首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
基于环境承载力的京津冀雾霾治理政策效果评估   总被引:2,自引:0,他引:2  
雾霾污染治理是京津冀协同发展需要解决的重大问题。2013年9月颁布的"大气污染防治行动计划(大气国十条)"明确提出了京津冀地区雾霾治理目标,各地区也制定了雾霾污染治理的政策措施。本文旨在环境承载力分析的基础上评估雾霾治理的政策效果。首先,分析了京津冀地区大气环境污染特征,并结合相关文献确定京津冀地区雾霾治理的主要影响因素为污染物排放、风力以及相邻地区的传输效应等;其次,将影响PM_(2.5)浓度主要因素进行统计建模,并采用分位数回归模型进行矫正,大大提高模型的拟合精度;再次,基于大气国十条规定的京津冀各地区的PM_(2.5)年均浓度目标计算各地区的大气环境承载力;最后,在假定风力等气象条件不变的情况下,根据大气国十条规定的京津冀地区的污染物排放量利用统计模型模拟2017年的雾霾污染水平,模拟除张家口、承德和秦皇岛以外其余10个地区年均浓度60μg/m~3和70μg/m~3目标下PM_(2.5)日均浓度发生频率的变化情况,评估和讨论大气国十条提出的京津冀雾霾治理目标。结果表明:按照大气国十条减排计划的京津冀地区污染物排放量普遍高于其PM_(2.5)浓度目标下的大气环境容量(邯郸市除外),即大气国十条所规定的减排措施难以实现既定的PM_(2.5)浓度目标;PM_(2.5)年均浓度目标从60μg/m~3上升到70μg/m~3,重污染天气发生频率上升有限,大气污染物的减排量却显著下降。因此,要实现既定的雾霾浓度控制目标,天津和河北需要进一步加大污染物减排力度;雾霾治理应注重减少重污染天气的发生频率,治理重点应转向重度雾霾发生频率较高的冬季污染物排放控制;在科学确定环境承载力的基础上,确定切实可行的PM_(2.5)浓度控制目标,制定具有可操作性的污染物减排计划。  相似文献   

2.
利用2011年1月~2014年2月上海崇明岛地区颗粒物(PM_(2.5)、PM_(10))的连续监测资料,研究了PM_(2.5)总体分布、季节变化、日变化及浓度频率分布规律,初步分析了逆温、相对湿度、风向风速等气象要素对颗粒物浓度的影响。结果表明:2011~2013年该地区PM_(2.5)平均值分别为24.7,33.6和28.3μg/m~3,均低于PM2.5的年平均浓度限值35μg/m~3,细粒子污染程度较轻。PM_(2.5)浓度日变化幅度不大,呈微弱的单峰型分布,9∶00左右达到一天中的最大值,15∶00左右达到最小值。PM_(2.5)浓度的季节分布特征明显,呈现出冬季春季秋季夏季,一般情况下5月份PM_(2.5)月均浓度值最高,8月份浓度最低。PM_(2.5)日平均浓度有57.9%达到国家空气质量一级标准,有93.4%达到国家空气质量二级标准,超标率为6.6%。对PM_(2.5)与各气象要素进行分析后发现:PM_(2.5)质量浓度在逆温层结稳定、风速小、高湿以及近地面盛行西北到西风这样的静稳天气条件配合高空西北方向上的外来污染物输送,容易造成高浓度的PM_(2.5)污染。  相似文献   

3.
科学识别PM_(2.5)的空间分异及其驱动因素,是实现区域空气污染治理的关键。以国测点日均PM_(2.5)浓度为数据来源,基于多种空间分析方法,研究长江三角洲城市群PM_(2.5)浓度的时空演变及影响因素。结果发现:(1)2013~2017年,长江三角洲城市群的PM_(2.5)年平均浓度,处于不断下降的趋势;城市间的差异,呈现逐渐减少的趋势。(2)一年中,12月份的PM_(2.5)浓度最高,8月份的PM_(2.5)浓度最低。1~12月,PM_(2.5)浓度先减后增。(3)2013年,PM_(2.5)高浓度区域主要分布在江苏省;2017年,PM_(2.5)高浓度区域主要分布在安徽省。5年间,PM_(2.5)浓度的空间重心,向安徽省转移72 km。(4)长江三角洲城市群PM_(2.5)浓度存在明显的空间自相关。存在PM_(2.5)浓度高-高值区、低-低值区"扎堆"现象,且集聚程度趋于增大。(5)影响PM_(2.5)浓度的因素包括了自然因素和社会因素。自然因素中,降雨与PM_(2.5)浓度显著相关。社会因素主要来自工业排放、交通排放和能源消耗。其中,能源消耗的影响程度最大,工业排放次之,交通排放最后。  相似文献   

