共查询到16条相似文献,搜索用时 85 毫秒
1.
在流化床膜生物反应器中引入在线超声辐射来控制膜污染,超声功率为300 W、频率分别为中频(50 kHz)和中低频(50 kHz和25 kHz)混合频率,考察了在线超声对反应器内混合液性能的影响及对膜污染的控制效果。结果表明,中频超声辐射不会对反应器内混合液的污泥浓度和粘度产生显著影响,而中低频超声辐射会降低混合液的污泥浓度并造成混合液粘度的升高。2种频率的超声辐射对污泥混合液的过滤性能和污泥活性都有一定的改善作用。连续运行26 d和29d后,在中频和中低频超声辐射的作用下,超声流化床膜生物反应器比普通流化床膜生物反应器的跨膜压差分别低8 kPa和14 kPa,说明2种频率的在线超声均可显著延缓膜污染。 相似文献
2.
3.
采用升流式微氧污泥床膜生物反应器启动同步亚硝化、厌氧氨氧化耦合异养反硝化(SNAD)工艺,考察了颗粒污泥性质与膜污染行为的动态变化,并通过统计学手段评估了启动中颗粒污泥特性与膜污染速率之间的相关性。结果表明:由厌氧氨氧化工艺(Anammox)历经全程自养脱氮工艺(CANON)启动SNAD工艺过程中,颗粒污泥浓度(MLSS)、胞外聚合物(EPS)、溶解性微生物产物(SMP)及EPSp/EPSc比值呈现增加趋势,而SMPp/SMPc比和污泥容积指数(SVI)逐渐降低;傅里叶变换红外(FT-IR)和三维荧光谱(3D-EEM)分析结果表明,颗粒污泥蛋白质疏水性逐渐增强,且色氨酸类物质在污泥颗粒化过程中起到重要作用;此外,膜污染速率由1.21 L·(m2·h2·Pa)−1下降至1.08 L·(m2·h2·Pa)−1,这主要是由于EPSp/EPSc比增加,促使颗粒污泥粒径增加,从而减缓膜污染所致;统计学结果进一步表明,相比其他颗粒污泥参数(MLSS、SVI、EPS及SMP),SMPp/SMPc比与膜污染速率之间呈现较强的显著正相关,SMPp/SMPc比可作为膜污染速率预测参数,预测模型为Fr=1.638SMPp/SMPc−1.398。 相似文献
4.
5.
6.
漠-生物反应器混合液性质对膜污染影响的研究进展 总被引:1,自引:0,他引:1
膜-生物反应器作为一种新型的污水处理和回用技术。近年来在基础研究和实际应用领域都得到广泛关注,但是影响其长期稳定运行的膜污染问题却一直没有得到深入研究和解决。混合液特性是影响膜污染控制的重要因素。从混合液理化性质(组成、功能、结构和环境因素)和生物学性质(微生物群落结构、微生物功能特征)2个方面进行介绍,综述了目前关于混合液性质与膜污染关系的研究现状。目前的研究虽然取得一定进展,但在相关性分析、群落特征与膜污染关系、污染层形成机理等方面仍存在许多不足。 相似文献
7.
8.
一体式MFC-好氧MBR运行效果及膜污染特性 总被引:2,自引:0,他引:2
膜生物反应器(MBR)是一种高效的污水处理工艺,而微生物燃料电池(MFC)能利用N0i作为电子受体进行脱氮。为解决膜生物反应器(MBR)脱氮效率低和膜污染问题,建立了一套能够进行脱氮、有效抑制膜污染的一体式MFC-好氧MBR新工艺。以开路MFC—MBR反应器为对照,对耦合系统中污水处理效果、膜污染情况进行研究。研究表明,2套系统的COD去除率均超过88%,对NH4-N的去除均达到99%。闭路MFC—MBR系统TN去除率达到69.4%,高于开路系统的55.3%。混合液的MLVSS/MLSS稳定在88%左右,同时耦合系统能够改善污泥混合液的性质,zeta电位的绝对值和粘度较开路系统有所减少,污泥颗粒平均体积粒径(233.482μm)较开路系统(94.877μm)有明显增加,膜清洗周期延长了41.17%。 相似文献
9.
