首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Strike-induced chemosensory searching (SICS) was not detected experimentally in the cordylid lizard,Cordylus cordylus. Both components of SICS, a post-strike elevation in tongue-flick rate (PETF) and searching movements for attacked and released prey, were absent. The findings are consistent with previous data showing that PETF and/or SICS are lacking in all lizard families yet studied that forage primarily by ambush, but are present in actively foraging scleroglossan families and the herbivorous iguanian family Iguanidae. It is suggested that foraging behavior is a primary determinant of the presence or absence of SICS in lizards. Nevertheless, in most families in the two major clades, Iguania and Scleroglossa, the plesiomorphic foraging mode is retained. The findings agree with the prediction that SICS is absent in families lacking lingually mediated prey chemical discrimination (PCD), presumably due to selection against movement by ambush foragers that avoid being detected by either prey or predators because they remain motionless. Although PETF and SICS were absent, labial-licking and lingual movements similar to those observed after swallowing increased after biting prey, suggesting that the functions of these lingual movements may have been related to grooming. Locomotory movements did not increase following biting and appeared to represent avoidance of the experimenter.  相似文献   

2.
Summary Experimental tests were conducted to determine whether the ambush foraging iguanian lizard,Liolaemus zapallarensis, was capable of discriminating prey chemicals from control substances and whether this lizard exhibits strike-induced chemosensory searching (SICS) or its components after biting prey. The two components of SICS are a poststrike elevation in tongue-flicking rate (PETF) and apparent searching movements for relocation of prey that has been bitten, but released or escaped.Liolaemus zapallarensis failed to discriminate prey chemicals from control substances, but exhibited significant PETF lasting one minute. SICS was absent inL. zapallarensis because no post-strike movements were observed. The absence of both prey chemical discrimination and SICS exhibited byL. zapallarensis is common to all the insectivorous iguanians and ambush foraging lizards studied to date. However,L. zapallarensis is the first insectivorous iguanian species shown to exhibit PETF. The results suggest thatL. zapallarensis does not use the tongue for detection, identification, or relocation of prey while foraging. The possibility does remain thatL. zapallarensis may be capable of chemically identifying prey once the prey stimuli reach the oral cavity.  相似文献   

3.
Summary. Lingually mediated prey chemical discrimination in lizards has evolved in active foragers, been lost in taxa that have reverted to ambush foraging, and has not evolved in taxa that have retained the ancestral ambushing. Previous studies have shown that all families of insectivorous ambushers lack prey chemical discrimination, including most families of iguanian lizards and two gekkonid species. I conducted experimental studies of prey chemical discrimination in representatives of two additional iguanian families and a third gekkonid lizard. An oplurid species, Oplurus cuvieri and a corytophanid, Corytophanes cristatus, did not discriminate among prey chemicals and control substances. Prey chemical discrimination is now known to be absent in insectivorous ambush foragers in all but one of the families in Iguania, one of the two major lizard radiations. Hoplocercidae remains unstudied. Like other ambushing gekkonid lizards, Pachydactylus turneri did not exhibit elevated tongue-flick rates in response to prey chemicals. However, after tongue-flicking or being touched on the labial scales by cotton swabs, these lizards bit swabs bearing prey chemicals more frequently than control stimuli. They also exhibited buccal pulsing more frequently in response to prey chemicals than deionized water, suggesting olfactory sampling. The unusually highly developed olfactory organs of gekkonid lizards and their nocturnal habits suggest that olfaction may be more important to foraging than in other lizards. Further studies are needed to determine relative roles of olfaction and vomerolfaction in selective response to prey chemicals and to ascertain whether and to what extent the tongue may be used to locate and identify prey. Received 30 March 1999; accepted 26 July 1999  相似文献   

