical accuracy of the model was tested against analytical solutions. The model was also verified against laboratory results for a saturated-flow problem and reasonable match was obtained. Expressions are proposed for inhibition due to water content and temperature fluctuations. Bioactivities under cyclic water content variation were studied under no-flow conditions. A quantitative approach was used to reconcile some of the apparent contradictory conclusions regarding the efficiency of biodegradation of soils under wetting and drying conditions. The efficiency depends on the nature of the oxygenation process. For cases involving the presence of dissolved oxygen and the absence of O2 vapor, subjecting the soil to constant water content close to its optimal value for degradation is most efficient. However, wetting and drying can enhance degradation if O2 is only provided through aeration or direct contact between air and the medium. Also presented are the results of a typical field application of the model and a discussion of the effects of tides, saturation inhibition, and heat inhibition. Other inhibition factors, such as pH or salinity, can be easily incorporated in the formulation. The quantitative approach developed here can be used in assessing bioremediation not only in tidal aquifers but also in areas where water-table or temperature effects are of significance. The approach can be useful in the design of remediation strategies under water-flow or no-flow conditions involving water content and temperature fluctuations.  相似文献   

2.
土壤石油烃污染的植物毒性及植物-微生物联合降解   总被引:8,自引:2,他引:6  
通过盆栽实验研究了土壤石油烃污染对玉米和水稻根伸长的影响,并在土壤中接种经过筛选得到的石油烃降解菌,研究石油烃降解菌对石油烃毒性的影响以及对土壤中石油烃的降解。研究结果表明,石油烃浓度低于1 000 mg/kg时对玉米的根系生长有一定的刺激生长作用,随着石油烃浓度的增加,刺激根长生长的作用逐渐降低,研究结果表明,水稻根长受石油烃影响较小。通过对不同处理土壤中石油烃降解的研究结果表明,土壤中种植水稻对石油烃有一定的降解作用,但是不同处理下土壤中的石油烃降解率不同,其中水稻微生物联合处理下土壤中石油烃的降解速率最快,培养期内的降解效率达到53.3%。  相似文献   

3.
Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil   总被引:20,自引:0,他引:20  
Chang BV  Shiung LC  Yuan SY 《Chemosphere》2002,48(7):717-724
Known concentrations of phenanthrene, pyrene, anthracene, fluorene and acenapthene were added to soil samples to investigate the anaerobic degradation potential of polycyclic aromatic hydrocarbon (PAH). Consortia-treated river sediments taken from known sites of long-term pollution were added as inoculum. Mixtures of soil, consortia, and PAH (individually or combined) were amended with nutrients and batch incubated. High-to-low degradation rates for both soil types were phenanthrene > pyrene > anthracene > fluorene > acenaphthene. Degradation rates were faster in Taida soil than in Guishan soil. Faster individual PAH degradation rates were also observed in cultures containing a mixture of PAH substrates compared to the presence of a single substrate. Optimal incubation conditions were noted as pH 8.0 and 30 degrees C. Degradation was enhanced for PAH by the addition of acetate, lactate, or pyruvate. The addition of municipal sewage or oil refinery sludge to the soil samples stimulated PAH degradation. Biodegradation was also measured under three anaerobic conditions; results show the high-to-low order of biodegradation rates to be sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the PAH degradation; sulfate-reducing bacteria constitute a major component of the PAH-adapted consortia.  相似文献   

4.
Environmental Science and Pollution Research - This study assessed the effects of salinity and sewage sludge on the fractionation of Zn and Cu in a soil around a lead-zinc mine as well as their...  相似文献   

5.
The influence of oil concentration on hydrocarbon biodegradation in a sandy sediment was studied in polyvinyl chloride reactors (0.45 x 0.28 x 0.31 m) containing 76.8 kg of beach sand in natura, where the upper layer was artificially contaminated with petroleum. The oil-degrading microorganisms used consisted of a mixed culture named ND, obtained from landfarming and associated with indigenous microorganisms. On the 28th day of the process, the degradation in reactors containing sandy sediment contaminated with light Arabian oil and presenting an initial oil content of 14, 21 or 28 g kg-1 reached the following levels (%): 33.7, 32.9 and 28.9 for oil and grease; up to 88.3, 35.3 and 13.0 for C14-C26 n-alkanes; and 100, 61.3 and 59.4 for pristane, respectively. Phytane removal (37.1%) was only detected in the reactor contaminated with the lowest oil concentration studied. These results, together with the expressive bacterial growth observed (from 10(6) to 10(11) cfu g-1) give strong support to the argument that biodegradation was the dominant component of the remediation process. Susceptibility to biodegradation was inversely proportional to increasing oil contamination. The degradation of branched alkane: pristane was not repressed by the presence of n-alkanes.  相似文献   

