首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
利用生态混凝土控制城市坡面暴雨径流污染试验研究   总被引:1,自引:0,他引:1  
利用生态混凝土作为护坡材料,研究暴雨条件下生态混凝土控制山坡降雨径流污染的机理,以期对生态混凝土在城市护坡和护岸中的应用提供理论依据.研究结果表明,生态混凝土改变了雨水在坡面上的水文过程,阻延径流作用十分明显,有效地降低了污染物的负荷输出.生态混凝土试验小区(T2)与裸地(CK)和改良土壤小区(T1)相比,径流量分别减少了48%和24%,TN年度污染负荷(UPLRs)分别减少了53%和45%,溶解态氮(DN)减少了26%和28%,TP减少了57%和30%,溶解态磷(DP)降低了80%和33%,COD降低了62%和40%,TSS降低了56%和43%,产流时间和流量峰均明显滞后.另外,同植被覆盖良好的小区(T3)相比,生态混凝土对各种污染指标的控制效果没有明显差异,但其抗冲刷能力较强,更能适应城市护坡和护岸的需要.  相似文献   

2.
对城市中典型的2种材料(油毡和水泥)屋面降雨径流中颗粒物(SS)、氮(N)和磷(P)污染物排放特征进行了研究。结果表明,屋面径流中颗粒物主要是以10~100μm粒径范围的颗粒物为主(约占75%),氮主要是以溶解态形式排放(80%~95%),且主要形式是以硝态氮和氨态氮为主,水泥屋面增加了径流中硝态氮的比例,而沥青屋面增加了氨态氮和溶解态有机氮的比例。而磷主要是以颗粒物形态排放(约占40%~70%,平均57.5%),且主要结合10~50μm粒径范围的颗粒物。去除10~50μm粒径颗粒物可以降低屋面径流中50%颗粒物和47.9%磷的排放,而氮却需采用不同处理方法。同时,EC和TSS与TN和TP相关关系表明,EC和TSS可分别作为屋面降雨径流溶解态氮和颗粒态磷污染程度检测和评价指示指标。研究结果为有效地去除降雨径流中污染物、降低城市面源污染对水环境的影响,提供了一定的科学依据。  相似文献   

3.
西安市城市主干道路面径流初期冲刷效应   总被引:3,自引:0,他引:3  
以西安市城市主干道南二环太白路高架桥为路面径流采样区域,采用人工等时间间隔采样方法,在桥梁排水立管对2010年9—11月的3场径流事件进行全程采样,测试径流过程SS、COD、溶解性COD、NH3-N、Pb、溶解性Pb、Zn和溶解性Zn的浓度变化,研究路面径流的初期冲刷效应及其影响因素。结果表明,西安市城市主干道路面径流污染严重,降雨数小时后的末期径流仍具有较高的污染水平;径流过程污染物浓度变化规律与其赋存形态有关,SS、COD、Pb等以颗粒态为主的污染物的浓度随雨强变化剧烈波动,NH3-N、溶解态COD、溶解态Zn等以溶解态为主的污染物浓度变化受雨强影响较小,随径流过程呈逐渐减小趋势;路面径流初期冲刷现象并非普遍存在,与污染物的赋存状态和场次降雨特征密切相关,溶解态污染物易于出现初期冲刷现象,颗粒态污染物是否出现初期冲刷与场次降雨特征有关;测试的3场径流事件初期30%的径流携带的SS、COD、溶解性COD、NH3-N、Pb、Zn和溶解性Zn的负荷占场次径流总负荷的比例分别为21.8%~50.0%、25.5%~49.3%、36.3%~52.6%、52.6%~66.7%、26.8%~45.0%、27.2%~63.4%和36.2%~62.6%,表明仅对初期径流进行治理无法实现对西安市路面径流污染的有效控制。  相似文献   

4.
针对南方平原河网地区旱作农田径流排水特征,构建了一种混凝土多孔板结构的生态沟渠,有效过水断面为0.8m~2,稳定期沟壁和沟底净化植物生物量分别为0.54、0.36kg/m,并通过引入三维植被网护坡技术,在发挥生态拦截功能的同时,大大提高了沟渠抗坡面侵蚀强度。试验表明,径流排水的水力停留时间(HRT)达48h时,生态沟渠对悬浮物(SS)、总氮(TN)和总磷(TP)拦截率分别为50.5%、53.6%、56.1%。生态沟渠对硝态氮的拦截规律与TN一致,但对可溶性磷(DP)的拦截效果与传统水旱通用混凝土排水渠无明显差别,说明生态沟渠对TP的拦截主要表现在对颗粒吸附态磷的拦截。  相似文献   