4.
本文利用全国320个城市的大气污染物浓度数据,实证分析了2017年北京、天津以及周围其它26个城市("2+26"城市)联合防治行动的效果和影响。研究发现:联合行动显著降低了"2+26"城市各类大气污染物浓度,PM_(2. 5)、PM_(10)、SO_2、CO和O_3浓度分别降低了5. 906μg/m~3、12. 572μg/m~3、4. 673μg/m~3、0. 074μg/m~3和20. 303μg/m~3,该地区空气质量明显改善。与其邻居城市相比、与其他集中供暖城市相比,这一结果依然稳健。NO2浓度仅仅在秋冬季实现显著下降,说明"2+26"城市实施的错峰运输和提高油品质量等措施能够有效地降低NO2浓度。更进一步,通过比较"煤改气、煤改电"工程、改造和淘汰小型燃煤锅炉、"散乱污"企业治理、VOCs企业治理4项主要治理措施,发现"煤改气、煤改电"工程和"散乱污"企业治理措施对于降低该地区PM_(2. 5)和PM_(10)浓度发挥了重要作用。从区域来看,北京、天津、石家庄、廊坊等北部城市的治理成效明显,东南部一些重工业城市的治理效果相对有限,空气质量改善不明显。由此可见,"2+26"城市在治理目标、治理力度、财政支持力度和执行严苛性等方面并不均衡。因此,"2+26"城市应更加注重打破行政权限、统筹布局、均衡发力,共同推动产业结构优化升级和清洁能源替代进程,从根源上进行大气污染防治。  相似文献   

5.
生态补偿作为中国的一项重要环境保护政策,在多个自然资源领域取得了显著成效,然而在大气污染防治方面的有效性缺乏相关技术检验。鉴于此,该研究基于2014年1月至2019年12月全国286个地级市月度面板数据,以地方空气质量生态补偿政策的实施为准自然实验,运用多期双重差分法(DID)、倾向性得分匹配(PSM)和三重差分法(DDD)等方法考察了生态补偿政策对辖区内城市空气质量的影响及其作用机制。研究结果显示:(1)地方空气质量生态补偿政策的实施显著降低了城市大气污染物浓度,促使PM_(2.5)、PM_(10)、SO_2、NO_2的月均浓度分别下降6.881μg/m~3、10.190μg/m~3、5.755μg/m~3及1.647μg/m~3。这表明生态补偿政策有助于促进大气污染外部效应内在化,增加地方政府大气治理积极性。(2)进一步分析可知,生态补偿政策对城市空气质量的改善存在着加速效应,促使PM_(2.5)、PM_(10)、SO_2、NO_2的月均浓度同比改善率分别提升7.17%、10.90%、6.86%、11.30%。(3)异质性分析显示,适当缩短生态补偿政策的考核周期,有助于加强其对城市空气质量的改善作用。(4)基于三重差分法的机制检验显示,生态补偿政策有助于从整体层面上提高地方能源使用效率,推进城市产业结构高级化,进而有效地改善了城市空气质量。(5)稳健性检验发现,省级层面整体空气质量亦能够得到改善。基于以上研究结论,提出相应建议:首先,不断完善空气质量生态补偿政策,从考核周期的合理化及融资渠道的多元化等方面助力生态补偿长效机制的形成。其次,合理引导地方产业转型升级,持续提升能源使用效率,充分发挥生态补偿对空气质量的改善作用。最后,着力构建国家层面大气污染生态补偿政策,加快形成大气污染联防联控机制。  相似文献   