6.
Slurry-phase biodegradation of weathered oily sludge waste   总被引:3,自引:0,他引:3  
We assessed the biodegradation of a typical oily sludge waste (PB401) in Mexico using several regimes of indigenous microbial consortium and relevant bioremediation strategies in slurry-phase system. Abiotic loss of total petroleum hydrocarbons (TPH) in the PB401 was insignificant, and degradation rates under the various treatment conditions ranged between 666.9 and 2168.7 mg kg(-1) day(-1) over a 15 days reaction period, while viable cell count peaked at between log(10)5.7 and log(10)7.4 cfu g(-1). Biostimulation with a commercial fertilizer resulted in 24% biodegradation of the TPH in the oily waste and a corresponding peak cell density of log(10)7.4 cfu g(-1). Addition of non-indigenous adapted consortium did not appear to enhance the removal of TPH from the oily waste. It would appear that the complexities of the components of the alkylaromatic fraction of the waste limited biodegradation rate even in a slurry system.  相似文献   

7.
We determined how a cleaner and a dispersant affected hydrocarbon biodegradation in wetland soils dominated by the plant Panicum hemitomon, which occurs throughout North and South America. Microcosms received no hydrocarbons, South Louisiana crude, or diesel; and no additive, a dispersant, or a cleaner. We determined the concentration of four total petroleum hydrocarbon (TPH) measures and 43 target hydrocarbons in water and sediment fractions 1, 7, 31, and 186 days later. Disappearance was distinguished from biodegradation via hopane-normalization. After 186 days, TPH disappearance ranged from 24% to 97%. There was poor correlation among the four TPH measures, which indicated that each quantified a different suite of hydrocarbons. Hydrocarbon disappearance and biodegradation were unaltered by these additives under worse-case scenarios. Any use of these additives must generate benefits that outweigh the lack of effect on biodegradation demonstrated in this report, and the increase in toxicity that we reported earlier.  相似文献   

8.
The capacity of the naphthalene degrading enzyme (NAH) system of Pseudomonas fluorescens 5R and a number of other NAH system bacterial isolates to degrade mixtures of polyaromatic hydrocarbons (PAHs) and heterocyclic compounds were examined. It was found that all the examined organisms displayed similar patterns of preferential compound degradation when presented with the same mixture. Using strains that possess portions of the NAH system, this preferential degradation was localized to the activity of naphthalene dioxygenase. Comparisons of the first-order rates of compound degradation with the structures of the mixture components indicated that increased deviation from the base structure of naphthalene led to slower disappearance. Structural features that were found to decrease the rate of compound degradation include an increase in the number of methyl substituents and an increase in the size of a substituent.  相似文献   

9.
Das P  Mukherjee S  Sen R 《Chemosphere》2008,72(9):1229-1234
Polyaromatic hydrocarbons (PAHs) are organic pollutants mostly derived from the processing and combustion of fossil fuels and cause human health hazards. In the present study a marine biosurfactant producing strain of Bacillus circulans was used to increase the bioavailability and consequent degradation of a model polyaromatic hydrocarbon, anthracene. Although the organism could not utilize anthracene as the sole carbon source, it showed better growth and biosurfactant production in an anthracene supplemented glycerol mineral salts medium (AGlyMSM) compared to a normal glycerol mineral salts medium (GlyMSM). The biosurfactant product showed high degree of emulsification of various hydrocarbons. Analysis by gas chromatography (GC), high performance thin layer chromatography (HPTLC) and Fourier transform infrared spectroscopy (FTIR) showed that the biosurfactant could effectively entrap and solubilize PAH. Thin layer chromatographic analysis showed that anthracene was utilized as a carbon substrate for the production of biosurfactant. Thus organic pollutant anthracene was metabolized and converted to biosurfactants facilitating its own bioremediation.  相似文献   