4.
Comparative data from ten families of lizards suggest that correlated evolution has occurred between the ability to identify prey chemicals and several aspects of lingual function and morphology, abundance of vomeronasal chemoreceptor cells, and foraging behavior. Ability to discriminate prey chemicals from control substances was measured experimentally and correlated with other variables by Felsenstein's method. This ability increased with evolutionary increases in degree of lingual protrusion during tongue-flicking, which may reflect the tongue's ability to reach substrates to be sampled. It increased with deepened lingual forking and greater lingual elongation, which may be important for scent-trailing and sampling ability, respectively. Discriminatory ability also increased with abundance of vomerolfactory chemoreceptors, which presumably reflects some aspects of analytical capacities of the vomeronasal system. Prey chemical discrimination increased with degree of active foraging. Natural selection for improved vomerolfactory sampling and analysis of prey chemicals by active, but not ambush, foragers appears to account for the observed relationships. In active foragers that use vomerolfaction to locate prey, natural selection favors increased abilities to lingually sample chemicals from environmental substrates, analyze the samples for prey chemicals, and respond appropriately if prey chemicals or possible prey chemicals are detected. Such selection can account for the observed relationships among the sampling device and its movements, the sense, the discriminations, and variations in foraging ecology. Received: 13 February 1997 / Accepted after revision: 12 June 1997  相似文献   

5.
The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout-vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.  相似文献   

6.
Summary Two forms of lingual protrusion, tongueflicking and labial-licking, were differentially affected by combinations of movement and eating conditions in a eublepharid gecko (Eublepharis macularius). Tongue-flicking, in which the tongue contacts substrates beyond the lizard's body, occurred at increased rates during locomotion and during locomotion was significantly more frequent after eating than in a baseline condition. Labial-licking, in which a protruded portion of the tongue touches the labial, mental or rostral scales that surround the mouth, increased after eating. Unlike tongue-flick rates, by far the highest labial-lick rates were observed in stationary lizards after eating. The elevated tongue-flicking rates during movement after eating may be a manifestation of a postingestive chemosensory search for prey. In addition to grooming, several possible chemosensory functions of labial-licking are discussed, including gustatory sampling, sampling prey chemicals on the labials for transfer to the vomeronasal system, and redistribution of chemicals on the tongue to enhance transfer. It is suggested that labial-licking might help motionless lizards maintain vigilance for visual prey stimuli associated with the specific chemical prey cues. Another possible explanation for the increased labial-lick rate while motionless after eating is that prey chemicals induce tongue-flicking, but that the distance protruded is lessened and the tongue does not contact environmental substrates. Tongue-flicking while stationary is unlikely to lead to detection of additional prey and might incur detection by the lizard's predators or prey.  相似文献   

7.
Summary Ingestively naive hatchling coachwhip snakes(Masticophis flagellum) detected integumentary chemicals from several potential prey species and discriminated them from chemical stimuli from other animals and from distilled water, strongly suggesting a genetic basis for these abilities. The strongest responses were to lizard and snake stimuli, which form a major part of the diet. Variable responses to chemical cues from other taxa are discussed. Responses by coachwhip snakes to prey chemicals appear to be highly specific, as suggested by the stronger reaction to vomodors of sympatric than of allopatric lizard species. The highly developed use of chemical cues by the diurnal, visually oriented coachwhip snake emphasizes the general importance of chemical senses to predation by nonvenomous snakes, regardless of the involvement of vision.  相似文献   

8.
A thorough understanding of communication requires an evaluation of both the signaler and receiver. Most analyses of prey–predator communication are incomplete because they examine only the behavior of the prey. Predators in these systems may be understudied because they are perceived as less tractable research subjects, due to their more cryptic hunting behaviors and secretive lifestyles. For example, research on interactions between rodents and rattlesnakes has focused on the behavior of rodent signalers, while responses of snakes have been virtually unexamined. Rattlesnakes are ambush predators, and capture rodents by waiting at foraging sites for long periods of time. In this study, I take advantage of the sedentary nature of this foraging strategy and use fixed videography to record natural encounters between timber rattlesnakes (Crotalus horridus) and their prey. Three different prey species were found to exhibit conspicuous visual displays to snakes, both when snakes were actively foraging, and when they were basking. After receiving displays, foraging snakes left their ambush sites and moved long distances before locating subsequent ambush sites, indicating that they responded to displays by abandoning attempts to ambush prey in the vicinity of signalers. This study represents the first quantitative analysis of the response of free-ranging snakes to signals from their prey, and elucidates a technique by which such quantitative data can be more easily obtained.  相似文献   

