首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The traditional factors used to determine safe yield of a groundwater basin (water supply, economics, water quality and water rights) do not include environmental effects. Because of the unique estuarine ecosystems associated with many coastal aquifers, environmental effects should be included in the determination of the safe yield of these aquifers. Controlled saline-water intrusion should be considered as a management tool in coastal aquifers. Artificial aquifer recharge using treated wastewater may be used to increase the safe yield of a coastal aquifer system while preserving the ecology of the coastal ecosystems.  相似文献   

2.
: In general, the choice among reservoirs for water supply or flow augmentation is a multiobjective problem. Choices are based in part on the yield available from water supply reservoirs or, in the case of flow augmentation reservoirs, on the increase in low flows at downstream locations. Detailed estimates of these effects may be too costly for basin planning purposes. Thus this paper presents methods for rapid estimation of those quantities for New Hampshire. For water supply reservoirs, a composite empirical relation between Y95 (the draft available 95 percent of the time) and storage ratio, S*, is developed from previous studies in the region. For flow augmentation reservoirs, empirical relations between S* and degree of regulation, R*, are applied to each upstream regulating reservoir. Values of regulation arc then summed and divided by the mean flow at the downstream reach of interest. This parameter, (ΓR)*, is then related to increase in flow available 95 percent of the time by an empirical relation.  相似文献   

3.
The impact of small farm reservoirs on urban water supplies in Botswana   总被引:1,自引:0,他引:1  
In eastern Botswana there are many small farm reservoirs within the catchments of the major water supply reservoirs, and there is increasing demand for more small reservoirs. The increasing development of farm reservoirs has an impact on the availability of water from the major reservoirs, which supply urban and industrial users, and this creates a conflict between the needs of the rural water users and the urban and industrial users. This paper describes a model which has been developed to allow the effects of the existing small reservoirs and the possible impacts of future proposed ones on the water resources of the major reservoirs to be quantified. The model provides a planning tool, enabling guidelines for future small reservoir development to be determined. The model is a general one which could also be calibrated and applied in other areas with a broadly similar climate. The results of a series of model runs indicate the rate of decline of runoff and yield from the major reservoirs as the total capacity of small reservoirs within the catchment increases. It also shows how this decline is affected by secondary factors such as the relative location of the small reservoirs within the catchment, the typical size of small reservoirs and the type of use to which they are put. The results clearly indicate the adverse effect which uncontrolled development of farm reservoirs would have on the water supplies from the major reservoirs. By quantifying these effects, planners have some of the necessary information to determine the optimum balance between development of small-scale rural water supplies and large-scale urban supplies .  相似文献   

4.
ABSTRACT: In this paper, a system approach to water resources development in Tehran Metropolitan Area, with its complex system of water supply and demands, is discussed. Water resources in this region include water storage in the Lar, Latyan, and Karaj reservoirs, the Tehran aquifer, as well as water discharge in local rivers and in drainage channels (mainly supplied by urban runoff and wastewater). This study consists of three phases of long‐term water resources planning and management in the Tehran metropolitan area. In each phase, a different level of details among different components of the system is considered. In the first phase, optimal operating policies for Tehran reservoirs and a decision support system are developed. In the second phase, interactions between surface and ground water resources as well as surface runoffs and wastewater disposal in different subareas are investigated. The water table fluctuations as a result of implementing sewerage collection project was also simulated. In the last phase, long‐term scenarios for water resources and agricultural development in the Southern part of Tehran are defined, and the effects of each scenario on the quality and quantity of surface and ground water resources are studied.  相似文献   

5.
ABSTRACT: This paper describes two methods that are introduced to improve the computational effort of stochastic dynamic programming (SDP) as applicable to the operation of multiple urban water supply reservoir systems. The stochastic nature of streamflow is incorporated explicitly by considering it in the form of a multivariate probability distribution. The computationally efficient Gaussian Legendre quadrature method is employed to compute the conditional probabilities of streamflow, which accounts for the serial correlation of streamflow into each storage and the cross correlation between the streamflow into various storages. A realistic assumption of cross correlation of streamflow is introduced to eliminate the need to consider the streamflow combinations which are unlikely to occur in the SDP formulation. A “corridor” approach is devised to eliminate the need to consider the infeasible and/or inferior storage volume combinations in the preceding stage in computing the objective function in the recursive relation. These methods are verified in terms of computational efficiency and accuracy by using a hypothetical example of three interconnected urban water supply reservoirs. Therefore, it can be concluded that these methods allow SDP to be more attractive for deriving optimal operating rules for multiple urban water supply reservoir systems.  相似文献   