10.
生物法降解低浓度含甲苯废气的研究   总被引:3,自引:1,他引:3  
筛选出以甲苯为唯一碳源的高效降解甲苯的假单孢菌Pseudmonas sp.ZD5,并设计生物滤池装置,研究了温度为10-50℃、相对湿度为50%-80%、人口甲苯浓度为1000-4500mg/m^3、气流量为0.3-0.7m^3/h的操作条件对甲苯降解率的影响,得出甲苯最高降解率为89.7%,表明此细菌降解低浓度甲苯废气有较好的效果。  相似文献   

11.
The expected increase in offshore oil exploration and production in the Arctic may lead to crude oil spills along arctic shorelines. To evaluate the potential effectiveness of bioremediation to treat such spills, oil spill bioremediation in arctic sediments was simulated in laboratory microcosms containing beach sediments from Barrow (Alaska), spiked with North Slope Crude, and incubated at varying temperatures and salinities. Biodegradation was measured via respiration rates (CO2 production); volatilization was quantified by gas chromatography/mass spectrophotometry (GC/MS) analysis of hydrocarbons sorbed to activated carbon, and hydrocarbons remaining in the sediment were quantified by GC/flame ionization detector (FID). Higher temperature leads to increased biodegradation by naturally occurring microorganisms, while the release of volatile organic compounds was similar at both temperatures. Increased salinity had a small positive impact on crude oil removal. At higher crude oil dosages, volatilization increased, however CO2 production did not. While only a small percentage of crude oil was completely biodegraded, a larger percentage was volatilized within 6–9 weeks.  相似文献   

12.
1,2-Dichloroethane (1,2-DCA) is one of the most hazardous pollutant of soil and groundwater, and is produced in excess of 5.44 × 109 kg annually. Owing to their toxicity, persistence and potential for bioaccumulation, there is a growing interest in technologies for their removal. Heavy metals are known to be toxic to soil microorganisms at high concentrations and can hinder the biodegradation of organic contaminants. In this study, the inhibitory effect of heavy metals, namely; arsenic, cadmium, mercury and lead, on the aerobic biodegradation of 1,2-DCA by autochthonous microorganisms was evaluated in soil microcosm setting. The presence of heavy metals was observed to have a negative impact on the biodegradation of 1,2-DCA in both soil samples tested, with the toxic effect being more pronounced in loam soil, than in clay soil. Generally, 75 ppm As3+, 840 ppm Hg2+, and 420 ppm Pb2+ resulted in 34.24%, 40.64%, and 45.94% increase in the half live (t½) of 1,2-DCA, respectively, in loam soil, while concentrations above 127.5 ppm Cd2+, 840 ppm Hg2+ and 420 ppm of Pb2+ and less than 75 ppm As3+ was required to cause a >10% increase in the t½ of 1,2-DCA in clay soil. A dose-dependent relationship between degradation rate constant (k1) of 1,2-DCA and metal ion concentrations was observed for all the heavy metals tested, except for Hg2+. This study demonstrated that different heavy metals have different impacts on the degree of 1,2-DCA degradation. Results also suggest that the degree of inhibition is metal specific and is also dependent on several factors including; soil type, pH, moisture content and available nutrients.  相似文献   

13.
采用厌氧折流板反应器(ABR)/连续搅拌反应器(CSTR)组合工艺,通过构建共基质体系对水洗碳氢溶剂废气的废水(简称水洗废水)进行处理研究,探讨了共基质体系可行性,考察了水力停留时间(HRT)、硝化液回流比(R,%)、COD和氨氮质量比(C/N)、pH等对水洗废水处理效率的影响。结果表明:(1)共基质体系对去除水洗废水中难降解有机物效果显著。水洗废水占总废水的体积分数≤60%时共代谢效果最佳,COD平均去除率高于84%,氮污染物的去除受该体系影响小。(2)HRT=12h时碳污染物去除效果最佳,COD平均去除率为89.40%。较长的HRT利于脱氮,HRT=24h时氨氮平均去除率达98%,平均出水氨氮为0.87mg/L。R=300%(体积分数)时碳氮污染物去除效果最优。(3)C/N=10时组合装置对废水的脱氮除碳性能最好,COD、总有机碳(TOC)、氨氮和TN平均去除率分别为87.93%、93.11%、95.94%和77.29%。除碳最适pH为6.7,脱氮偏好碱性环境(pH=8.6)。  相似文献   

