首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Filtration of Bacillus subtilis spores and the F-RNA phage MS2 (MS2) on a field scale in a coarse alluvial gravel aquifer was evaluated from the authors' previously published data. An advection-dispersion model that is coupled with first-order attachment kinetics was used in this study to interpret microbial concentration vs. time breakthrough curves (BTC) at sampling wells. Based on attachment rates (katt) that were determined by applying the model to the breakthrough data, filter factors (f) were calculated and compared with f values estimated from the slopes of log (cmax/co) vs. distance plots. These two independent approaches resulted in nearly identical filter factors, suggesting that both approaches are useful in determining reductions in microbial concentrations over transport distance. Applying the graphic approach to analyse spatial data, we have also estimated the f values for different aquifers using information provided by some other published field studies. The results show that values of f, in units of log (cmax/co) m(-1), are consistently in the order of 10(-2) for clean coarse gravel aquifers, 10(-3) for contaminated coarse gravel aquifers, and generally 10(-1) for sandy fine gravel aquifers and river and coastal sand aquifers. For each aquifer category, the f values for bacteriophages and bacteria are in the same order-of-magnitude. The f values estimated in this study indicate that for every one-log reduction in microbial concentration in groundwater, it requires a few tens of meters of travel in clean coarse gravel aquifers, but a few hundreds of meters in contaminated coarse gravel aquifers. In contrast, a one-log reduction generally only requires a few meters of travel in sandy fine gravel aquifers and sand aquifers. Considering the highest concentration in human effluent is in the order of 10(4) pfu/l for enteroviruses and 10(6) cfu/100 ml for faecal coliform bacteria, a 7-log reduction in microbial concentration would comply with the drinking water standards for the downgradient wells under natural gradient conditions. Based on the results of this study, a 7-log reduction would require 125-280 m travel in clean coarse gravel aquifers, 1.7-3.9 km travel in contaminated coarse gravel aquifers, 33-61 m travel in clean sandy fine gravel aquifers, 33-129 m travel in contaminated sandy fine gravel aquifers, and 37-44 m travel in contaminated river and coastal sand aquifers. These recommended setback distances are for a worst-case scenario, assuming direct discharge of raw effluent into the saturated zone of an aquifer. Filtration theory was applied to calculate collision efficiency (alpha) from model-derived attachment rates (katt), and the results are compared with those reported in the literature. The calculated alpha values vary by two orders-of-magnitude, depending on whether collision efficiency is estimated from the effective particle size (d10) or the mean particle size (d50). Collision efficiency values for MS-2 are similar to those previously reported in the literature (e.g. ) [DeBorde, D.C., Woessner, W.W., Kiley, QT., Ball, P., 1999. Rapid transport of viruses in a floodplain aquifer. Water Res. 33 (10), 2229-2238]. However, the collision efficiency values calculated for Bacillus subtilis spores were unrealistic, suggesting that filtration theory is not appropriate for theoretically estimating filtration capacity for poorly sorted coarse gravel aquifer media. This is not surprising, as filtration theory was developed for uniform sand filters and does not consider particle size distribution. Thus, we do not recommend the use of filtration theory to estimate the filter factor or setback distances. Either of the methods applied in this work (BTC or concentration vs. distance analyses), which takes into account aquifer heterogeneities and site-specific conditions, appear to be most useful in determining filter factors and setback distances.  相似文献   