6.
The cost of developing groundwater resources in northeastern Illinois from 198cL2020 is estimated for the purpose of providing a basis for comparing alternative sources. Demands for each township in the study area are estimated at 10-year increments and are satisfied, where the supply is sufficient, in such a way as to minimize the cost subject to constraints on supply. Sources of water are two shallow aquifers with known potential yields and a series of deep aquifers treated as a single unit and modeled on a digital computer. For each township the costs of wells, pumps, power and rehabilitation is estimated for each aquifer on a per million gallons of water per day basis. In addition the cost of groundwater treatment necessary to raise the quality to that of treated Lake Michigan water is considered. Raw water costs are found to vary from 2 to 14 cents per 1000 gallons depending upon the depth to the deep aquifer water. Treated water costs vary from 22 to 53 cents per 1000 gallons, the lower costs applying to the largest users because of the economy of scale. It is found that with proper distribution of pumpage there is sufficient water in storage in the deep aquifers to meet groundwater demands through 2020.  相似文献   

7.
ABSTRACT: A nonlinear multilevel transportation model is developed to study large-scale allocations in a water resources system. The model uses a modified transportation matrix formulated with nonlinear cost functions as the basic subregional model and the goal coordination method for multilevel decomposition and optimization of the overall regional system. The model is applied to projected water requirements for Salt Lake County in 1985. Sources of water supply - surface water, ground water, import water, and reuse of reclaimed wastewater on a restricted basis - are available to satisfy water requirements for municipal, industrial, and agricultural sectors in four subregions. The conjugate gradient projection method is used to optimize the first level subregional models having cost functions of the form of C = aXb, and the second level problem is solved using the conjugate gradient method.  相似文献   

8.
ABSTRACT. Owing to their enormous capacity, ground-water reservoirs are at least equal in importance to the ground water itself. As regulators of water movement in the hydrological cycle, these reservoirs surpass all lakes combined, natural and manmade. While many aquifers are not well understood, data on many others are adequate for long-range broad-scale planning. An example is the basalt aquifer of the Snake River Plain in Idaho. However, the area has managerial problems which concern the time, the place and the feasibility of manipulations of water. All continents of the world contain great aquifers. For every huge aquifer, however, hundreds of smaller ones occur, and even these contain astonishing amounts of water. Aquifers in the Ohio River Basin of the United States are good examples. Management of total water resources is a difficult problem at many places. But many problems could be met and many water shortages alleviated or eliminated by use of aquifers, not merely as sources of water, but as reservoirs for management of water.  相似文献   

9.
Water imported into Texas under the Texas Water Plan must be stored in surface or underground reservoirs. Ground-water levels are being drawn down heavily in many parts of Texas. This is causing a shift of much water from a surface- to a groundwater environment. The lowering water tables have resulted in a great reduction in wastage of water through evapotranspiration and spring and well flow. The methods used in estimating the quantities of underground storage capacity available in Texas are discussed. Some problems will be encountered in the use of dewatered underground storage capacity by artificial recharge. In spite of these problems, probably 60 to 70 percent of the dewatered storage capacity of Texas aquifers can be reused for groundwater storage. Most of this capacity is located where it can be used in conjunction with the Texas Water Plan.  相似文献   

10.
Droughts constitute one of the most important factors affecting the design and operation of water resources infrastructure. Hydrologists ascertain their duration, severity, and pattern of recurrence from instrumental records of precipitation or stream‐flow. Under suitable conditions, and with proper analysis, tree rings obtained from long living, climate sensitive species of trees can extend instrumental records of streamflow and precipitation over periods spanning several centuries. Those tree‐ring “reconstructions” provide a valuable insight about climate variability and drought occurrence in the Holocene, and yield long term hydrological data useful in the design of water infrastructure. This work presents a derivation of drought risk based on a renewal model of drought recurrence, a brief review of the basic theory of tree‐ring reconstructions, and a stochastic model for optimizing the design of water supply reservoirs. Examples illustrate the methodology developed in this work and the supporting role that tree‐ring reconstructed streamflow can play in characterizing hydrologic variability.  相似文献   

