首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex mixtures of hazardous chemicals such as polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and groundwater can have severe and long-lasting effects on health. The evidence that these contaminants can cause adverse health effects in animals and humans is rapidly expanding. The frequent and wide-spread occurrence of PAHs in groundwater makes appropriate intervention strategies for their remediation highly desirable. The core objective of this research was to assess the ability of a clay-based composite to sorb and remove toxic contaminants from groundwater at a wood-preserving chemical waste site. Treatment efficiencies were evaluated using either effluent from an oil-water separator (OWS) or a bioreactor (B2). The effluent water from these units was passed through fixed bed columns containing either an organoclay composite or granular activated carbon. The sorbent columns were placed in-line using existing sampling ports at the effluent of the OWS or B2. Individual one-liter samples of treated and untreated effluent were collected in Kimax bottles over the course of 78 h (total of 50 samples). Subsequently each sample was extracted by solid phase extraction methodology, and pentachlorophenol (PCP) and PAH concentrations were quantitated via GC/MS. Columns containing porous organoclay composite, i.e. sand-immobilized cetylpyridinium-exchanged low-pH montmorillonite clay (CP/LPHM), were shown to reduce the contaminant load from the OWS effluent stream by 97%. The concentrations of benzo[a]pyrene (BaP) and PCP were considerably reduced (i.e. >99%). An effluent stream from the bioreactor was also filtered through columns packed with composite or an equivalent amount of GAC. Although the composite reduced the majority of contaminants (including BaP and PCP), it was less effective in diminishing the levels of lower ring versus higher ring PAHs. Conversely, GAC was more effective in removing the lower ring PAHs, except for naphthalene and PCP. The effectiveness of sorption of PCP from the OWS effluent by the composite was confirmed using a PCP-sensitive adult hydra bioassay previously described in our laboratory. The findings of this initial study have delineated differences between CP/LPHM and GAC for groundwater remediation, and suggest that GAC (instead of sand) as the solid support for organoclay may be more effective for the treatment of contaminated groundwater under field conditions than GAC or CP/LPHM alone. Further work is ongoing to confirm this conclusion.  相似文献   

2.
本文在分析SBR 工艺特点的基础上,从反应器本身及SBR 反应运行工序的设计两方面对处理难降解有机物新型SBR 反应器的发展作了论述。分析认为SBR 工艺将在中小型企业含难降解有机物工业废水处理中广泛应用。  相似文献   

3.
ABSTRACT

The CHA Corporation has completed the U.S. Air Force Phase II Small Business Innovation Research program to investigate the feasibility of using a novel microwave-based process for the removal and destruction of volatile organic compounds (VOCs) in effluents from noncombustion sources, such as paint booth ventilation streams. Removal of solvents by adsorption, followed by the regeneration of saturated granular activated carbon (GAC) by microwave energy, was achieved in a single fixed-bed reactor. Microwave regeneration of the fixed-bed-saturated carbon restored the original GAC adsorption capacity. After 20 adsorption/regeneration cycles, the adsorption capacity dropped from 13.5 g methyl ethyl ketone (MEK)/100 g GAC to 12.5 g MEK/100 g GAC. During microwave regeneration of the GAC fixed bed, the concentrated desorbed paint solvent was oxidized by passing the solvent mixture through a fixed bed of an oxidation catalyst mixed with silicon carbide in a microwave reactor. A 98% oxidation efficiency was consistently achieved from the oxidation of VOCs in the microwave catalytic reactor.  相似文献   

4.
Microwave process for volatile organic compound abatement   总被引:5,自引:0,他引:5  
The CHA Corporation has completed the U.S. Air Force Phase II Small Business Innovation Research program to investigate the feasibility of using a novel microwave-based process for the removal and destruction of volatile organic compounds (VOCs) in effluents from noncombustion sources, such as paint booth ventilation streams. Removal of solvents by adsorption, followed by the regeneration of saturated granular activated carbon (GAC) by microwave energy, was achieved in a single fixed-bed reactor. Microwave regeneration of the fixed-bed-saturated carbon restored the original GAC adsorption capacity. After 20 adsorption/regeneration cycles, the adsorption capacity dropped from 13.5 g methyl ethyl ketone (MEK)/100 g GAC to 12.5 g MEK/100 g GAC. During microwave regeneration of the GAC fixed bed, the concentrated desorbed paint solvent was oxidized by passing the solvent mixture through a fixed bed of an oxidation catalyst mixed with silicon carbide in a microwave reactor. A 98% oxidation efficiency was consistently achieved from the oxidation of VOCs in the microwave catalytic reactor.  相似文献   