2.
A field experiment was performed in an aquifer in order to study multicomponent cation-exchange processes under natural flow conditions. The aquifer is a glacial outwash plain with sandy aquifer material having a cation-exchange capacity (CEC) of 1.0 meg/100 g. A continuous injection of groundwater spiked with sodium and potassium as chlorides was accomplished over 37 days to resemble leachate contamination from landfills. The plume was monitored by sampling in a dense spatial network (length 100 m, width 20 m) over a period of 2.5 years in order to obtain breakthrough curves and spatial contour maps of the chemical compounds. Na and especially K showed a substantial retardation caused by cation-exchange processes despite the low CEC of the aquifer material. The average velocity of K+ was only 10% of the velocity of chloride (0.7 m day−1). The relative migration velocity of Na+ was not a constant in the plume, but apparently influenced by dilution. Ca2+ and Mg2+ were expelled from the cation-exchange sites of the aquifer material and subsequently transported with the same velocity as chloride. The breakthrough curves of the various compounds showed multiple peaks and low concentration zones. It was concluded by calculations with PHREEQE that changes in calcite equilibrium may occur in the lower part of the aquifer, while complexation processes seem to be of no importance. Cation exchange is then the most important process in this field experiment, and further evaluation of the data by a geochemical transport model including cation exchange is recommended.  相似文献   

3.
This study was conducted to determine the significance of bromacil transport as a function of water and carbon content in soils and to explore the implications of neglecting sorption when making assessments of travel time of bromacil through the vadose zone. Equilibrium batch sorption tests were performed for loamy sand and sandy soil added with four different levels of powdered activated carbon (PAC) content (0, 0.01, 0.05, and 0.1%). Column experiments were also conducted at various water and carbon contents under steady-state flow conditions. The first set of column experiments was conducted in loamy sand containing 1.5% organic carbon under three different water contents (0.23, 0.32, and 0.41) to measure breakthrough curves (BTCs) of bromide and bromacil injected as a square pulse. In the second set of column experiments, BTCs of bromide and bromacil injected as a front were measured in saturated sandy columns at the four different PAC levels given above. Column breakthrough data were analyzed with both equilibrium and nonequilibrium (two-site) convection-dispersion equation (CDE) models to determine transport and sorption parameters under various water and carbon contents. Analysis with batch data indicated that neglect of the partition-related term in the calculation of solute velocity may lead to erroneous estimation of travel time of bromacil, i.e. an overestimation of the solute velocity by a factor of R. The column experiments showed that arrival time of the bromacil peak was larger than that of the bromide peak in soils, indicating that transport of bromacil was retarded relative to bromide in the observed conditions. Extent of bromacil retardation (R) increased with decreasing water content and increasing PAC content, supporting the importance of retardation in the estimation of travel time of bromacil even at small amounts of organic carbon for soils with lower water content.  相似文献   

4.
This study presents a new method to visualise forced-gradient tracer tests in 2-D using a laboratory-scale aquifer physical model. Experiments were designed to investigate the volume of aquifer sampled in vertical dipole flow tracer tests (DFTT) and push-pull tests (PPT), using a miniature monitoring well and straddle packer arrangement equipped with solute injection and recovery chambers. These tests have previously been used to estimate bulk aquifer hydraulic and transport properties for the evaluation of natural attenuation and other remediation approaches. Experiments were performed in a silica glass bead-filled box, using a fluorescent tracer (fluorescein) to deduce conservative solute transport paths. Digital images of fluorescein transport were captured under ultraviolet light and processed to analyse tracer plume geometry and obtain point-concentration breakthrough histories. Inorganic anion mixtures were also used to obtain conventional tracer breakthrough histories. Concentration data from the conservative tracer breakthrough curves was compared with the digital images and a well characterised numerical model. The results show that the peak tracer breakthrough response in dipole flow tracer tests samples a zone of aquifer close to the well screen, while the sampling volume of push-pull tests is limited by the length of the straddle packers used. The effective sampling volume of these single well forced-gradient tests in isotropic conditions can be estimated with simple equations. The experimental approach offers the opportunity to evaluate under controlled conditions the theoretical basis, design and performance of DFTTs and PPTs in porous media in relation to measured flow and transport properties.  相似文献   