14.
Benzene and alkylbenzene biodegradation rates and patterns were measured using an in situ microcosm in a crude-oil contaminated aquifer near Bemidji, Minnesota. Benzene-D6, toluene, ethylbenzene, o-, m- and p-xylenes and four pairs of C3- and C4-benzenes were added to an in situ microcosm and studied over a 3-year period. The microcosm allowed for a mass-balance approach and quantification of hydrocarbon biodegradation rates within a well-defined iron-reducing zone of the anoxic plume. Among the BTEX compounds, the apparent order of persistence is ethylbenzene > benzene > m,p-xylenes > o-xylene  toluene. Threshold concentrations were observed for several compounds in the in situ microcosm, below which degradation was not observed, even after hundreds of days. In addition, long lag times were observed before the onset of degradation of benzene or ethylbenzene. The isomer-specific degradation patterns were compared to observations from a multi-year study conducted using data collected from monitoring wells along a flowpath in the contaminant plume. The data were fit with both first-order and Michaelis-Menten models. First-order kinetics provided a good fit for hydrocarbons with starting concentrations below 1 mg/L and Michaelis-Menten kinetics were a better fit when starting concentrations were above 1 mg/L, as was the case for benzene. The biodegradation rate data from this study were also compared to rates from other investigations reported in the literature.  相似文献   

15.
Numerical experiments of non-reactive and reactive transport were carried out to quantify the influence of a seasonally varying, transient flow field on transport and natural attenuation at a hydrocarbon-contaminated field site. Different numerical schemes for solving advective transport were compared to assess their capability to model low transversal dispersivities in transient flow fields. For the field site, it is shown that vertical plume spreading is largely inhibited, particularly if sorption is taken into account. For the reactive simulations, a biodegradation reaction module for the geochemical transport model PHT3D was developed. Results of the reactive transport simulations show that under the site-specific conditions the temporal variations in groundwater flow do, to a modest extent, affect average biodegradation rates and average total (dissolved) contaminant mass in the aquifer. The model simulations demonstrate that the seasonal variability in groundwater flow only results in significantly enhanced biodegradation rates when a differential sorption of electron donor (toluene) and electron acceptor (sulfate) is assumed.  相似文献   

16.
Lin CW  Cheng YW  Tsai SL 《Chemosphere》2007,69(9):1485-1491
The influence of zinc, manganese, and nickel on the degradation of MTBE (methyl tert-butyl ether), by an aerobic MTBE-degrading strain, Ochrobactrum cytisi, were investigated. The result showed that unlike previous findings, O. cytisi was able to degrade MTBE through direct metabolism when MTBE was present as the only carbon source. The degradation rate of MTBE was rapid, completed within 80 h. MTBE biodegradation by this strain was stimulated at low concentrations of Zn(2+) (1-5 mg l(-1)) and Mn(2+) (1-5 mg l(-1)) but inhibited at high concentrations of Zn(2+) (20 mg l(-1)) and Mn(2+) (20 mg l(-1)), and at low concentration of Ni(2+) (1-4 mg l(-1)). Kinetic parameters for MTBE degradation in the presence or absence of metals were obtained through nonlinear regression and a least-square minimization procedure. In all cases, a good agreement was achieved between kinetic simulations and experimental results.  相似文献   

17.
盐度对模拟餐厨垃圾发酵液产聚羟基脂肪酸酯工艺的影响   总被引:1,自引:0,他引:1  
利用餐厨垃圾发酵液生产聚羟基脂肪酸酯(PHA)可以在废物处理的同时实现有价资源回收。为探究发酵液中盐分对产PHA菌群富集过程的影响,以模拟餐厨垃圾发酵液为底物,研究了盐度存在下污泥理化性质、富集过程主要指标及菌群PHA合成能力等变化。结果表明,未经盐度富集的菌群易受到盐度抑制,在15 g·L−1的盐度条件下,污泥PHA最大合成量可降至39.9%。富集过程中盐度的增加有利于污泥沉降性的提升,低盐度(5 g·L−1)下菌群分泌胞外聚合物量最多,达49.8 mg·g−1(以VSS计),对菌群保护能力最强。不同盐度条件下的富集系统皆能保持较好的生态选择压力,但盐度对微生物生长的抑制随着浓度的增大而增强。经过盐度存在下长期富集后的污泥,在高盐度(10、15 g·L−1)底物条件下,仍能获得较高的PHA最大合成能力,但其较低的生长活性不利于最终PHA产量的提升,短期富集下,高盐度会抑制PHA的合成;而低盐度(5 g·L−1)有助于提高PHA合成能力,最高达50.5%。  相似文献   