9.
Summary. We tested responses to prey chemicals by lizard hatchlings of an oviparous species and neonates of a viviparous species, neither of which had never eaten. Both species responded more strongly to prey chemicals than to odorous and odorless control stimuli presented on cotton swabs. Although only a few species have been examined, all that have been tested have an innate capacity for prey chemical discrimination, suggesting that this innate response to prey chemicals is widespread among lizards that use the lingual-vomeronasal system to locate and identify prey. Innate prey chemical discrimination has the great advantage of permitting lizards lacking prior experience with food to respond appropriately to chemical cues associated with food. Both species discriminated prey chemicals from control substances at age three days, earlier than previously known. Our data hint that Mabuya macularia may be capable of discrimination on its day of birth, but further study is needed to determine the exact onset. A stronger tendency to attack swabs bearing prey chemicals by Scincella lateralis than by M. macularia may be explained by differences in defensiveness near an experimenter or by differences in the importance of visual prey cues for confirmation of chemical cues in the natural habitats of these species. In M. macularia responses to the control stimuli declined over days of testing, suggesting habituation, but responses to prey chemicals did not habituate by the third day of testing, which is interpreted as a possible adaptive response to permit location of food. In the standard method of stimulus presentation, a cotton swab bearing a chemical stimulus is placed anterior to a lizard's snout. We tested a new method in which the swab was placed in continuous contact with the lizard's anterior labial scales. The new method elicited significantly stronger responses from M. macularia. We discuss reasons for this finding and applications for the new method. Received 2 September 1999; accepted 15 December 1999  相似文献   

10.
Summary. Ecological and phylogenetic factors determine which sensory modalities organisms use in their day-to-day activities. Among lizards, empirical studies indicate a tight association between foraging strategies and the ability to detect chemical cues from prey. Consequently, ambush insectivores do not detect food chemicals and these differences have a phylogenetic basis, as ambush lizards mainly belong to the Iguania clade. These data contrast, however, with the widespread uses of chemoreception in the Iguania genus Liolaemus, which are mostly insectivorous ambush predators. Moreover, observations from different Liolaemus species suggest a capability to find prey through chemoreception. In order to clarify the abilities of Liolaemus to detect chemical cues from prey, the chemoreceptive behavior of the insectivorous ambush predator, L. lemniscatus, was studied. Lizards were given the choice between areas with and without chemical cues from a food item (mealworms). Results show that test animals stayed for longer, moved more, and did more chemical exploration (tongue flicks) in the area where chemical cues from mealworms were present. Furthermore, in this area, more individuals displayed behaviors that suggest maintenance and defense of the prey patch. Thus, L. lemniscatus is the first insectivorous Iguania reported to be able to detect chemical cues from prey. Although I propose a mechanism for acquiring chemical detection of prey cues in Liolaemus, I also remark that it is necessary to reanalyze both the abilities to detect and use chemical foraging cues in Iguania at large, and the methodologies traditionally used to study these issues.  相似文献   

11.
Summary Foraging by a social wren, Campylorhynchus nuchalis (Troglodytidae), in a tropical savanna habitat is not enhanced by aggregation. Data for marked individuals show that solitary foraging results in a higher capture rate than foraging near others. We find no evidence of imitative foraging, as individuals actively avoid successful foragers following a capture and successful foragers do not restrict their search to recently productive stations or techniques. Captures are seldom temporally clumped, and clumping is probably not pronounced enough to favor imitation. Juveniles show no greater tendency to respond to captures of others, or to succeed in foraging in a group, than do adults. Aggregation is probably disadvantageous for foraging because of dispersed, scarce, cryptic, and noneruptive prey and because of the searching technique of these foliage-gleaning insectivores. If predator avoidance is enhanced by aggregation, it does not result in either increased survival or increased foraging efficiency in large groups, even by juveniles.  相似文献   

12.
Escape latency theory models the tradeoff between maintaining crypsis by remaining immobile near an immobile predator versus moving to flee or engage in fitness-enhancing activities. The model predicts that latency to flee increases as cost of fleeing increases and decreases as cost of remaining immobile increases. As predation risk increases, cost of fleeing, primarily due to abandoning crypsis due to immobility, decreases. Predictions have been tested for few risks and a single cost of immobility factor in only two species of active foragers. To gauge the breadth of applicability of the model, we tested effects of four risk factors and two cost of immobility factors in ambush-foraging phrynosomatid lizards, which we selected for testing because foraging mode strongly affects many aspects of ecology and behavior of lizards. Latency to flee decreased as standing distance (predator–prey distance before fleeing) decreased, predator approach speed increased, directness of approach increased, and predator persistence increased. Latency to move was shorter in the presence of food and shorter for males in the presence of females. Lizards often moved toward food or females instead of fleeing. Latency was affected as predicted by all risk and by cost of remaining immobile factors. Our findings agree with previous results for the same four risk factors and the foraging cost of immobility. That social cost of immobility affects latency as predicted is a novel finding. The model is robust, applying to ecologically diverse prey and to a wide range of factors affecting costs of fleeing and of immobility.  相似文献   