5.
Processes controlling the distribution and natural attenuation (NA) of phenol, cresols and xylenols released from a former coal-tar distillation plant in a deep Triassic sandstone aquifer are evaluated from vertical profiles along the plume centerline at 130 and 350 m from the site. Up to four groups of contaminants (phenols, mineral acids, NaOH, NaCl) form discrete and overlapping plumes in the aquifer. Their distribution reflects changing source history with releases of contaminants from different locations. Organic contaminant distribution in the aquifer is determined more by site source history than degradation. Contaminant degradation at total organic carbon (TOC) concentrations up to 6500 mg l(-1) (7500 mg l(-1) total phenolics) is occurring by aerobic respiration NO3-reduction, Mn(IV)-/Fe(III)-reduction, SO4-reduction, methanogenesis and fermentation, with the accumulation of inorganic carbon, organic metabolites (4-hydroxybenzaldehyde, 4-hydroxybenzoic acid), acetate, Mn(II), Fe(II), S(-II), CH4 and H2 in the plume. Aerobic and NO3-reducing processes are restricted to a 2-m-thick plume fringe but Mn(IV)-/Fe(II)-reduction, SO4-reduction, methanogenesis and fermentation occur concomitantly in the plume. Dissolved H2 concentrations in the plume vary from 0.7 to 110 nM and acetate concentrations reach 200 mg l(-1). The occurrence of a mixed redox system and concomitant terminal electron accepting processes (TEAPs) could be explained with a partial equilibrium model based on the potential in situ free energy (deltaGr) yield for oxidation of H2 by specific TEAPs. Respiratory processes rather than fermentation are rate limiting in determining the distribution of H2 and TEAPs and H2 dynamics in this system. Most (min. 90%) contaminant degradation has occurred by aerobic and NO3-reducing processes at the plume fringe. This potential is determined by the supply of aqueous O2 and NO3 from uncontaminated groundwater, as controlled by transverse mixing, which is limited in this aquifer by low dispersion. Consumption to date of mineral oxides and SO4 is, respectively, <0.15% and 0.4% of the available aquifer capacity, and degradation using these oxidants is <10%. Fermentation is a significant process in contaminant turnover, accounting for 21% of degradation products present in the plume, and indicating that microbial respiration rates are slow in comparison with fermentation. Under present conditions, the potential for degradation in the plume is very low due to inhibitory effects of the contaminant matrix. Degradation products correspond to <22% mass loss over the life of the plume, providing a first-order plume scale half-life >140 years. The phenolic compounds are biodegradable under the range of redox conditions in the aquifer and the aquifer is not oxidant limited, but the plume is likely to be long-lived and to expand. Degradation is likely to increase only after contaminant concentrations are reduced and aqueous oxidant inputs are increased by dispersion of the plume. The results imply that transport processes may exert a greater control on the natural attenuation of this plume than aquifer oxidant availability.  相似文献   

6.
A multi-borehole radial tracer test has been conducted in the confined Chalk aquifer of E. Yorkshire, UK. Three different tracer dyes were injected into three injection boreholes and a central borehole, 25 m from the injection boreholes, was pumped at 330 m(3)/d for 8 days. The breakthrough curves show that initial breakthrough and peak times were fairly similar for all dyes but that recoveries varied markedly from 9 to 57%. The breakthrough curves show a steep rise to a peak and long tail, typical of dual porosity aquifers. The breakthrough curves were simulated using a 1D dual porosity model. Model input parameters were constrained to acceptable ranges determined from estimations of matrix porosity and diffusion coefficient, fracture spacing, initial breakthrough times and bulk transmissivity of the aquifer. The model gave equivalent hydraulic apertures for fractures in the range 363-384 microm, dispersivities of 1 to 5 m and matrix block sizes of 6 to 9 cm. Modelling suggests that matrix block size is the primary controlling parameter for solute transport in the aquifer, particularly for recovery. The observed breakthrough curves suggest results from single injection-borehole tracer tests in the Chalk may give initial breakthrough and peak times reasonably representative of the aquifer but that recovery is highly variable and sensitive to injection and abstraction borehole location. Consideration of aquifer heterogeneity suggests that high recoveries may be indicative of a high flow pathway adjacent, but not necessarily connected, to the injection and abstraction boreholes whereas low recoveries may indicate more distributed flow through many fractures of similar aperture.  相似文献   