膜生物反应器(MBR)是一种高效的污水处理工艺,而微生物燃料电池(MFC)能利用NO-3作为电子受体进行脱氮。为解决膜生物反应器(MBR)脱氮效率低和膜污染问题,建立了一套能够进行脱氮、有效抑制膜污染的一体式MFC-好氧MBR新工艺。以开路MFC-MBR反应器为对照,对耦合系统中污水处理效果、膜污染情况进行研究。研究表明,2套系统的COD去除率均超过88%,对NH4-N的去除均达到99%。闭路MFC-MBR系统TN去除率达到69.4%,高于开路系统的55.3%。混合液的MLVSS/MLSS稳定在88%左右,同时耦合系统能够改善污泥混合液的性质,zeta电位的绝对值和粘度较开路系统有所减少,污泥颗粒平均体积粒径(233.482μm)较开路系统(94.877μm)有明显增加,膜清洗周期延长了41.17%。 相似文献
10.
膜-生物反应器混合液性质对膜污染影响的研究进展 总被引:5,自引:0,他引:5
膜-生物反应器作为一种新型的污水处理和回用技术,近年来在基础研究和实际应用领域都得到广泛关注,但是影响其长期稳定运行的膜污染问题却一直没有得到深入研究和解决.混合液特性是影响膜污染控制的重要因素,从混合液理化性质(组成、功能、结构和环境因素)和生物学性质(微生物群落结构、微生物功能特征)2个方面进行介绍,综述了目前关于混合液性质与膜污染关系的研究现状.目前的研究虽然取得一定进展,但在相关性分析、群落特征与膜污染关系、污染层形成机理等方面仍存在许多不足. 相似文献
11.
浸没式膜-生物反应器污泥组分对膜污染的影响 总被引:1,自引:1,他引:0
研究基于中试规模的浸没式膜生物反应器长期运行的基础上,通过改变操作条件和工艺参数系统考察污泥组分对膜污染的影响。试验结果表明,泥龄10 d时,混合液悬浮固体、胶体物质和溶解性物质对膜污染阻力的贡献分别为24.1%、36.1%和39.8%;泥龄20 d时, 混合液悬浮固体、胶体物质和溶解性物质对膜污染阻力的贡献分别为43.9%、32%和24.1%;泥龄40 d时, 混合液悬浮固体、胶体物质和溶解性物质对膜污染阻力的贡献分别为50.6%、27.3%和22.1%。随着泥龄的增加,胶体物质和溶解性物质所形成的阻力之和在总阻力中所占的比例逐渐下降,但仍为膜污染的重要因素。 相似文献
12.
膜生物反应器中EPS对污泥絮体形成的影响及其膜污染特性研究 总被引:2,自引:0,他引:2
为了给减缓膜生物反应器(MBR)膜污染提供新思路,对MBR中EPS各组分对污泥聚集性能的影响及其膜污染特性进行研究。通过分析MBR中污泥的聚集性,发现原始污泥的聚集速率常数为0.0151,提取EPS后污泥的聚集速率常数为0.00181,由此可以看出EPS在污泥聚集的过程中起重要作用。为了进一步明确EPS各组分对MBR中污泥聚集性能的影响,利用扩展的DLVO理论研究MBR中EPS及其各组分对污泥聚集性能的影响,发现MBR中EPS里粘液的二级能量最小值大约为-0.94 KT,松散型EPS(LB-EPS)为-2.98 KT,紧密型EPS(TB-EPS)为-3.87 KT,说明TB-EPS在污泥聚集的过程中起重要作用。进一步通过三维荧光光谱及EPS浓度分析,发现EPS各组分浓度及结构的不同导致EPS各组分对污泥聚集性起不同的作用。通过吸附实验、原子力显微镜观察发现EPS各组分的膜污染速率为:上清液 < 粘液 < LB-EPS < TB-EPS,由此,可以推测出减少粘液和LB-EPS含量可有效降低膜污染,同时对污泥絮体结构影响较小。 相似文献
13.