5.
上海市城区径流污染及控制对策   总被引:6,自引:0,他引:6  
随着城市点源污染控制程度的提高,雨水径流引起的面源污染日益突出.非渗透性地表径流污染成为城市水体污染的主要来源.对上海市城区非渗透性地表径流进行了为期3年的采样调查,监测了COD、BOD5、SS、NH3-N、TP和TN等污染物指标,并估算了单位面积径流年污染负荷.结合上海市实际情况,提出了城区径流污染控制的综合策略.  相似文献   

6.
城市区域不同屋顶降雨径流水质特征   总被引:6,自引:0,他引:6  
城市屋顶降雨径流是城市面源污染的主要组成部分之一。为了解城市不同屋顶降雨径流的水质特性,以重庆地区5种屋顶为例进行了20场降雨径流的水质监测。研究结果表明,不透水屋顶降雨径流污染物浓度均随降雨历时的延长而降低,混凝土屋顶降雨径流的COD、TP、TN、NH3-N平均浓度分别是瓦屋顶的1.6、1.7、1.4和1.5倍,且不透水屋顶降雨径流总氮的70%~80%为无机氮,总磷的20%~32%为磷酸盐;浅层屋顶降雨径流COD、TN、TP、NH3-N和NO-3-N浓度分别是深层绿色屋顶的0.25~0.26、0.3~0.5、0.07~0.09、0.3~0.6、0.05~0.06倍,且绿色屋顶降雨径流总氮的60%~80%为硝态氮。前期干旱天数和混凝土屋顶径流中的TN、接骨草屋顶径流中的氨氮浓度呈显著正相关关系,混凝土屋顶径流TP浓度与降雨强度显著正相关,降雨持续时间和瓦屋顶径流TSS平均浓度显著正相关。研究结果为城市建筑屋顶降雨径流的科学管理提供了参考。  相似文献   

7.
建立模拟降雨装置,研究降雨条件下功能性材料与聚合物对降水土壤渗透性与地表径流污染负荷的影响.研究证实,沸石与PAM不仅能够促进降雨土壤水的入渗、延缓并减少地表径流,而且使土壤渗液和地表径流水质TSS、TN、TP、COD污染物负荷降低.以3 kg/hm2 PAM、3 kg PAM与7.5 t/hm2沸石、6 kg/hm2 PAM 3种方式处理,径流COD负荷为对照的39.12%~69.76%、26.14%~46.63%和20.60%~28.09%;TN、TP与TSS负荷较对照分别减少44.36%~96.47%、66.63%~98.99%、93.71%~99.62%和50.46%~98.40%、83.30%~99.31%、94.91%~99.72%和31.06%~77.23%、46.82%~86.22%、83.54%~95.33%.聚合物与功能性材料改良土壤是一种削减地表降雨径流非点源污染的有效手段.  相似文献   

8.
昆明主城区城市地表径流污染特征分析   总被引:8,自引:0,他引:8  
谷雨  张乃明 《环境工程学报》2013,7(7):2587-2595
昆明市位于滇池上游,城市地表径流污染负荷对滇池水质具有直接影响。通过对昆明主城区内不同功能区12个监测点7次降雨径流过程水样的采集与分析,研究了昆明主城区城市地表径流污染特征。结果表明,昆明主城区城市地表径流中TSS、COD、TN和TP的多场降雨平均浓度分别为182.8、138.2、2.37和0.43 mg/L。不同功能区的地表径流水质存在显著差异(p<0.05);各功能区径流污染负荷顺序为:公路区>商业区>住宅区>文教区;不同功能区单场降雨径流水质动态变化规律是:污染物浓度在降雨径流初期相对较高,中后期浓度快速下降,并逐渐趋于稳定;地表利用功能、降雨特征和交通流量是影响城市地表径流水质的主要因素;城市地表径流中COD、TN、TP与TSS之间有较好的相关性,说明大部分的污染物质是以颗粒吸附态存在。  相似文献   