18.
Shen G  Lu Y  Zhou Q  Hong J 《Chemosphere》2005,61(8):1175-1182
Actions and interactions of heavy metals (cadmium, zinc and plumbum) and polycyclic aromatic hydrocarbons (PAHs) [phenanthrene, fluoranthene, benzo(a)pyrene] on the soil urease and dehydrogenase activity were studied after 49 days exposure. The experimental approach was based on the uniform design which can cut the experiment time and improve the efficiency of experiments. Data treatment was essentially based on the multiple regression technique. The results showed that the action and interaction between heavy metals and PAHs were strongly dependent on the time of pollution. The dehydrogenase exhibits more sensitive to the combined pollution than urease. The negative interaction between Zn and Cd to hydrogenase activity and the combined stimulatory activity of Phenanthrene and Benzo(a)pyrene (or fluoranthene) to soil enzyme were observed. The interactions between Zn (Cd) and phenanthrene towards urease (dehydrogenase) were positive, and the interaction between Zn and benzo(a)pyrene to urease activity was negative. This study corresponds to exploratory phase in order to reveal interaction effects of heavy metals and PAHs on the soil enzyme and then to set up more in-depth analysis to increase progressively the understanding of the ecotoxicological mechanisms involved.  相似文献   

19.
This study sought to extend validation of a cyclodextrin based extraction method for the assessment of PAH-biodegradation potential to complex multi-contaminant matrices. To this end, four reference materials (RMs) were produced by blending, in different proportions, soils impacted with diesel, lubricating oil and spent oxide. These reference materials had modest ∑PAH (16 US EPA) concentrations that ranged from 5.6 ± 0.5 to 44.4 ± 4.5 mg kg−1. However, extractable petroleum hydrocarbon (EPH) concentrations were comparatively high (up to 2520 ± 204 mg kg−1). To complement these RMs, two further soils from a municipal gas plant (MGP) with highly elevated concentration of PAHs ranging from 877 ± 52 to 2620 ± 344 mg kg−1 were also tested. Results showed, regardless of matrix complexity, that PAH biodegradation within the four RM substrates, and two MGP soils correlated well with biodegradation predicted by hydroxypropyl-β-cyclodextrin (HPCD) extraction.  相似文献   

20.
To test the possible use of composted food waste and wastewater sludge as biofilters to treat gas-phase volatile organic compounds (VOCs), batch experiments were conducted with an isolated strain that could degrade aromatic compounds under aerobic conditions. A benzene and trichloroethylene (TCE) mixture was used as the gas-phase pollutant in experiments with composted food waste, sludge, and soil. Under aerobic conditions, benzene was degraded as a primary substrate and TCE was degraded cometabolically, with water contents varying from 6 to 60% (volume of water added/volume of solid). Optimal water content for VOC removal was 12% for the soil, 36% for the composted food waste, and 48% for the sludge. The extent of VOC sorption and biodegradation at the optimal water content was different for each material. With the same initial VOC concentration, more VOCs were removed by sorption onto the composted food waste and the sludge, while less VOCs were biodegraded in comparison with the results using soil. The reason the biodegradation in the soil was greater may be partly attributed to the fact that, due to less sorption, the aqueous-phase concentration of VOCs, which microorganisms could utilize as a carbon source or cometabolize, was higher. We also speculate that the distribution of microorganisms in each medium affects the rate of biodegradation. A large number of microorganisms were attached to the composted food waste and sludge. Mass transfer of VOCs and oxygen to these microorganisms, which appear to have been heterogeneously distributed in clusters, may have been limited, resulting in hindered biodegradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号