11.
ABSTRACT: A growing number of developing communities in New Jersey is planning for an ultimate population that would be supplied by endogenous sources of water. At the state and national level, however, reliance on exogenous sources appears to be in favor. Both viewpoints, of course, recognize that water supply is one of the major critical factors in determining the capacity of a land area to support population. Three planning issues that bear on this endogenous-exogenous source controversy are discussed: 1) deep aquifers which have recharge areas in other political jurisdictions and are therefore regulated by other bodies will not count as an endogenous source, reliance will be placed only on shallow water table aquifers which are recharged by local precipitation; 2) total development of the groundwater resources of a headwaters community could result in severe base flow diminishment, thereby supporting the notion that these communities have a regional responsibility to restrict their growth so as to preserve and protect the water supply for downstream users; and 3) yield decrementing estimates, i.e., how much recharge water is lost to runoff as a consequence of development, are needed in order to assess the magnitude of local water resources.  相似文献   

12.
ABSTRACT: Two dynamic programming models — one deterministic and one stochastic — that may be used to generate reservoir operating rules are compared. The deterministic model (DPR) consists of an algorithm that cycles through three components: a dynamic program, a regression analysis, and a simulation. In this model, the correlation between the general operating rules, defined by the regression analysis and evaluated in the simulation, and the optimal deterministic operation defined by the dynamic program is increased through an iterative process. The stochastic dynamic program (SDP) describes streamflows with a discrete lag-one Markov process. To test the usefulness of both models in generating reservoir operating rules, real-time reservoir operation simulation models are constructed for three hydrologically different sites. The rules generated by DPR and SDP are then applied in the operation simulation model and their performance is evaluated. For the test cases, the DPR generated rules are more effective in the operation of medium to very large reservoirs and the SDP generated rules are more effective for the operation of small reservoirs.  相似文献   

13.
ABSTRACT: Reservoir operation involves a complex set of human decisions depending upon hydrologic conditions in the supply network including watersheds, lakes, transfer tunnels, and rivers. Water releases from reservoirs are adjusted in an attempt to provide a balanced response to different demands. When a system involves more than one reservoir, computational burdens have been a major obstacle in incorporating uncertainties and variations in supply and demand. A new generation of stochastic dynamic programming was developed in the 1980s and 1990s to incorporate the forecast and demand uncertainties. The Bayesian Stochastic Dynamic Programming (BSDP) model and its extension, Demand Driven Stochastic Dynamic Programming (DDSP) model, are among those models. Recently, a Fuzzy Stochastic Dynamic Programming model (FSDP) also was developed for a single reservoir to model the errors associated with discretizing the variables using fuzzy set theory. In this study the DDSP and the FSDP models were extended and simplified for a complex system of Dez and Karoon reservoirs in the southwestern part of Iran. The simplified models are called Condensed Demand Driven Stochastic Programming (CDDSP) and Condensed Fuzzy Stochastic Dynamic Programming (CFSDP). The optimal operating policies developed by the CDDSP and the CFSDP models were simulated in a classical model and a fuzzy simulation model, respectively. The case study was used to demonstrate the advantages of implementing the proposed algorithm, and the results show the significant value of the proposed fuzzy based algorithm.  相似文献   

14.
ABSTRACT: Two major objectives in operating the multireservoir system of the Upper Colorado River basin are maximization of hydroelectric power production and maximization of the reliability of annual water supply. These two objectives conflict. Optimal operation of the reservoir system to achieve both is unattainable. This paper seeks the best compromise solution for an aggregated reservoir as a surrogate of the multireservoir system by using two methods: the constraint method and the method of combined stochastic and deterministic modeling. Both methods are used to derive the stationary optimal operating policy for the aggregated reservoir by using stochastic dynamic programming but with different objective functions and minimum monthly release constraints. The resulting operating policies are then used in simulated operation of the reservoir with historical inflow records to evaluate their relative effectiveness. The results show that the policy obtained from the combination method would yield more hydropower production and higher reliability of annual water supply than that from the constraint-method policy.  相似文献   

15.
Much of the world lacks sufficient rainfall to regularly replenish aquifers and surface storage or receives excessive rainfall resulting in serious erosion and health issues by way of water-borne diseases. Residents adjust to these climatic realities in different ways. Desert peoples have learned to conserve water in order to sustain the minimal potable water requirements and agricultural-animal husbandry development necessary for life. In one country, this finely tuned balance between supply and demand has been negatively impacted by political and economic decisions to encourage agricultural exports by mining subsurface fossil aquifers. Governments in tropical regions have been guilty of neglect or worse by failing to provide their peoples with the tools necessary for obtaining safe drinking water. In the former case, mining of subsurface water threatens the very future existence of society. In at least one tropical country, over dependence upon outside agencies to provide what government might best prioritize for its own funding has caused a disconnect between donor expectations and local realities thus delaying eradication of easily preventable diseases.  相似文献   