5.
为了研究堆肥+零价铁混合可渗透反应墙(PRB)修复黄土高原地下水中铬铅复合污染的可行性,分别用堆肥、零价铁、堆肥+ 零价铁、堆肥+ 零价铁+活性炭为反应介质,通过模拟柱实验考察PRB修复铬铅复合污染黄土高原地下水的效果。结果表明,在实验进行30 d后当反应柱1和2对六价铬的去除率接近于零,而且对二价铅的去除率迅速下降时,反应柱3对2种污染物仍保持较高的去除率;反应介质质量比为10:2:1的反应柱4和质量比为10:1:2的反应柱5对污染物的去除效果均优于质量比为10:1:1的反应柱3;反应50 d后,添加活性炭的反应柱6对2种污染物的去除率仍在90%。这说明使用堆肥+零价铁混合可渗透反应墙修复黄土高原地下水中铬铅复合污染是可行的;且以堆肥+零价铁作为介质的反应柱去除效果优于单独以堆肥或铁粉为介质的反应柱;增加铁粉或堆肥的用量有利于铬铅复合污染的去除;且同时添加活性炭更有助于污染物的去除。  相似文献   

6.
Xiong Y  He C  Karlsson HT  Zhu X 《Chemosphere》2003,50(1):131-136
The removal of chemical oxygen demand (COD) from wastewater-containing phenol was investigated using three-phase three-dimensional electrode reactor. Special attention was paid to experimentally probe the performance of the reactor in COD removal in the process of repeated batch runs. The experimental results showed that the reactor could remove COD from phenol-containing wastewater much more efficiently than both granulated activated carbon (GAC) adsorption bed and conventional three-dimensional electrode. For 200th batch run, the three-phase three-dimensional electrode reactor with an airflow of 5 l min(-1) and a cell voltage of 30 V could remove 1350 ppm COD from the wastewater in 30 min while conventional three-dimensional electrode reactor with a same cell voltage and GAC adsorption bed with a same airflow only could remove 610 and 1000 ppm, respectively, at the same reaction duration. Although it was found that COD removal decreased with increasing repeated batch runs in our experimental range, due to adsorption saturation of GAC and electrode passivation, the extent of decrease for the three-phase three-dimensional electrode is much less than those for conventional three-dimensional electrodes and GAC adsorption beds. The passivated reactor could be partly re-activated by electrolysis in the presence of MnO2.  相似文献   

7.
Jeong JY  Kim HK  Kim JH  Park JY 《Chemosphere》2012,89(2):172-178
The present study investigates the performance of the zero valent iron (ZVI, Fe0) packed bed bipolar electrolytic cell for nitrate removal. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous column experiments for the simulated groundwater (initial nitrate and electrical conductivity of about 30 mg L−1 as N and 300 μS cm−1, respectively), above 99% of nitrate was removed at the applied potential of 600 V with the main anode placed on the bottom of reactor. The influx nitrate was converted to ammonia (20% to maximum 60%) and nitrite (always less than 0.5 mg L−1 as N in the effluent). The optimum packing ratio (v/v) of silica sand to ZVI was found to be 1:1-2:1. Magnetite was observed on the surface of the used ZVI as corrosion product. The reduction at the lower part of the reactor in acidic condition and adsorption at the upper part of the reactor in alkaline condition are the major mechanism of nitrate removal.  相似文献   

8.
随着甲基叔丁基醚(MTBE)作为汽油添加剂被持续大量使用,其已成为一种地下水中常见的有机污染物。本文通过纯净水、自来水和地下水中MTBE的平衡吸附容量和微型快速穿透实验(MCRB),比较了5种不同种类活性炭对MTBE的吸附性能。结果显示,苯酚值可准确预测活性炭样品对MTBE的平衡吸附容量大小次序,而丹宁酸值则可大致估计活性炭在实际处理应用时的吸附速度和吸附容量利用率。水样中共存的有机成分降低了活性炭对纯净水中MTBE的吸附容量,在背景TOC较低的去离子水中,活性炭对于MTBE的吸附性能反而比在地下水中降低得更多。穿透实验数据显示双柱串联的处理方式是高效应用活性炭吸附水中MTBE的优选工艺。使用环境友好的竹质活性炭去除地下水中MTBE具有良好的可行性和较高的性价比。  相似文献   