6.
大气污染防治行动计划》被认为是史上最严格的一项空气污染治理政策。主要目标是控制区域PM_(2.5)和PM_(10)等污染物的排放量,明确规定了全国地级及以上城市可吸入颗粒物浓度比2012年下降10%以上,该政策始于2013年9月,于2017年底结束。为了科学检验《大气十条》的政策影响效应,选取该政策执行期间(2013—2017年)的125个地级及以上城市,包括72个处理组和53个控制组进行准自然试验,运用双重差分法检验该政策对控制主要空气污染物PM_(2.5)、PM_(10)、SO_2、NO_2、CO和O_3月均排放量的影响,并运用平行趋势检验、反事实检验等方法进行了稳健性检验。描述性统计结果显示:PM_(2.5)、PM_(10)、SO_2、NO_2和CO的月均排放量都得到了显著降低,其中PM_(2.5)和PM_(10)的降幅分别是36.33%和31.87%。京津冀、长三角、珠三角等区域PM_(2.5)浓度分别下降39.6%、34.3%、27.7%,三大区域PM_(10)的降幅分别为38.3%、31.1%、21.9%,其中,北京市PM_(2.5)月均浓度为57.33μg/m~3。但是O_3的排放量下降效果不显著,其含量不降反增,成为我国空气质量新的威胁。回归结果说明,该政策对试点城市大气中PM_(2.5)、PM_(10)、SO_2、NO_2和CO的排放量下降产生了显著影响,在1%显著性水平上,月均浓度分别下降685.14%、650.72%、479.05%、359.55%和7.06%。因此,总体上可以认为该项政策已经达标完成,控制了主要空气污染物的排放量。但是分解不同污染物、分区域或者是具体到不同城市的空气质量绝对值仍未达到国家控制标准。最后提出执行科学精细的空气质量监督管理制度和空气污染治理的长效政策等建议。  相似文献   

7.
大气污染物的源排放是形成灰霾天气的内因,气象条件是形成灰霾天气的外因。本研究通过构建PM_(2.5)浓度的两段式分布滞后模型,结合自然环境因素及经济因素对PM_(2.5)的影响因素进行了综合分析。在第一段模型中构建了PM_(2.5)和大气污染物排放量的分布滞后模型,第二段模型中构建了不同的大气污染源对大气污染物排放量的影响因素模型。大气污染物排放源主要包括工业源、生活源、机动车源、集中式污染治理设施源。在工业源中,工业废气重度污染行业是大气污染物排放主要的贡献者;在生活源中,燃煤消费量对大气污染物排放影响很大,这也是冬季供暖期间PM_(2.5)剧增的原因;在机动车源中,尽管黄标车的保有量仅占汽车保有量的10%左右,但却占据了颗粒物排放量的绝大部分。利用京津冀代表性城市PM_(2.5)日度数据研究得出平均气温、平均风速、日照时数、平均气压、降雨量、平均相对湿度、沙尘暴等因素对PM_(2.5)浓度的负向与正向作用。研究发现,大气污染物排放量对PM_(2.5)浓度具有聚集的滞后效应,当期大气污染物排放量、滞后一期、滞后两期、滞后三期大气污染物对PM_(2.5)浓度具有显著的正向作用,且影响依次递减。构建的大气污染物排放量的污染源影响因素模型揭示一个地区煤炭消费量、工业废气重度污染行业工业增加值、黄标车保有量对该地区大气污染物排放量具有显著影响。本研究对优化能源消费结构和产业结构,减少空气污染物排放提出了对策建议。  相似文献   

8.
基于全球大气PM_(2.5)年均浓度栅格数据集,采用重力模型、变异系数和探索性空间数据分析等方法,从区域、省域、市域、县域和栅格等多个尺度,对长江经济带PM_(2.5)时空演化特征进行系统分析。结果发现:(1)1998~2016年,长江经济带PM_(2.5)年均浓度均高于全国平均水平,且大体呈"倒U型"变化趋势,2005年是长江经济带PM_(2.5)年均浓度变化的重要拐点;(2)长江经济带PM_(2.5)的时空演化表现出显著的空间尺度效应,在不同空间尺度上,PM_(2.5)年均浓度的空间分异特征具有明显差别,但其空间差异均呈扩大态势;(3)长江经济带PM_(2.5)年均浓度存在显著的空间正相关性,且主要表现为高值集聚特征。  相似文献   