13.
Summary Female Eumeces laticeps experience a substantial decrease in running speed (ca. 25%) and an even greater loss of endurance (slightly over 50%) while gravid. Because some widely foraging lizards, including E. laticeps, rely primarily on running to escape predators, the decreases in speed and stamina may contribute to an increased risk of predation. However, observations suggest that gravid females become less active or conspicuous on the surface. Ambush foraging lizards rely relatively more on crypsis associated with immobility to avoid predation and thus can have greater average relative clutch mass (RCM) than active foragers. Behavioral compensation for locomotor impairment by becoming less active or conspicuous may allow some species the advantages inherent in both high relative clutch mass when gravid and the increased energetic profitability of active foraging when not gravid. As females gain weight during the breeding season, they may forage actively until the risk due to increasing locomotor impairment becomes too great and then change defensive strategy to greater reliance on crypsis. Without such a shift, widely foraging squamate reptiles may be less able than ambush foragers to exploit life-historical strategies demanding high current investment in reproduction.  相似文献   

14.
Summary We tested the role of a grasshopper defensive secretion in deterring lizard predation. Adults, but not young larvae, of the chemically defended lubber grasshopperRomalea guttata (=microptera) froth a volatile secretion when attacked by predators. The lizardAnolis carolinensis failed to strike juvenile lubbers (which lack secretion) in laboratory trials. Survivorship of palatable crickets loaded with secretion offered toA. carolinensis was not significantly different from survivorship of control crickets. In experiments designed to investigate if lizards learn an aversion to the secretion, striking times forSceloporus undulatus fed wax worms coated with secretion were not significantly different over three days of trials. Three primary conclusions are drawn from these data. First, the secretion may not be necessary for lubber protection from lizards. Second, lubber secretion does not appear to deter lizards from attacking or eating prey items. Third, lizards do not appear to develop an aversion to the secretion.  相似文献   

15.
A predator's foraging performance is related to its ability to acquire sufficient information on environmental profitability. This process can be affected by the patchy distribution and clustering of food resources and by the food intake process dynamics.We simulated body mass growth and behaviour in a forager acting in a patchy environment with patchy distribution of both prey abundance and body mass by an individual-based model. In our model, food intake was a discrete and stochastic process and leaving decision was based on the estimate of net energy gain and searching time during their foraging activities. The study aimed to investigate the effects of learning processes and food resource exploitation on body mass and survival of foragers under different scenarios of intra-patch resource distribution.The simulation output showed that different sources of resource variability between patches affected foraging efficiency differently. When prey abundance varied across patches, the predator stayed longer in poorest patches to obtain the information needed and its performance was affected by the cost of sampling and the resulting assessment of the environment proved unreliable. On the other hand, when prey body mass, but not abundance, varied among the patches the predator was quickly able to assess local profitability. Both body mass and survival of the predator were greatly affected by learning processes and patterns of food resource distribution.  相似文献   

16.
Chemical signals are important for mate and species recognition. If variation in chemical signals occurs between populations of the same species, these differences could later preclude mating between populations and lead to speciation. In the Iberian wall lizard, Podarcis hispanica, the lipophilic fraction of femoral secretions of males is mainly a mix of steroids and fatty acids. Among steroids, the most abundant compounds are cholesterol and cholesta-5,7-dien-3-ol, which are implicated in intraspecific communication and sexual selection. Interpopulational differences in chemical signals of males, and in response to these chemicals, could contribute to reproductive isolation between populations, which would explain the known genetic differences between these populations. Chemical analyses indicated that five distinct populations of this lizard from Madrid (Central Spain) differed in the proportions of two steroids (cholesterol and cholesta-5,7-dien-3-ol) in femoral secretions. Moreover, lizards discriminated and had high chemosensory responses (i.e., high tongue-flick rates) to these steroids, but showed interpopulational differences. Lizards from populations with cold temperatures and high relative humidity (i.e., northern Madrid) elicited higher responses to these steroids, whereas the converse occurred for lizards from populations occupying dry and hot habitats (i.e., southern Madrid). Interestingly, the magnitude of the chemosensory responses to cholesta-5,7-dien-3-ol in each population mirrored the abundance of this compound in secretions of males of that population. These results suggest that the importance of cholesta-5,7-dien-3-ol in males’ secretions might be lower for lizards from the southern populations. These differences in the relative importance of chemical signals could explain reproductive isolation and cryptic speciation between populations of this lizard.  相似文献   