9.
为评价重庆万州龙宝河片区海绵城市改造的径流污染控制效果,运用SWMM模型模拟该片区的径流过程,研究不同重现期下绿色屋顶、透水铺装、生物滞留带等低影响开发(LID)设施对污染物的控制效果。结果表明:当重现期为1~50 a时,LID设施对悬浮固体(SS)、化学需氧量(COD)、总磷(TP)、总氮(TN)的总量削减率分别可达47%~72%、56%~70%、48%~64%、43%~66%;对上述污染物峰值浓度的削减率分别为31.31%~41.05%、25.12%~38.93%、22.50%~31.38%、13.39%~21.76%,并能延迟峰现时间2~11 min。由此可见,海绵城市改造能够有效缓解径流污染,但随着重现期增加,控制效果会变差,说明海绵城市更适用于低降雨强度的径流污染控制。  相似文献   

10.
生物滞留池改善城市雨水径流水质的研究进展   总被引:6,自引:0,他引:6  
如何有效控制城市雨水径流所带来的面源污染已成为城市管理工作所面临的重要难题之一.作为城市暴雨最佳管理措施(BMPs)中的技术之一,生物滞留池可有效控制城市面源污染.总结了生物滞留池在改善城市雨水径流水质方面的研究进展,简要分析了生物滞留池去除污染物的机制.研究结果表明,生物滞留池对雨水径流中的总悬浮颗粒物(TSS)、重...  相似文献   

11.
Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km2, respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.  相似文献   

12.
One of the principal components of the contaminant load in urban stormwater runoff is oil and grease (O&G) pollution, resulting from vehicle emissions. A mulch layer was used as a contaminant trap to remove O&G (dissolved and particulate-associated naphthalene, dissolved toluene, and dissolved motor oil hydrocarbons) from a synthetic runoff during a bench-scale infiltration study. Approximately 80 to 95% removal of all contaminants from synthetic runoff was found via sorption and filtration. Subsequently, approximately 90% of the sorbed naphthalene, toluene, oil, and particulate-associated naphthalene was biodegraded within approximately 3, 4, 8, and 2 days after the event, respectively, based on decreases in contaminant concentrations coupled with increases of microbial populations. These results indicate the effectiveness and sustainability of placing a thin layer of mulch on the surface of a bioretention facility for reducing O&G pollution from urban stormwater runoff.  相似文献   

13.
Salvetti R  Azzellino A  Vismara R 《Chemosphere》2006,65(11):2168-2177
The source apportionment of the annual nutrient load carried by the Po river to the Adriatic sea has been studied.

An integrated modelling approach was applied to the Lombardy plain area, which covers about 34% of the Po river watershed area and accounts for about 50% of the point sources’ loads carried by the river. To extract all the information available from direct instream measurements, two different modelling tools were alternatively used. The source apportionment was investigated considering both dry and wet weather scenarios. In order to quantify the apportionment in dry-weather conditions, the Lombardy portion of the Po river basin was modelled by using the US-EPA QUAL2E model. Such a simulation allowed to assess a significant contribution (about 50% of the total dry-weather load) of a not rain-driven diffuse pollution component (i.e. groundwater, springs, lake emissaries). Moreover, to estimate the rain-driven surface runoff contribution to the instream total load, the Lombardy plain area was also modelled by means of the US-DA SWAT model. SWAT results indicate a runoff contribution to the Po river instream total load of about 10 000 t N yr−1 and 1300 t P yr−1 (i.e. approximately the 10–20% of the total annual Lombardy nutrient load). At the event scale (i.e. the single rainstorm event) the runoff contribution may rise up to 30–80% of the total instream load. Finally, the total annual nitrogen load at the Po basin closure was estimated for the period 1985–2001. Out of a total annual load of 140 000 t N yr−1, Lombardy accounts for 43% (point plus diffuse sources). The rain-driven diffuse sources constitute the 20% of the overall total load, the point sources account for 40%, whereas the remaining 40% is mainly constituted by “dry-weather diffuse sources” (i.e. groundwater, springs, lake emissaries).  相似文献   