7.
In the event of a gasoline spill containing oxygenated compounds such as ethanol and MTBE, it is important to consider the impacts these compounds might have on subsurface contamination. One of the main concerns commonly associated with ethanol is that it might decrease the biodegradation of aromatic hydrocarbon compounds, leading to an increase in the hydrocarbon dissolved plume lengths. The first part of this study (Part 1) showed that when gasoline containing ethanol infiltrates the unsaturated zone, ethanol is likely to partition to and be retained in the unsaturated zone pore water. In this study (Part 2), a controlled field test is combined with a two-dimensional laboratory test and three-dimensional numerical modelling to investigate how ethanol retention in the unsaturated zone affects the downgradient behaviour of ethanol and aromatic hydrocarbon compounds. Ethanol transport downgradient was extremely limited. The appearance of ethanol in downgradient wells was delayed and the concentrations were lower than would be expected based on equilibrium dissolution. Oscillations in the water table resulted in minor flushing of ethanol, but its effect could still be perceived as an increase in the groundwater concentrations downgradient from the source zone. Ethanol partitioning to the unsaturated zone pore water reduced its mass fraction within the NAPL thus reducing its anticipated impact on the fate of the hydrocarbon compounds. A conceptual numerical simulation indicated that the potential ethanol-induced increase in benzene plume length after 20 years could decrease from 136% to 40% when ethanol retention in the unsaturated zone is considered.  相似文献   

8.
To examine colloid transport in geochemically heterogeneous porous media at a scale comparable to field experiments, we monitored the migration of silica-coated zirconia colloids in a two-dimensional layered porous media containing sand coated to three different extents by ferric oxyhydroxides. Transport of the colloids was measured over 1.65 m and 95 days. Colloid transport was modeled by an advection-dispersion-deposition equation incorporating geochemical heterogeneity and colloid deposition dynamics (blocking). Geochemical heterogeneity was represented as favorable (ferric oxyhydroxide-coated) and unfavorable (uncoated sand) deposition surface areas. Blocking was modeled as random sequential adsorption (RSA). Release of deposited colloids was negligible. The time to colloid breakthrough after the onset of blocking increased with increasing ferric oxyhydroxide-coated surface area. As the ferric oxyhydroxide surface area increased, the concentration of colloids in the breakthrough decreased. Model-fits to the experimental data were made by inverse solutions to determine the fraction of surface area favorable for deposition and the deposition rate coefficients for the favorable (ferric oxyhydroxide-coated) and unfavorable sites. The favorable deposition rate coefficient was also calculated by colloid filtration theory. The model described the time to colloid breakthrough and the blocking effect reasonably well and estimated the favorable surface area fraction very well for the two layers with more than 1% ferric oxyhydroxide coating. If mica edges in the uncoated sand were considered as favorable surface area in addition to the ferric oxyhydroxide coatings, the model predicted the favorable surface area fraction accurately for the layer with less than 1% ferric oxyhydroxide coating.  相似文献   

9.
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.  相似文献   

10.
The migration behavior of U(IV) and U(VI) in the presence of humic acid was studied in a quartz sand system. Laboratory column experiments were performed using humic acid, U(VI) in humic acid absence, U(IV) and U(VI) in humic acid presence, and for comparison a conservative tracer. In experiments using humic acid, both redox species of U migrate nearly as fast as the conservative tracer. Humic acid accelerates the U(VI) breakthrough compared to the humic acid-free system. There are strong indications for a similar effect on the U(IV) transport. At the same time, a part of U(IV) and U(VI) associated with the humic acid is immobilized in the quartz sand due to humic colloid filtration thus producing a delaying effect. Tailing at a low concentration level was observed upon tracer elution. The experimental breakthrough curves were described by reactive transport modeling using equations for equilibrium and kinetic reactions. The present study demonstrates that humic acids can play an important role in the migration of actinides. As natural organic matter is ubiquitous in aquifer systems, the humic colloid-borne transport of actinides is of high relevance in performance assessment.  相似文献   