9.
Li CW  Chen YM  Yen WS 《Chemosphere》2007,68(2):310-316
A fluidized zero valent iron (ZVI) reactor pressurized by CO(2) gas for controlling pH was employed for nitrate reduction. The proposed CO(2) pressurized system potentially has advantages of using less CO(2) gas and reaching equilibrium pH faster than CO(2)-bubbled system. However, due to weak acid nature of carbonic acid, system pH gradually increased with increasing oxidation of ZVI and reduction of nitrate. As pH increased with progress of reaction, nitrate removal rate decreased continuously. The results indicate that nitrate removal efficiency increases with increasing initial ZVI dosage but reaches plateau at ZVI doses of higher than 8.25gl(-1), and initial nitrate concentration up to 100mg l(-1) as N has minimal impact on the removal efficiency. Unlike the fluidized system with pH control by strong acid reported in our pervious study, near 100% of nitrogen recovery was observed in the current process, indicating that nitrate reduction by ZVI with different pH controlled mechanisms will have different reaction routes.  相似文献   

10.
Xin Y  Yong K  Duujong L  Ying F 《Chemosphere》2008,73(9):1436-1441
Biological sulfate reduction was evaluated in batch and continuous reactors that were inoculated with enriched microflora cultivated from sulfate laden medium. Heterotrophic sulfate-reducing bacteria (SRB) principally reduced the sulphate when the chemical oxygen demand was sufficient. The heterotrophic SRB in the enriched microflora could not efficiently reduce sulphate at T<33 °C and/or pH<6.0. However, when 200 mg L(-1) of zero valent iron (ZVI) was added to the reactor, the sulphate reduction rate was increased by 15% while the inhibition of the SRB activity occurred at T<25 °C or pH<4.5, broader than those noted for non-ZVI systems. In batch tests, the autotrophic SRB reduced 95% of 1500 mg L(-1) sulphate in <50h at 15 °C when the substrate was amended with 8 gL(-1) ZVI. In continuous up-flow anaerobic multiple bed reactor tests conducted to evaluate the remediation of sulphate in acid mine runoff, ZVI enhanced the activity of SRB, resulting in a 61% reduction of 20.8 gL(-1) sulphate when the reactor was operated at 25 °C and pH 2.6 with a hydraulic remain time of 96 h.  相似文献   

11.
Liu X  Yu G 《Chemosphere》2006,63(2):228-235
The application of microwave and activated carbon for the treatment of polychlorinated biphenyl (PCB) contaminated soil was explored in this study with a model compound of 2,4,5-trichlorobiphenyl (PCB29). PCB-contaminated soil was treated in a quartz reactor by microwave irradiation at 2450MHz with the addition of granular activated carbon (GAC). In this procedure, GAC acted as microwave absorbent for reaching high temperature and reductant for dechlorination. A sheltered type-K thermocouple was applied to record the temperature rising courses. It was shown that the addition of GAC could effectively promote the temperature rising courses. The determination of PCB residues in soil by gas chromatography (GC) revealed that rates of PCB removal were highly dependent on microwave power, soil moisture content, and the amount of GAC added. GC with mass spectrum (MS) detector and ion chromatography were employed for the analysis of degradation intermediates and chlorine ions, respectively. It was suggested that microwave irradiation with the assistance of activated carbon might be a potential technology for the remediation of PCB-contaminated soil.  相似文献   

12.
The successful dechlorination of mixtures of chlorinated hydrocarbons with zero-valent metals requires information concerning the kinetics of simultaneous degradation of different contaminants. This includes intraspecies competitive effects (loading of the reactive iron surface by a single contaminant) as well as interspecies competition of several contaminants for the reactive sites available. In columns packed with zero-valent iron, the degradation behaviour of trichloroethylene (TCE), cis-dichloroethylene (DCE) and mixtures of both was measured in order to investigate interspecies competition. Although a decreasing rate of dechlorination is to be expected, when several degradable substances compete for the reactive sites on the iron surface, TCE degradation is nearly unaffected by the presence of cis-DCE. In contrast, cis-DCE degradation rates decrease significantly when TCE is added. A new modelling approach is developed in order to identify and quantify the observed competitive effects. The numerical model TBC (Transport, Biochemistry and Chemistry, Sch?fer et al., 1998a) is used to describe adsorption, desorption and dechlorination in a mechanistic way. Adsorption and degradation of a contaminant based on a limited number of reactive sites leads to a combined zero- and first-order degradation kinetics for high and low concentrations, respectively. The adsorption of several contaminants with different sorption parameters to a limited reactive surface causes interspecies competition. The reaction scheme and the parameters required are successfully transferred from Arnold and Roberts (2000b) to the model TBC. The degradation behaviour of the mixed contamination observed in the column experiments can be related to the adsorption properties of TCE and cis-DCE. By predicting the degradation of the single substances TCE and cis-DCE as well as mixtures of both, the calibrated model is used to investigate the effects of interspecies competition on the design of permeable reactive iron barriers. Even if TCE is present in only small concentrations (>3% of molar cis-DCE concentration) it is the contaminant limiting the residence time and the required thickness of the iron barrier.  相似文献   