9.
长江经济带PM_(2.5)时空特征及影响因素研究   总被引:1,自引:0,他引:1  
大气细颗粒物(PM_(2.5))因其对空气环境质量乃至人类健康的巨大危害而逐渐引起学者们的关注。本文以我国综合实力最强、战略支撑作用最为突出的区域之一——长江经济带为研究对象,基于城市级空气质量监测数据,运用地理学时空分析与GIS可视化方法探索并呈现了2015年长江经济带PM_(2.5)的时空分布特征及其演变规律;在此基础上,结合空间回归模型考察了PM_(2.5)浓度与区域城市发展之间的内在关系。结果表明,就空间特征而言,长江中下游地区PM_(2.5)污染较长江上游地区更为严重,长江北岸地区比长江南岸地区更为严重;PM_(2.5)高浓度集聚地带主要位于鄂皖苏大部分地区,与空气质量较佳的云南及其周边地区呈"对角"分布状态。长江经济带内城市间PM_(2.5)浓度存在着显著的正向空间自相关,且自相关性随距离增大而不断减弱,其门槛尺度约为900 km;在这一范围内,PM_(2.5)空间集聚效应较为明显。就时间特征而言,冬季PM_(2.5)浓度相对较高,春秋两季次之,夏季空气质量最好;各地区浓度分布在年初相对离散,后有所趋同。此外,PM_(2.5)与其他类型的大气污染物(如SO2、NO2、O3)浓度两两之间均存在着显著的正相关性,暗示大气污染物从原发污染演变为二次污染,形成恶性循环。空间回归分析结果表明,PM_(2.5)污染随经济发展水平的提高呈现先上升后下降的趋势,在一定程度上支持了"环境库兹涅兹曲线"假说;且人口密度、公共交通运输强度均在不同程度上导致长江经济带PM_(2.5)浓度的升高。最后,从区域性联防联控、不同类型大气污染物协同治理、促进经济发展方式转型等方面为长江经济带的大气环境治理提出切实可行的政策建议。  相似文献   

10.
近年来,长三角地区灰霾天气持续增多,空气细颗粒物污染问题日益突出。基于2013年1月至2015年5月长三角地区及周边缓冲区内共214个空气质量监测站点PM2.5逐时监测数据,运用普通克里金插值方法,从年、季、月尺度上分析了PM2.5的空间分布格局和时间动态变化。结果表明:(1)2 a来,长三角地区PM2.5浓度空间分布明显呈现整体北部高南部低,局部地区略有突出的分布特征;长三角地区PM2.5浓度年均值为57.08μg/m3;其中,江苏省PM2.5的年均值为三省市最高,为65.84μg/m3;其次为上海市,年均值为53.87μg/m3;浙江省PM2.5的年均值较小,为51.53μg/m3。(2)从季节尺度分析,长三角地区PM2.5浓度变化表现出冬春季高,夏秋季低的变化趋势;这与区域内冬季风向来源、降水稀少、气象扩散条件差有着密切的关系; (3)长三角地区月浓度变化大致呈U形分布; 12月份PM2.5浓度最高; 3月份以后, PM2.5浓度开始呈逐步下降趋势;在5~9月份,区域PM2.5处于"U"字的谷底,其中6月份夏收时期秸秆焚烧、气象等因素导致PM2.5浓度有略微升高;进入10月份后迅速攀升,且11、12月份呈现持续升高态势。  相似文献   

11.
利用2017年合肥市污染监测站点PM_(2.5)浓度数据、气象数据以及土地利用类型数据,结合随机森林算法(RF)与土地利用回归模型(LUR),模拟合肥市PM_(2.5)浓度空间分布,并利用主成分分析法对PM_(2.5)影响因素进行分析。结果表明:(1)合肥市PM_(2.5)浓度日变化特征大致呈双峰变化,春季、夏季及秋季的峰值多出现在8∶00~9∶00,而冬季的峰值则出现在10∶00~11∶00。低谷值大致都出现在15∶00~17∶00。全年PM_(2.5)浓度变化趋势与春季类似。夏季PM_(2.5)浓度变化最为平稳。(2)2017年合肥市PM_(2.5)浓度分布由城市中心向外减弱,形成北高南低,西高东低的空间分布格局。(3)影响因素方面,PM_(2.5)浓度变化与降水、风速以及相对湿度等呈负相关关系,日照对PM_(2.5)浓度的影响较大,气压及其他污染物与PM_(2.5)浓度呈正相关关系,其中NO_2对PM_(2.5)浓度的影响力度较大。  相似文献   