采用移动床生物膜反应器(MBBR)联合管式膜构建气提式管式膜MBR体系用以处理生活污水,考察了曝气对污水处理效果、膜内气液流态及膜过程的影响,探讨了污泥特性的变化及其对膜污染过程的影响机制。结果表明,气提式管式膜MBR体系下膜出水DO浓度高于混合液,且随着曝气量由50 L·h−1提高至150 L·h−1,管式膜内气含率由0.33增至0.60并呈“活塞流”流态,操作周期由6~7 d延长至17 d,膜污染速率由1.54 kPa·h−1降至0.21 kPa·h−1,临界通量显著增大;同时,MBBR混合液中EPS总量呈减小趋势,但MBBR内悬浮污泥粒径变小,且膜表面EPS中PN/PS比例显著高于MBBR混合液。膜表面污染阻力构成分析表明,气提式管式膜MBR体系下容易发生膜孔堵塞,膜污染以不可逆污染阻力为主。 相似文献
14.
为提高MBR的去除性能并延缓膜污染,采用复合型悬浮生物膜强化膜生物反应器(hybrid suspended biofilm enhanced membrane bioreactor, HSBE-MBR)处理生物制药废水,考察了填料添加方式对HSBE-MBR中典型污染物的去除特征、运行稳定性及膜污染特征的影响,并分析了膜污染机理。结果表明:缺氧区和好氧区添加填料时(工况1),TCOD、${{\rm{NH}}_4^ + }$ -N和TN平均去除率分别为91.61%、97.08%和79.40%;缺氧区、好氧区及膜区添加填料时(工况2),TCOD、${{\rm{NH}}_4^ + }$ -N和TN平均去除率分别为91.09%、97.24%和83.66%。在上述2种工况下,HSBE-MBR对TCOD、${{\rm{NH}}_4^ +} $ -N和TN均具有良好的去除性能,且运行稳定性良好,工况2中TN去除率提高了4.26%。在工况1下,膜运行时间为0.02~8.17 d;在工况2下,膜运行时间为0.26~138 d。2种工况下的膜污染机理均以滤饼层污染为主,滤饼层阻力占比分别为94.7%和90.1%;膜区添加填料能够减缓膜表面滤饼层的形成,使滤饼层阻力降低8.07%;同时,混合液中溶解性微生物代谢产物(soluble microbial products, SMP)、松散结合EPS (loosely bound-EPS, LB-EPS)和紧密结合EPS (tightly bound-EPS, TB-EPS)浓度分别由(63.70±12.95)、(13.97±2.03)和(153.82±12.64) mg·g−1(工况1)降低为(31.77±3.17)、(9.11±0.40)和(78.12±18.92) mg·g−1(工况2)。粒度分布测定结果表明,膜区添加填料后,污泥平均粒径从31.35 μm(工况1)增大至34.71 μm(工况2)。根据污染物去除特征及膜污染特征,确定最优添加方式为在缺氧区、好氧区和膜区添加填料。上述研究结果可为提高MBR运行稳定性并改善膜污染提供参考。 相似文献
15.
16.
膜生物反应器次临界通量运行的膜污染特性研究 总被引:1,自引:1,他引:0
膜生物反应器(MBR)是将膜分离与生物反应相结合的污水处理新工艺,近年来已引起广泛的关注,但不可避免的膜污染限制其更广泛的应用。临界通量在膜污染控制中是个非常重要的概念。本试验研究平板膜生物反应器在次临界通量运行下的膜污染状况,并结合膜污染模型进一步表征膜表面的污染特性。试验结果表明。该平板膜生物反应器在次临界通量运行的情况下,膜污染可分为膜污染缓慢发展阶段(第Ⅰ阶段)和膜污染迅速发展阶段(第Ⅱ阶段),可分别用膜孔堵塞模型和泥饼阻力模型表征膜阻力与时间的变化关系。同时,对运行后的膜阻力分布进行分析,表明泥饼阻力和孔道吸附堵塞阻力是膜污染的主要组成部分,分别占到总阻力的73%和24%,而膜本身阻力仅占3%。 相似文献