11.
A sand column leaching system with well-controlled suction and flow rate was built to investigate the effects on bacterial transport of air-water interface effects (AWI) correlated to water content, particle size, and column length. Adsorption of Escherichia coli strain D to silica sands was measured in batch tests. The average % adsorption for coarse and fine sands was 45.9+/-7.8% and 96.9+/-3.2%, respectively. However, results from static batch adsorption experiments have limited applicability to dynamic bacterial transport in columns. The early breakthrough of E. coli relative to bromide was clear for all columns, namely c. 0.15 to 0.3 pore volume earlier. Column length had no significant effects on the E. coli peak concentration or on total recovery in leachate, indicating retention in the top layer of sands. Tailing of breakthrough curves was more prominent for all fine sand columns than their coarse sand counterparts. Bacterial recovery in leachate from coarse and saturated sand columns was significantly higher than from fine and unsaturated columns. Observed data were fitted by the convection-dispersion model, amended for one-site and two-site adsorption to particles, and for air-water interface (AWI) adsorption. Among all models, the two-site+AWI model achieved consistently high model efficiency for all experiments. Thus it is evident from experimental and modeling results that AWI adsorption plays an important role in E. coli transport in sand columns.  相似文献   

12.
The local scale dispersion tensor, Dd, is a controlling parameter for the dilution of concentrations in a solute plume that is displaced by groundwater flow in a heterogeneous aquifer. In this paper, we estimate the local scale dispersion from time series or breakthrough curves, BTCs, of Br concentrations that were measured at several points in a fluvial aquifer during a natural gradient tracer test at Krauthausen. Locally measured BTCs were characterized by equivalent convection dispersion parameters: equivalent velocity, v(eq)(x) and expected equivalent dispersivity, [lambda(eq)(x)]. A Lagrangian framework was used to approximately predict these equivalent parameters in terms of the spatial covariance of log(e) transformed conductivity and the local scale dispersion coefficient. The approximate Lagrangian theory illustrates that [lambda(eq)(x)] increases with increasing travel distance and is much larger than the local scale dispersivity, lambda(d). A sensitivity analysis indicates that [lambda(eq)(x)] is predominantly determined by the transverse component of the local scale dispersion and by the correlation scale of the hydraulic conductivity in the transverse to flow direction whereas it is relatively insensitive to the longitudinal component of the local scale dispersion. By comparing predicted [lambda(eq)(x)] for a range of Dd values with [lambda(eq)(x)] obtained from locally measured BTCs, the transverse component of Dd, DdT, was estimated. The estimated transverse local scale dispersivity, lambda(dT) = DdT/U1 (U1 = mean advection velocity) is in the order of 10(1)-10(2) mm, which is relatively large but realistic for the fluvial gravel sediments at Krauthausen.  相似文献   

13.
Bacterial transport through cores of intact, glacial-outwash aquifer sediment was investigated with the overall goal of better understanding bacterial transport and developing a predictive capability based on the sediment characteristics. Variability was great among the cores. Normalized maximum bacterial-effluent concentrations ranged from 5.4x10(-7) to 0.36 and effluent recovery ranged from 2.9x10(-4) to 59%. Bacterial breakthrough was generally rapid with a sharp peak occurring nearly twice as early as the bromide peak. Bacterial breakthrough exhibited a long tail of relatively constant concentration averaging three orders of magnitude less than the peak concentration for up to 32 pore volumes. The tails were consistent with non-equilibrium detachment, corroborated by the results of flow interruption experiments. Bacterial breakthrough was accurately simulated with a transport model incorporating advection, dispersion and first-order non-equilibrium attachment/detachment. Relationships among bacterial transport and sediment characteristics were explored with multiple regression analyses. These analyses indicated that for these cores and experimental conditions, easily-measurable sediment characteristics--median grain size, degree of sorting, organic-matter content and hydraulic conductivity--accounted for 66%, 61% and 89% of the core-to-core variability in the bacterial effective porosity, dispersivity and attachment-rate coefficient, respectively. In addition, the bacterial effective porosity, median grain size and organic-matter content accounted for 76% of the inter-core variability in the detachment-rate coefficient. The resulting regression equations allow prediction of bacterial transport based on sediment characteristics and are a possible alternative to using colloid-filtration theory. Colloid-filtration theory, used without the benefit of running bacterial transport experiments, did not as accurately replicate the observed variability in the attachment-rate coefficient.  相似文献   