14.
Zhang H  Cao Z  Wang G  Zhang H  Wong MH 《Chemosphere》2003,52(9):1461-1466
A winter wheat field plot experiment was conducted on two types of paddy soils, from November, 2000 to June, 2001 to assess P losses to its surrounding watercourses by runoff in the Taihu Lake Region. Commercial NPK compound fertilizer and single superphosphate fertilizer were applied to furnish 0, 20, 80, and 160 kg P ha(-1). The experiments consisted of six replicates of each treatment in Changshu site and four replicates in Anzhen site, with a plot size of 5x6 m2 in a randomized block design. Results revealed that the average concentration of dissolved P (DP), particulate P (PP), and total P (TP) in runoff water during the winter season was 0.13, 0.90 and 1.04 mg P l(-1) respectively, from P20 plots in Anzhen site. While it was 0.67, 1.08 and 1.75 mg P l(-1) respectively, from P20 plots in Changshu site. The seasonal TP load (mass loss) from P20 plot ranged from a low of 290.88 g P ha(-1)season(-1) to a high of 483.54 g P ha(-1)season(-1), with a mean of 382.29 g P ha(-1)season(-1) in Anzhen, but from 444.92 to 752.21 g P ha(-1)season(-1), with a mean of 539.13 g P ha(-1)season(-1) in Changshu. Both in Anzhen and Changshu PP represented a major portion of the TP lost in runoff, the average PP/TP was about more than 80% in P0 and P20 plot, but it was decreased with the increase of P rate. The average seasonal P loads (DP, PP, and TP) in Changshu were greater than in Anzhen although runoff volume in Anzhen (45 mm season(-1)) was more than in Changshu (36 mm season(-1)). This was probably associated with the differences of soil physical and chemical properties between the two sites. Phosphate fertilizer rate significantly affected P concentrations and P loads by runoff. Both the mean concentrations and the average seasonal P loads from the P80 plots were lower than from the P160 plots, but obviously higher than from the P20 and P0 plots. There was no significant difference found between the P20 plots and the P0 plots both in Anzhen and Changshu sites. It indicated that P loads by runoff would be greatly increased in 5-10 years due to the accumulation of soil P if 20 kg P ha(-1) applied each wheat season in this area.  相似文献   

15.
Urban stormwater runoff quality, widely investigated around the world, has been monitored less in Beijing, China, which impedes the municipal government to use best management practices to protect surface water. In this study, rainwater and stormwater runoff samples from roofs, roads, and a lawn on the campus of the Research Center for Eco-Environmental Sciences (RCEES) (Beijing, China) and from a ring road, with heavy traffic, have been sampled and analyzed for 31 storm events from June 2004 to August 2005. Total suspended solids (TSS), chemical oxygen demand (COD), 5-day biochemical oxygen demand (BOD5), total nitrogen, and total phosphorus concentrations in rainwater and runoff ranged over 2 or more orders of magnitude, meaning that the highest concentration of a certain pollutant did not always occur in a certain kind of runoff. Runoff contained significantly higher concentrations of pollutants than rainwater. On the campus of RCEES, TSS and total phosphorus in runoff samples from the lawn and roads were significantly higher than those from roofs, while the COD, BOD5, and total nitrogen concentrations were not significantly different in runoff among surfaces. Compared with runoff from the roads on campus, runoff from the ring road contained more COD and total nitrogen, but less TSS, BOD5, and total phosphorus. All pollutants measured in runoff from roofs on campus and from the ring road showed a peak concentration in starting runoff, which then decreased sharply. The peak concentrations of COD, BOD5, total nitrogen, and total phosphorus in the roof runoff increased with the increase in time of the antecedent dry period. Thus, urban stormwater pollution control, especially for first-flush control, is of great importance for the full use of rainwater and prevention of water pollution.  相似文献   

16.
Surface runoff and erosion during the course of rainfall events are major processes of pesticides transport from agricultural land to aquatic ecosystem. These processes are generally evaluated either at the plot or the catchment scale. Here, we compared at both scales the transport and partitioning in runoff water of two widely used fungicides, i.e., kresoxim-methyl (KM) and cyazofamid (CY). The objective was to evaluate the relationship between fungicides runoff from the plot and from the vineyard catchment. The results show that seasonal exports for KM and CY at the catchment were larger than those obtained at the plot. This underlines that non-target areas within the catchment largely contribute to the overall load of runoff-associated fungicides. Estimations show that 85 and 62 % of the loads observed for KM and CY at the catchment outlet cannot be explained by the vineyard plots. However, the partitioning of KM and CY between three fractions, i.e., the suspended solids (>0.7 μm) and two dissolved fractions (i.e., between 0.22 and 0.7 µm and <0.22 µm) in runoff water was similar at both scales. KM was predominantly detected below 0.22 μm, whereas CY was mainly detected in the fraction between 0.22 and 0.7 μm. Although KM and CY have similar physicochemical properties and are expected to behave similarly, our results show that their partitioning between two fractions of the dissolved phase differs largely. It is concluded that combined observations of pesticide runoff at both the catchment and the plot scales enable to evaluate the sources areas of pesticide off-site transport.  相似文献   