12.
基于1999~2021年期间太湖微囊藻毒素(MCs)已发表文献和近期自测数据,利用Mann-Kendall趋势检验以及风险熵指数等方法,系统分析了太湖近20年以来MCs的长期变化特征与健康风险,以期为进一步加强MCs的监测和风险评估提供支撑。结果显示,自1999年以来,太湖全湖总MC(TMC)、胞内MC(TIMC)以及胞外溶解性MC(TEMC)浓度整体均呈缓慢增加趋势,其中TMC与TEMC月平均浓度的变化范围分别为0.01~19.50μg/L和0.001~6.44μg/L。从季节的历年变化看,春季时3种MC浓度均逐年上升,夏秋两季仅在近几年呈明显上升趋势,而冬季时仅TEMC表现为逐年升高趋势。在不同湖区,TMC与TIMC浓度趋于逐年升高,特别是在湖心及南部湖区和东太湖等水域,近几年升高趋势明显;TEMC浓度仅在贡湖湾逐年升高,但其历年平均浓度在竺山湾最高(0.53μg/L),而在夏秋季节时,以梅梁湾内为最高。健康风险评估结果显示,太湖共出现3个TEMC暴露风险高峰期,其中以2013~2015年期间风险值最高;从不同湖区看,竺山湾MCs暴露风险最高,其次为梅梁湾。以上研究结果可为浅水湖泊...  相似文献   

13.
本文利用了1998—2012年中国241个城市的空间面板数据对中国雾霾污染和FDI的区域分布特征及空间溢出效应进行经验考察,结合系统广义矩估计(SGMM)方法构建了动态空间面板模型,采用了Moran’s I和Geary’s C指数对中国FDI与雾霾(PM_(2.5))污染空间自相关性进行了全域和局域分析。结果发现:(1)雾霾(PM_(2.5))污染与FDI存在显著的空间正相关性,证明了雾霾(PM_(2.5))污染空间的溢出效应以及FDI的辐射效应的存在。同时FDI高值集聚区域一般是雾霾(PM_(2.5))高值集聚区,FDI低值集聚区域一般是雾霾(PM_(2.5))低值集聚区,表明一个地区的引资效果和雾霾(PM_(2.5))污染在地理上的集聚密切相关。雾霾(PM_(2.5))污染表现出显著的"叠加效应"和"溢出效应",说明中国雾霾(PM_(2.5))污染在空间维度、时间维度以及时空维度上分别表现出交叉、累积、持续的演变特征。(2)全样本下,FDI对雾霾(PM_(2.5))浓度的影响表现出增促效应。FDI存量每升高1%,雾霾(PM_(2.5))浓度升高0.011%。(3)分地区样本下,东部城市FDI存量每升高1%,雾霾(PM_(2.5))浓度升高0.001 9%;中部城市FDI存量每升高1%,雾霾(PM_(2.5))浓度升高0.018 3%;而西部城市FDI存量对雾霾(PM_(2.5))浓度影响不显著。上述实证结果说明中国雾霾污染存在着显著的空间依赖性和区域异质性,FDI对中国大部分城市的雾霾污染存在显著的增促效应。  相似文献   

14.
依据2017年长三角地区的空气质量小时数据,结合同期ECMWF气象资料,采用GIS空间分析、相关性分析和数理统计研究了区域O3、PM2.5的时空变化特征及其与气象因素的关系.结果 表明:(1)长三角城市群O3浓度在5和9月值最高,O3_8 h日变化特征呈拉伸型S曲线,在19:00、20:00达到浓度峰值,峰值浓度最大的地区是滁州,为111 μg/m3;O3空间分布由北到南逐渐降低,并且春季(136.57 μg/m3)>夏季(117.35μg/m3)>秋季(83.23 μg/m3)>冬季(77.06 μg/m3);O3与其前体物CO、NO2相关性较强;当15<T≤20℃,100<PRS≤100.5 kpa时,O3浓度超标最严重.(2)PM2.5浓度月均值呈不规则U型分布,低谷期在7、8月;上海浙江区域日均浓度第一个峰值在9:00~10:00,安徽江苏区域是11:00~12:00,第二个峰值均在21:00;PM2.5空间分布内陆城市高于沿海城市,冬季(62.21 μg/m3)>春季(44.70μg/m3)≈秋季(44.14 μg/m3)>夏季(31.33μg/m3);与NO2、SO2相比,PM2.5和CO相关性更强;O3与温度、相对湿度是正相关,与风速、风向、气压、边界层高度、降水量则是负相关,PM2.5与风向、气压是正相关,与其他因素是负相关;当温度低于5℃,100<PRS≤100.5 kpa时,长三角城市群PM2.5超标率最高.  相似文献   