17.
Chemical cues released by damaged or dead organisms can affect how and where benthic organisms feed. These cues may cause predators to act as opportunistic scavengers in lieu of their normal predatory role. A scavenger, as defined in this study, is an organism that consumes damaged and/or dead organisms. In-situ experiments were performed to determine how the seastar Pycnopodia helianthoides (Brandt) reacts in the presence of chemical cues from one of its prey species, the butter clam Saxidomus giganteus (Deshayes), using both intact and damaged individuals. The results of these experiments suggest that P. helianthoides use their chemosensory abilities to locate damaged/dead prey. The role of current in propagating chemical cues was paramount in this foraging activity. P. helianthoides chose damaged prey over live prey even when live prey was encountered en route to the damaged individual. This study suggests that chemical cues emitted from damaged or dead individuals may cause significant changes in foraging tactics of key predators, thus altering food-web dynamics.Communicated by J.P. Grassle, New Brunswick  相似文献   

18.
Summary Decreasing levels of simulated solar radiation have the following effects in the diurnal basking lizard Lacerta vivipara: (i) increase in time spent basking with a consequent decrease in time available for foraging (ii) decrease in speed of movement whilst foraging (iii) decrease in total foraging distance, and hence contact with potential prey (iv) decrease in searching efficiency in an experimental arena. Complete absence of simulated solar radiation accentuates these effects, and reduces the proportion of faster-moving prey in the diet. Time taken to swallow prey (handling time) increases exponentially with decreasing body temperature. It is concluded from these results that maintaining relatively high activity temperatures (30–36°C) is adaptive for the species because the loss of potential foraging time caused by lengthy periods of basking is offset by the following advantages: increased contact with and capture of prey, increased efficiency of prey handling, and availability of a wider range of prey types.  相似文献   

19.
Prey often adopt antipredator strategies to reduce the likelihood of predation. In the presence of predators, prey may use antipredator strategies that are effective against a single predator (specific) or that are effective against several predators (nonspecific). Most studies have been confined to single predator environments although prey are often faced with multiple predators. When more than one predator is present, specific antipredator behaviours can conflict and avoidance of one predator may increase vulnerability to another. To test how prey cope with this dilemma, I recorded the behaviours of lizards responding to the nonlethal cues of a bird and snake presented singly and simultaneously. Lizards use specific and conflicting antipredator tactics when confronted with each predator, as evidenced by refuge use. However, when both predators were present, lizards refuge use was the same as in the predator-free environment, indicating that they abandoned refuge use as a primary mechanism for predator avoidance. In the presence of both predators, they reduced their overall movement and time spent thermoregulating. This shift in behaviour may represent a compromise to minimize overall risk, following a change in predator exposure. This provides evidence of plasticity in lizard antipredator behaviour and shows that prey responses to two predators cannot be accurately predicted from what is observed when only one predator is present.Communicated by W. Cooper  相似文献   

20.
We measured patterns of individual forager specialization and colony-wide rates of material input during periods of response to experimental nest damage and during control periods in three colonies of the tropical social wasp Polybia occidentalis.
(1)  Most foragers specialized on gathering a single material. While active, foragers rarely switched materials, and most switching that did occur was between functionally related materials — prey and nectar (food materials) or wood pulp and water (nest materials).
(2)  Individuals differed greatly in activity level, here expressed as rate of foraging. Workers that foraged at high rates specialized on a single material in almost all cases. Specialized, highly active foragers comprised a minority (about 33%) of the working foragers in each colony, yet provided most of the material input.
(3)  Individual wasps that responded to experimental nest damage by foraging for nest materials did not gather food on days preceding or following manipulation.
(4)  On the colony level, nectar and prey foraging rates were not affected by foraging effort allocated to nest repair within days, or when comparing control days with days when damage was imposed. The emergency foraging response to nest damage in P. occidentalis did not depend on effort recruited away from food foraging.
Offprint requests to: S. O'Donnell  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号