13.
The objective of this investigation was to compare two biological systems using attached-growth biomass, for treatment of leachates generated in a typical municipal solid waste sanitary landfill. A moving-bed biofilm process, which is a relatively new type of biological treatment system, has been examined. It is based on the use of small, free-floating polymeric (polyurethane) elements, while biomass is being grown and attached as biofilm on the surface of these porous carriers. A granular activated carbon (GAC) moving-bed biofilm process was also tested. This method combines both physico-chemical and biological removal mechanisms for the removal of pollutants. The presence of GAC offers a suitable porous media, which is able to adsorb both organic matter and ammonia, as well as to provide an appropriate surface onto which biomass can be attached and grown. A laboratory-scale sequencing batch reactor (SBR) was used for the examination of both carriers. The effects of different operation strategies on the efficiency of these biological treatment processes were studied in order to optimize their performance, especially for the removal of nitrogen compounds and of biodegradable organic matter. It has been found that these processes were able to remove nitrogen content almost completely and simultaneously, the removal of organic matter (expressed as BOD5 and COD), color and turbidity were sufficiently achieved.  相似文献   

14.
Zero-valent iron (ZVI) permeable reactive barriers (PRBs) have become popular for the degradation of chlorinated ethenes (CEs) in groundwater. However, a knowledge gap exists pertaining to the longevity of ZVI. The present investigation addresses this situation by suggesting a numerical simulation model that is intended to be used in conjunction with field or column tests in order to describe long-term ZVI performance at individual sites. As ZVI aging processes are not yet completely understood and are still subject to research, we propose a phenomenological modelling technique instead of a common process-based approach. We describe ZVI aging by parameters that characterise the extent and rate of ZVI reactivity change depending on the propagation of the precipitation front through ZVI. We approximate degradation of CEs by pseudo-first order kinetics accounting for the formation of partially dechlorinated products, and describe ZVI reactivity change by scaling the degradation rate constants. Three independent modelling studies were carried out to test the suitability of the conceptual and numerical model to describe the observations of accelerated column tests. All three tests indicated that ZVI reactivity declined with an increasing number of exchanged pore volumes. Measured and modelled concentrations showed good agreement, thereby proving that resolving spatial as well as temporal changes in ZVI reactivity is reasonable.  相似文献   

15.
Degradation of atrazine by catalytic ozonation in the presence of iron scraps (ZVI/O3) was carried out. The key operational parameters (i.e., initial pH, ZVI dosage, and ozone dosage) were optimized by the batch experiments, respectively. This ZVI/O3 system exhibited much higher degradation efficiency of atrazine than the single ozonation, ZVI, and traditional ZVI/O2 systems. The result shows that the pseudo-first-order constant (0.0927?min?1) and TOC removal rate (86.6%) obtained by the ZVI/O3 process were much higher than those of the three control experiments. In addition, X-ray diffraction (XRD) analysis indicates that slight of γ-FeOOH and Fe2O3 were formed on the surface of iron scrap after ZVI/O3 treatment. These corrosion products exhibit high catalytic ability for ozone decomposition, which could generate more hydroxyl radical (HO?) to degrade atrazine. Six transformation intermediates were identified by liquid chromatography-mass spectrometry (LC-MS) analysis in ZVI/O3 system, and the degradation pathway of atrazine was proposed. Toxicity tests based on the inhibition of the luminescence emitted by Photobacterium phosphoreum and Vibrio fischeri indicate the detoxification of atrazine by ZVI/O3 system. Finally, reused experiments indicate the approving recyclability of iron scraps. Consequently, the ZVI/O3 system could be as an effective and promising technology for pesticide wastewater treatment.  相似文献   