17.
《Chemosphere》2007,66(11):2168-2177
The source apportionment of the annual nutrient load carried by the Po river to the Adriatic sea has been studied.An integrated modelling approach was applied to the Lombardy plain area, which covers about 34% of the Po river watershed area and accounts for about 50% of the point sources’ loads carried by the river. To extract all the information available from direct instream measurements, two different modelling tools were alternatively used. The source apportionment was investigated considering both dry and wet weather scenarios. In order to quantify the apportionment in dry-weather conditions, the Lombardy portion of the Po river basin was modelled by using the US-EPA QUAL2E model. Such a simulation allowed to assess a significant contribution (about 50% of the total dry-weather load) of a not rain-driven diffuse pollution component (i.e. groundwater, springs, lake emissaries). Moreover, to estimate the rain-driven surface runoff contribution to the instream total load, the Lombardy plain area was also modelled by means of the US-DA SWAT model. SWAT results indicate a runoff contribution to the Po river instream total load of about 10 000 t N yr−1 and 1300 t P yr−1 (i.e. approximately the 10–20% of the total annual Lombardy nutrient load). At the event scale (i.e. the single rainstorm event) the runoff contribution may rise up to 30–80% of the total instream load. Finally, the total annual nitrogen load at the Po basin closure was estimated for the period 1985–2001. Out of a total annual load of 140 000 t N yr−1, Lombardy accounts for 43% (point plus diffuse sources). The rain-driven diffuse sources constitute the 20% of the overall total load, the point sources account for 40%, whereas the remaining 40% is mainly constituted by “dry-weather diffuse sources” (i.e. groundwater, springs, lake emissaries).  相似文献   

18.
Projected climate change might increase the deposition of nitrogen by about 10% to seminatural ecosystems in southern Norway. At Storgama, increased precipitation in the growing season increased the fluxes of total organic carbon (TOC) and total organic nitrogen (TON) in proportion to the water flux. In winter, soil temperatures near 0 degrees C, common under a snowpack, induced higher runoff of inorganic nitrogen (N) and lower runoff of TOC. By contrast, soil temperatures below freezing, caused by little snow accumulation (expected in a warmer world), reduced runoff of inorganic N, TON, and TOC. Long-term monitoring data showed that reduced snowpack can cause either decreased or increased N leaching, depending on interactions with N deposition, soil temperature regime, and winter discharge. Seasonal variation in TOC was mainly climatically controlled, whereas deposition of sulfate and nitrate (NO3) explained the long-term TOC increase. Upscaling to the river basin scale showed that the annual flux of NO3 will remain unchanged in response to climate change projections.  相似文献   

19.
在野外模拟降雨条件下,开展了晋江西溪流域茶园和裸地的径流产沙及氮磷养分流失过程对比实验,研究结果表明,在相同降雨强度下,3种下垫面径流和产沙量顺序均为:裸地>2年茶园>4年茶园,径流量与产沙量之间呈显著正相关.对地表径流水相而言,2年茶园、4年茶园和裸地的TN流失量分别为:461.29、129.38和107.86 mg/m2;NO3-N流失量分别为:286.42、98.58和103.00 mg/m2,均占TN流失量的60%以上;NH4-N流失量分别为:48.67、16.19和4.42 mg/m2;Tp流失量分别为:34.71、16.47和23.88 mg/m2.对径流泥沙相而言,2年茶园、4年茶园和裸地的TN流失量分别为:379.28、44.81和747.16 mg/m2,占流失总量的比重在25.72%~87.93%之间;TP流失量分别为:27.94、4.17和58.85 mg/m2,占流失总量的比重在53.42% ~68.36%之间.茶园的N、P主要随径流流失,而裸地以泥沙迁移为主.这说明茶叶种植具有一定的水土保持效应,且种植年限较长的茶园可显著减少随径流泥沙进入水体中的N、P元素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号