14.
The enhanced solubility of petroleum-derived compounds in humic acid solutions is the basis for a new groundwater remediation technology. In this unique pilot-scale test, a stationary contaminant source consisting of diesel fuel was placed below the water table in a model sand aquifer (1.2 x 5.5 x 1.8-m deep) and flushed with water at a flow rate of 2 cm/h over 5 years. At 51 days, laboratory grade humic acid was added to the water and maintained at a level of approximately 0.8 g/l. The addition of humic acid had only a small impact on the aqueous transport of the BTEX components, which were rapidly dissolved from the diesel, but had a large effect on the flushing of PAHs, including methylated naphthalenes (MNs). Binding to aqueous humic acid enhanced the solubilization of MNs two- to tenfold. During aqueous transport, biodegradation of the BTEX and PAHs occurred, limiting the lateral and longitudinal extent of the diesel contaminant plume in the model aquifer. It appears that through enhanced solubilization, the overall biodegradation rate of the MNs was increased. As the various MNs were depleted from the diesel source, the MN plume shrank and then disappeared.  相似文献   

15.
16.
Anthropogenic contaminants as tracers in an urbanizing karst aquifer   总被引:2,自引:0,他引:2  
Karst aquifers are uniquely vulnerable to contamination. In the Barton Springs segment of the karstic Edwards aquifer (Texas, U.S.A.), urban contaminants such as pesticides and volatile organic compounds frequently are detected in spring base flow. To determine whether contaminant concentrations change in response to storms, and if they therefore might act as tracers of focused recharge, samples were collected from Barton Springs at closely spaced intervals following three storms. Two herbicides (atrazine and simazine), two insecticides (carbaryl and diazinon), and a solvent (tetrachloroethene) described breakthrough curves over a 1-week period following one or more storms. The breakthrough curves were decomposed into two to five log-normal subcurves, which were interpreted as representing pulses of contaminants moving through the aquifer. Each subcurve could be used in the same way as an artificial tracer to determine travel time to and recovery at the spring. The contaminants have several advantages over artificial tracers: they represent the actual compounds of interest, they are injected essentially simultaneously at several points, and they are injected under those conditions when transport is of the most interest, i.e., following storms. The response of storm discharge, specific conductance, and contaminant loading at the spring depended on initial aquifer flow conditions, which varied from very low (spring discharge of 0.48 m3/s) to high (spring discharge of 2.7 m3/s): concentrations and recovery were the highest when initial aquifer flow conditions were low. This behavior provides information about aquifer structure and the influence of aquifer flow condition on transport properties.  相似文献   

17.
Contaminant breakthrough behavior in a variety of heterogeneous porous media was measured in laboratory experiments, and evaluated in terms of both the classical advection-dispersion equation (ADE) and the continuous time random walk (CTRW) framework. Heterogeneity can give rise to non-Fickian transport patterns, which are distinguished by "anomalous" early arrival and late time tails in breakthrough curves. Experiments were conducted in two mid-scale laboratory flow cells packed with clean, sieved sand of specified grain sizes. Three sets of experiments were performed, using a "homogeneous" packing, a randomly heterogeneous packing using sand of two grain sizes, and an exponentially correlated structure using sand of three grain sizes. Concentrations of sodium chloride tracer were monitored at the inflow reservoir and measured at the outflow reservoir. Breakthrough curves were then analyzed by comparison to fitted solutions from the ADE and CTRW formulations. In all three systems, including the "homogeneous" one, subtle yet measurable differences between Fickian and non-Fickian transport were observed. Quantitative analysis demonstrated that the CTRW theory characterized the full shape of the breakthrough curves far more effectively than the ADE.  相似文献   