16.
Chen YM  Li CW  Chen SS 《Chemosphere》2005,59(6):753-759
A fluidized zero valent iron (ZVI) reactor is examined for nitrate reduction. Using the system, the pH of solution can be maintained at optimal conditions for rapid nitrate reduction. For hydraulic retention times of 15 min, the nitrate reduction efficiency increases with increasing ZVI dosage. At ZVI loadings of 33 gl-1, results indicate that the nitrate removal efficiency increases from less than 13% for systems without pH control to more than 92% for systems operated at pH of 4.0. By maintaining pH at 4.0, we are able to decrease the hydraulic retention time to 3 min and still achieve more than 87% nitrate reduction. The recovery of total nitrogen added as nitrate, ammonium, and nitrite was less than 50% for the system operated at pH4.0, and was close to 100% for a system without pH control. The possibility of nitrate and ammonium adsorption onto iron corrosion products was ruled out by studying the behavior of their adsorption onto freshly hydrous ferric oxide at variable pH. Results indicate the probable formation of nitrogen gas species during reaction in pH4.0.  相似文献   

17.
Removal of thiobencarb in aqueous solution by zero valent iron   总被引:2,自引:2,他引:0  
A cost-effective method with zero valent iron (ZVI) powder was developed for the purification of thiobencarb (TB)-contaminated water. The removal treatment was performed in the batch system. A sample solution of 10 ml containing 10 microg ml(-1) of TB could be almost completely treated by 100mg of ZVI at 25 degrees C for 12h of treatment time. Since the formation of chloride ion in the aqueous solution during the treatment of TB was observed, the removal of TB with ZVI may contain two processes: reduction (degradation) and adsorption. Because the present treatment for TB is simple, easy handling and cheap, the developed technology with ZVI can contribute to the treatment of agricultural wastewaters.  相似文献   

18.
选择性催化还原(selective catalytic reduction,SCR)脱硝反应器的关键部件对系统压力损失特性的影响非常明显.针对某电厂1×300 MW锅炉机组的SCR脱硝反应器,采用数值模拟和实验研究的方法研究了各关键部件对系统压力损失特性影响.通过研究确定了SCR反应器的最优设计方案,即关键部件1设计为...  相似文献   

19.
以长三角某典型河流型水源地源水为研究对象,设计了传统工艺及基于凹凸棒土处理单元的6种强化工艺,对各工艺及其处理单元应用于典型氯化消毒副产物(三卤甲烷和卤乙酸)及其前体物控制的技术和经济可行性进行了系统分析。结果表明,预O3+凹土强化混凝+O3-GAC强化的工艺对上述2种消毒副产物及其前体物的控制效果最佳;在传统工艺中单纯增加O3处理也能在一定程度上提高其对消毒副产物前体物的去除效果;KMnO4控制消毒副产物的效果一般,但KMnO4处理可强化后续单元对消毒副产物前体物的去除效果。各工艺处理出水中三卤甲烷和卤乙酸单项指标均能达标,但传统工艺和经凹土强化混凝+GAC强化的工艺出水三卤甲烷4种化合物的实测浓度与其各自限值的比值之和均大于1.0,不能满足水质要求,必须进行强化处理。凹土强化混凝单元在6种强化工艺条件下对三卤甲烷生成潜能(THMFP)和卤乙酸生成潜能(HAAFP)的去除率较传统混凝单元平均提高15.99%和4.92%;各强化工艺对THMFP和HAAFP的去除率较传统工艺均提高20%以上(除凹土强化混凝+GAC强化的工艺外),消毒副产物产生量降低40%以上,工艺成本降低20%以上。  相似文献   

20.
Debromination of decabromodiphenyl ether (deca-BDE) by microbe and by zero-valent iron (ZVI) has been reported previously. However, no study has indicated the presence of microorganisms and their effect on ZVI-mediated reduction of deca-BDE. Synergistic degradation of deca-BDE by an enrichment culture and ZVI was studied. It was found that synergistic effects enhanced the debromination of deca-BDE as well as promoting the reduction of lower brominated products. ZVI stimulated microbial debromination by serving as an electron donor. Correlation analysis also confirmed that ZVI was capable of enhancing microbial population in the debromination of deca-BDE. Conversely, the enrichment culture produced acid which maintained pH stability and stimulated the oxidation of ZVI. The enrichment culture supplied its energy requirements by the oxidation of ZVI and concomitant reduction of deca-BDE, but incapable of growth and reduction of BDE-209 without ZVI and vice versa. Compared to the initial culture, the microbial community of the enrichment culture became dominated by several bacterial genera based on the results of 16S rRNA-gene pyrosequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号