15.
PM_(2.5)引发的雾霾污染对人体健康和社会可持续发展产生了严重威胁,已成为中国经济快速发展地区共同面临的问题。长三角是中国城市化进程最快、空气污染最为严重的地区之一,探寻该地区土地利用景观格局变化对PM_(2.5)的影响规律,有助于对PM_(2.5)"源""汇"景观的空间格局进行合理配置,也可以为污染防治决策提供科学依据。本文运用重心模型、冷热点分析和景观指数,探讨了该区域1995—2015年PM_(2.5)浓度的时空分布特征以及景观格局的变化规律,并使用岭回归方法分析了建设用地、林地、耕地和水体四种土地利用类型的景观格局在行政区尺度和外接圆尺度上对PM_(2.5)浓度的影响。结果显示:①1995—2015年长三角地区PM_(2.5)浓度总体呈上升趋势,并且具有"北高南低"和"南缓北急"空间分异特征。②长三角区域内建设用地面积大幅上升,且呈聚合状发展,而林地和耕地面积却在不断减少,并呈破碎状分布。③建设用地和林地分别是PM_(2.5)的"源"景观与"汇"景观,耕地对PM_(2.5)的"源""汇"作用交错,水体对PM_(2.5)无明显的净化作用。④相较于行政区尺度,外接圆尺度下林地PLAND、ED与PM_(2.5)浓度的负相关更为显著,可见对城市周边地区进行景观格局优化能收到更好的效果。研究表明:控制建设用地合理有序增长并采用多中心发展模式,有利于缓解城市主城区的环境压力;提高城市周边区域林地的比重和聚集度或加大林地与建设用地的接触面积,可以有效地减少城市PM_(2.5)浓度;对耕地进行整理使其形成连片化景观,并通过科学的耕作方式减少耕地上农业生产所带来的PM_(2.5)前体物,有助于发挥其对PM_(2.5)的"汇"作用。  相似文献   

16.
利用2010—2016年济南市环境空气质量监测数据,分析了济南市PM_(2.5)的年变化、月变化、日变化和区域分布特征。结果表明:(1)跑马岭监测点(远离市区的清洁对照点)PM_(2.5)浓度呈逐年下降的趋势,其余监测点PM_(2.5)的浓度均在2013年达到峰值后逐渐下降。(2)济南市冬季污染最重,1月达到最高;夏季污染最轻,8月达到最低。(3)PM_(2.5)平均浓度有两个高值中心,不同季节PM_(2.5)高值中心有所不同。(4)夏季,有无逆温时PM_(2.5)差异较小且日变化不明显;冬季,有无逆温时PM_(2.5)差异最大。  相似文献   

17.
大气污染,特别是细颗粒物(PM_(2.5))污染,对人类生产生活造成极大负面影响,是全球共同关注的热点问题,也是我国社会经济高质量发展所面临的巨大考验。环境吸收能力是大气环境系统自身结构与功能健康的保障,对人类在生产生活过程中产生的大气污染物的自动容纳、吸收和消化等作用不容忽视。了解环境中各要素对PM_(2.5)的吸收能力,深入探索环境吸收能力对PM_(2.5)浓度的影响,对开拓大气污染治理新思路有重要意义。文章选用2004—2017年全国30个省、自治区、直辖市的面板数据,从自然资源禀赋和人类活动影响两个维度构建指标体系测算环境吸收能力指数,并通过面板回归模型、基于MCMC优化的广义面板分位数回归技术和情景分析探讨了环境吸收能力对PM_(2.5)浓度影响及其异质性效应。研究发现:(1)全国环境吸收能力整体水平偏低,且区域间环境吸收能力差异较大。环境吸收能力受自然条件与人类活动的共同影响,自然条件禀赋是影响环境吸收能力强弱的主要因素,人类活动影响是造成环境吸收能力指数波动和地区间差异的主要因素。(2)从总体回归结果来看,环境吸收能力的增强对PM_(2.5)浓度的降低有显著负向影响,在PM_(2.5)浓度较高的地区,环境吸收能力的作用更加明显,但其影响效应不会必然随着PM_(2.5)浓度的上升而增加,并且在极端情况下,影响效应并没有通过显著性检验。(3)从异质性效应分析结果来看,在可持续情景和紧急情景下,环境吸收能力对PM_(2.5)浓度的作用显著为负,而在悲观情景下,环境吸收能力的作用并未体现。研究结论为我国大气污染防治和环境质量改善有重要启示作用。  相似文献   