16.
ABSTRACT: The environmental setting of the Red River of the North basin within the United States is diverse in ways that could significantly control the areal distribution and flow of water and, therefore, the distribution and concentration of constituents that affect water quality. Continental glaciers shaped a landscape of very flat lake plains near the center of the basin, and gently rolling uplands, lakes, and wetlands along the basin margins. The fertile, black, fine-grained soils and landscape are conducive to agriculture. Productive cropland covers 66 percent of the land area. The principal crops are wheat, barley, soybeans, sunflowers, corn, and hay. Pasture, forests, open water, and wetlands comprise most of the remaining land area. About one-third of the 1990 population (511,000) lives in the cities of Fargo and Grand Forks, North Dakota and Moorhead, Minnesota. The climate of the Red River of the North basin is continental and ranges from dry subhumid in the western part of the basin to subhumid in the eastern part. From its origin, the Red River of the North meanders northward for 394 miles to the Canadian border, a path that is nearly double the straight-line distance. The Red River of the North normally receives over 75 percent of its annual flow from the eastern tributaries as a result of regional patterns of precipitation, evapotranspiration, soils, and topography. Most runoff occurs in spring and early summer as a result of rains falling on melting snow or heavy rains falling on saturated soils. Lakes, prairie potholes, and wetlands are abundant in most physiographic areas outside of the Red River Valley Lake Plain. Dams, drainage ditches, and wetlands alter the residence time of water, thereby affecting the amount of sediment, biota, and dissolved constituents carried by the water. Ground water available to wells, streams, and springs primarily comes from sand and gravel aquifers near land surface or buried within 100 to 300 feet of glacial drift that mantles the entire Red River of the North basin. Water moves through the system of bedrock and glacial-drift aquifers in a regional flow system generally toward the Red River of the North and in complex local flow systems controlled by local topography. Many of the bedrock and glacial-drift aquifers are hydraulically connected to streams in the region. The total water use in 1990, about 196 million gallons per day, was mostly for public supply and irrigation. Slightly more than one half of the water used comes from ground-water sources compared to surface-water sources. Most municipalities obtain their water from ground-water sources. However, the largest cities (Fargo, Grand Forks and Moorhead) obtain most of their water from the Red River of the North. The types and relative amounts of various habitats change among the five primary ecological regions within the Red River of the North basin. Headwater tributaries are more diverse and tend to be similar to middle-reach tributaries in character rather than the lower reaches of these tributaries for the Red River of the North. Concentrations of dissolved chemical constituents in surface waters are normally low during spring runoff and after thunderstorms. The Red River of the North generally has a dissolved-solids concentration less than 600 milligrams per liter with mean values ranging from 347 milligrams per liter near the headwaters to 406 milligrams per liter at the Canadian border near Emerson, Manitoba. Calcium and magnesium are the principal cations and bicarbonate is the principal anion along most of the reach of the Red River of the North. Dissolved-solids concentrations generally are lower in the eastern tributaries than in the tributaries draining the western part of the basin. At times of low flow, when water in streams is largely from ground-water seepage, the water quality more reflects the chemistry of the glacial-drift aquifer system. Ground water in the surficial aquifers commonly is a calcium bicarbonate type with dissolved-solids concentration generally between 300 and 700 milligrams per liter. As the ground water moves down gradient, dissolved-solids concentration increases, and magnesium and sulfate are predominant ions. Water in sedimentary bedrock aquifers is predominantly sodium and chloride and is characterized by dissolved-solids concentrations in excess of 1,000 milligrams per liter. Sediment erosion by wind and water can be increased by cultivation practices and by livestock that trample streambanks. Nitrate-nitrogen concentrations also can increase locally in surficial aquifers beneath cropland that is fertilized, particularly where irrigated. Nitrogen and phosphorous in surface runoff from cropland fertilizers and nitrogen from manure can contribute nutrients to lakes, reservoirs, and streams. Some of the more persistent pesticides, such as atrazine, have been detected in the Red River of the North. Few data are available to conclusively define the presence or absence of pesticides and their break-down products in Red River of the North basin aquifers or streams. Urban runoff and treated effluent from municipalities are discharged into streams. These point discharges contain some quantity of organic compounds from storm runoff, turf-applied pesticides, and trace metals. The largest releases of treated-municipal wastes are from the population centers along the Red River of the North and its larger tributaries. Sugar-beet refining, potato processing, poultry and meat packing, and milk, cheese, and cream processing are among the major food processes from which treated wastes are released to streams, mostly in or near the Red River of the North.  相似文献   