18.
Solute travel time distributions were derived from breakthrough curves (BTCs) of bromide concentrations, which were measured during a large-scale tracer experiment in a quaternary fluviatile aquifer at Krauthausen. Travel time distributions to a specific point in the aquifer were derived from locally measured BTCs, using averaged absolute concentrations ?abs(x1,t), normalized concentrations ?norm(x1,t), and velocity-weighted normalized concentrations ?vw(x1,t). The travel time distributions were characterized in terms of equivalent convective-dispersive transport parameters: the equivalent solute velocity and equivalent dispersivity. Parameters were derived from BTCs using moment analyses and least-squares fits of the 1-D convection-dispersion equation (CDE). Both local and averaged BTCs showed pronounced tailing which was not well described by the 1-D CDE and which indicates the presence of macroscopic regions with low velocities in the aquifer. Therefore, dispersivities derived from CDE fits were significantly smaller than those derived from time moments. The BTCs of ?abs(x1,t) were dominated by only a few local BTCs with high concentrations and were less representative for the travel time distribution than BTCs of averaged normalized concentrations. Dispersivities derived from ?norm(x1,t) and ?vw(x1,t) were very similar. Finally, estimates of dispersivities and vertical correlation length of lnK, gamma 3, from BTCs were in agreement with a first-order estimate of the dispersivity and gamma 3 based on grain size data and flow meter measurements.  相似文献   

19.
An anaerobic plume of process-affected groundwater was characterized in a shallow sand aquifer adjacent to an oil sands tailings impoundment. Based on biological oxygen demand measurements, the reductive capacity of the plume is considered minimal. Major dissolved components associated with the plume include HCO3, Na, Cl, SO4, and naphthenic acids (NAs). Quantitative and qualitative NA analyses were performed on groundwater samples to investigate NA fate and transport in the subsurface. Despite subsurface residence times exceeding 20 years, significant attenuation of NAs by biodegradation was not observed based on screening techniques developed at the time of the investigation. Relative to conservative tracers (i.e., Cl), overall NA attenuation in the subsurface is limited, which is consistent with batch sorption and microcosm studies performed by other authors. Insignificant biological oxygen demand and low concentrations of dissolved As (< 10 µg L− 1) in the plume suggest that the potential for secondary trace metal release, specifically As, via reductive dissolution reactions driven by ingress of process-affected water is minimal. It is also possible that readily leachable As is not present in significant quantities within the sediments of the study area. Thus, for similar plumes of process-affected groundwater in shallow sand aquifers which may occur as oil sands mining expands, a reasonable expectation is for NA persistence, but minimal trace metal mobilization.  相似文献   

20.
At the Centre for Environmental Research Leipzig-Halle (UFZ) research site in Zeitz, Germany, benzene contaminates the lower of two aquifers with concentrations of up to 20 mg/l. Since the benzene plume has a minimum length of approximately 1 km, enhanced natural attenuation measures are being considered as a remediation strategy. This study describes the performance and evaluation of a multi-species reactive tracer test using the tracers fluorescein and bromide as conservative tracers and toluene as reactive tracer. Sampling was performed over a period of six months using a detailed network of multilevel sampling wells. Toluene was only slightly retarded in comparison to bromide, whereas fluorescein was retarded considerably stronger. Therefore, it was not possible to use fluorescein as an in situ tracer for the determination of groundwater velocities. The ionic nature of fluorescein is assumed to be the major reason for its retardation. The results show that the infiltration conditions were suitable to produce a wide spreading of the tracer front along the full thickness of the aquifer. Thus, a large aquifer volume can be treated in future enhanced bioremediation measures. The total quantity of infiltrated toluene (24 l) was degraded under sulfate-reducing conditions over a flow path of 50 m. Benzylsuccinate was identified as a metabolite of toluene degradation under sulfate-reducing conditions at this site. The modelling results show that toluene degradation was described more accurately using Monod kinetics than first-order kinetics. Since toluene was only slightly retarded in comparison to bromide, sorption and desorption processes were considered to be negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号