18.
黄河流域是推进空气质量改善和经济社会高质量发展的核心区域,技术创新是破解流域PM_(2.5)污染防治难题的关键手段。该研究以2004—2019年黄河流域79个地级市PM_(2.5)污染数据为样本,利用核密度估计、空间自相关等方法探究PM_(2.5)在空间上的异质性和关联性特征,并将以技术创新为核心的社会经济因素和气温、降水等自然解释要素纳入同一空间面板杜宾模型,分析各因素对黄河流域PM_(2.5)的效应及其空间溢出效应,系统识别和甄别技术创新要素在这一过程中的贡献程度和溢出效应,解析技术创新对PM_(2.5)的作用机制与影响路径。研究发现:①黄河流域PM_(2.5)在空间上呈现显著的异质性和相关性,浓度值较高的地市主要集中于漯河、濮阳等黄河流域下游地区,全局Moran’s I指数均大于0.80且显著为正,空间关联以高高集聚和低低集聚类型为主;②专利授权量的增加通过排放源管控治理、移动源消减治理等路径对本地区PM_(2.5)防治具有正向推动作用,但由于绿色技术标准、绿色补贴等绿色技术壁垒的存在加剧了邻近地区污染治理难度,表现为负向空间溢出效应;③流域城市人均创新指数的提升通过营造良好的创新氛围、激发技术创新内生动力等机制同样促进了本地PM_(2.5)浓度下降,但空间溢出效应并不显著,未能对周边地区产生辐射带动作用。研究基于技术创新对PM_(2.5)防治的影响和空间溢出效应提出适应性对策建议,突出技术创新在空气污染防治中的关键作用,搭建和完善跨区域绿色技术创新体系,加强流域间联防联控机制与竞争合作机制,助推黄河流域空气质量改善、生态保护和高质量发展。  相似文献   

19.
PM2.5浓度值增加对大气能见度、人体健康和气候变化有着重要影响。采用2015年长三角地区监测数据,运用探索性空间数据分析法和相关系数法,分析长三角地区城市PM2.5污染的时空格局和影响因素,结果表明:(1)2015年长三角地区城市PM2.5年均浓度值为54.54 μg/m3,季节变化总体呈现春冬高夏秋低的季节性周期变化规律,1月和12月为一年中PM2.5污染最严重的月份,污染范围最广,5~9月是PM2.5浓度值优良时段,日均值春季和冬季的波动周期较短而剧烈,夏季和秋季波动周期相对较长而平缓。(2)2015年长三角地区城市PM2.5年均浓度值整体上从江苏到浙江呈减少趋势,具有北高南低,局部突出的特征。(3)长三角地区城市PM2.5浓度空间上存在集聚现象,低值集聚主要分布在浙江沿海地区,高值集聚主要分布在苏南地区。(4)燃烧排放的烟尘和前体物的二次转化对长三角地区PM2.5浓度有显著影响。风速和降水量是影响PM2.5浓度的两个重要气象因素。  相似文献   

20.
城市群已成为当今中国空气污染的重灾区,严重损害了区域生态环境与人体健康,但少有研究考虑如何通过优化土地利用结构,使大气环境的自然净化能力最大化,进而减少既定污染排放对空气质量的负面效应。鉴于此,以城市化进程迅速、空气污染严重的长江中游城市群为实证对象,从土地利用结构的视角出发,利用自主反演的高精度PM2.5数据,基于广义可加模型与空间回归模型,揭示2005~2020年土地利用变化对PM2.5浓度的非线性影响及其空间溢出效应。研究结果表明:(1)2005~2020年长江中游城市群建设用地大幅增加而耕地持续减少,PM2.5浓度在2011年前后呈现先上升后下降趋势,并具有显著的空间自相关性;(2)土地利用变化对PM2.5浓度的影响为复杂的非线性关系,其中建设用地与耕地变化对PM2.5浓度的影响存在边际递减效应;(3)土地利用变化对PM2.5浓度的影响存在显著的空间溢出效应,且除草地外,各地类对PM2.5浓度影响的直接效应均大于间接效应;(4...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号