17.
ABSTRACT: Unsustainable withdrawals from regional aquifers have resulted in adverse impacts considerable distances from the point locations of supply wells. In one area of the southeastern (SE) Coastal Plain, conservative estimates for repair/replacement of some residential wells damaged or destroyed by unsustainable yield from the Floridan aquifer system exceeded $4 million. However, a comprehensive assessment of damage/economic loss to private property and public resources due to unsustainable yield from that regional karst aquifer has not been made. Uncalculated direct costs to home‐owners from damage attributed to those withdrawals are associated with destruction of homes from increased sinkhole formation, devalued waterfront property, and removal of diseased and dead trees. Examples of other uncalculated economic burdens resulting from unsustainable aquifer yield in the SE Coastal Plain include: (1) irreversible damage to the aquifer matrix and concomitant increased potential for groundwater contamination, (2) large‐scale wildfires with subsequent degradation of air quality, debilitation of transportation corridors, and destruction of timber, wildlife habitat and property, and (3) destruction of “protected” natural areas. This paper provides a general background of the regional Floridan aquifer system's karst characteristics, examples of known impacts resulting from ground water mining in the SE Coastal Plain, and examples of additional damage that may be related to unsustainable yield from the Upper Floridan aquifer. Costs of these impacts have not been calculated and are not reflected in the price users pay for ground water. Evidence suggests that the classic watershed management approach must be revised in areas with mined regional karst aquifers to include impacts of induced recharge from the surficial aquifer, and subsurface inter‐basin flow. Likewise, associated impacts to surface water and interrelated systems must be calculated. The true cost of groundwater mining to this and future generations should be determined using a multidisciplinary approach.  相似文献   

18.
ABSTRACT: California's courts have recently recognized the existence of underground aquifer storage rights that permit public agencies to (1) store imported waters in aquifers; (2) prevent others from expropriating that water; and (3) recapture the stored water when it is needed. The article describes the two appellate decisions that represent the common-law development of aquifer storage rights. Each decision related to separate aquifers that were subject to separate types of groundwater management programs. One decision involved an aquifer under the southeastern San Francisco Bay area that was managed under statutory authority and is entitled, Niles Sand and Gravel Co. v. Alameda County Water District 37 C.A.3d 924 (1974); cert. denied 419 US 869. The other decision involved an aquifer under Southern California's San Fernando Valley that was managed under judicial authority and is entitled, City of Los Angeles v. City of San Fernando 14 Cal.3d 199 (1975). The two decisions provide separate, but complimentary, public interest rationales for aquifer storage rights: (1) to protect water supplies necessary for the overlying community; and (2) to increase water supply efficiencies by using natural underground reservoirs wherever practicable. The Article reviews the relationship of aquifer storage rights to conventional groundwater rights and indicates aspects of the storage right that may need additional development.  相似文献   

19.
ABSTRACT: Operation of a storage‐based reservoir modifies the downstream flow usually to a value higher than that of natural flow in dry season. This could be important for irrigation, water supply, or power production as it is like an additional downstream benefit without any additional investment. This study addresses the operation of two proposed reservoirs and the downstream flow augmentation at an irrigation project located at the outlet of the Gandaki River basin in Nepal. The optimal operating policies of the reservoirs were determined using a Stochastic Dynamic Programming (SDP) model considering the maximization of power production. The modified flows downstream of the reservoirs were simulated by a simulation model using the optimal operating policy (for power maximization) and a synthetic long‐term inflow series. Comparing the existing flow (flow in river without reservoir operation) and the modified flow (flow after reservoir operation) at the irrigation project, the additional amount of flow was calculated. The reliability analysis indicated that the supply of irrigation could be increased by 25 to 100 percent of the existing supply over the dry season (January to April) with a reliability of more than 80 percent.  相似文献   

20.
ABSTRACT: The use of artificial recharge in Saskatchewan and the rest of Canada to improve rural community and farmstead domestic water supply has great potential. Approximately 75 percent of the people in rural Saskatchewan and 26 percent of all the people in Canada are dependent on ground water for their domestic water supply. Typically, this water is highly mineralized and is often unpalatable due to odor and taste. A source of readily available, high quality water to eliminate expensive chemical treatment of available water and long distance hauling would be of significant value to rural residents. Storage of high quality water in aquifers by injection through wells has been documented and has been shown to depend on the use of a surface water catchment system to provide the high quality water. Since air entrainment or formation clogging can occur in poorly operated recharge schemes, development of proper design and operation of recharging procedure is required. This can be accomplished by using an injection response computer model and a properly designed injection system. Small scale artificial recharge projects will provide a valuable commodity to rural water users and will promote sustainable and conjunctive use of surface and ground water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号