首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: The sensitivity of streamflow to climate change was investigated in the American, Carson, and Truckee River Basins, California and Nevada. Nine gaging stations were used to represent streamflow in the basins. Annual models were developed by regressing 1961–1991 streamflow data on temperature and precipitation. Climate-change scenarios were used as inputs to the models to determine streamflow sensitivities. Climate-change scenarios were generated from historical time series by modifying mean temperatures by a range of +4°C to—4°C and total precipitation by a range of +25 percent to -25 percent. Results show that streamflow on the warmer, lower west side of the Sierra Nevada generally is more sensitive to temperature and precipitation changes than is streamflow on the colder, higher east side. A 2°C rise in temperature and a 25-percent decrease in precipitation results in stream-flow decreases of 56 percent on the American River and 25 percent on the Carson River. A 2°C decline in temperature and a 25-percent increase in precipitation results in streamflow increases of 102 percent on the American River and 22 percent on the Carson River.  相似文献   

2.
ABSTRACT: This paper computes estimates of the demand for surface irrigation water directly from disaggregated profit functions for fields in the San Joaquin Valley of California. It finds that treating delivered surface water and pumped ground water as separate, imperfectly substitutable inputs to production matters a great deal. We find substantial ranges of inelastic demand for delivered water, and thresholds across which demand then becomes highly elastic. The results imply that moves toward freer water markets could lead to large quantities reallocated from agriculture to urban uses in the Western U.S., but would require large price increases and would induce extensive ground water mining and major changes in cropping patterns. While these results are dependent on our particular model and simplifying assumptions, evidence exists that they may be robust.  相似文献   

3.
ABSTRACT: Irrigation has expanded in parts of the eastern United States. In some areas, the adjoining surface (riparian) water is the most economical source of irrigation water. Expanded demand for riparian water may lead to conflict among irrigators and other streamflow users. Accurate information on the potential for and impacts of riparian irrigation expansion is needed to decide if control of such expansion is necessary. In this study, a stochastic economic model to evaluate the impacts of potential irrigation expansion is presented. The model considers the soil, location, and land use characteristics of individual sites, as well as weather and streamflow patterns. The application of the model to an eastern Virginia watershed indicates that, with maximum potential expansion, water availability becomes limited and yields will be reduced in some years. As a result, the expected net returns from irrigation and the probability of breaking even on the investment are reduced substantially. The results suggest the need to consider regulation of surface water allocation for irrigation development in riparian watersheds.  相似文献   

4.
ABSTRACT: Two scenarios of CO2-induced climatic change are used to estimate changes in water use for a number of municipalities in the Great Lakes region of Canada and the United States. Both scenarios, based on General Circulation Models produced by the Goddard Institute for Space Studies (GISS) and Geophysical Fluid Dynamics Lab (GFDL), project warmer temperatures for the region. Using regression models based on monthly potential evapotranspiration for individual cities, it is projected that annual per capita water use will increase by a small amount, which will probably have only a marginal effect on water supplies in the Great Lakes basin. This method could also be used to assess the potential impacts of CO2-induced climatic change on water use by the agriculture and power sectors, as well as the effectiveness of water policy initiatives, such as price changes. More work is needed to project water use during peak periods (warm dry spells), which may occur more frequently in a 2 × CO2 climate in this region.  相似文献   

5.
ABSTRACT: The Thornthwaite moisture index is a useful indicator of the supply of water (precipitation) in an area relative to the demand for water under prevailing climatic conditions (potential evapotranspiration). This study examines the effects of changes in climate (temperature and precipitation) on the Thornthwaite moisture index in the conterminous United States. Estimates of changes in mean annual temperature and precipitation for doubled-atmospheric CO2 conditions derived from three general circulation models (GCMs) are used to study the response of the moisture index under steady-state doubled-CO2 conditions. Results indicate that temperature and precipitation changes under doubled-CO2 conditions generally will cause the Thornthwaite moisture index to decrease, implying a drier climate for most of the United States. The pattern of expected decrease is consistent among the three GCMs, although the amount of decrease depends on which GCM climatic-change scenario is used. Results also suggest that changes in the moisture index are related mainly to changes in the mean annual potential evapotranspiration as a result of changes in the mean annual temperature, rather than to changes in the mean annual precipitation.  相似文献   

6.
ABSTRACT: A computer model was developed in order to establish a yield predictive relationship and to estimate the water requirements for supplemental irrigation of horticultural crops in the humid region. Alternative distribution systems were developed and designed using the results from the computer model and Wood's (1980) pipe network algorithm. The capital, operational, and maintenance costs of the distribution and recommended on-farm irrigation systems were determined and used to evaluate the economic feasibility of the alternative designs. Results show that the concentration of irrigated area along the distribution system, the length of the distribution system, and cropping system all have an important effect on the economic feasibility of supplemental irrigation in Wayne County, Kentucky.  相似文献   

7.
ABSTRACT: There is mounting evidence that increasing amounts of atmospheric carbon dioxide may lead to significant changes in global climate during the next century. The possible effects of such climatic changes on surface runoff in the Great Basin Region of the western United States has been investigated by applying water balance models to four watersheds in Nevada and Utah. The most probable change, a 2°C increase in average annual temperature coupled with a 10 percent decrease in precipitation, would reduce runoff from 17 to 28 percent of the present mean, with drier basins showing the greatest change. Decreasing precipitation by 25 percent causes runoff reductions of 33 to 51 percent. Equivalent changes to a cooler and wetter climate show corresponding increases in runoff of approximately the same magnitude, but such a shift is not considered likely. Based on projected water requirements for the year 2000, a change to a warmer and drier climate would cause severe water shortages in many parts of the Great Basin.  相似文献   

8.
ABSTRACT: A set of simulation models consisting of a weather generator, and irrigation supply, soil moisture and crop growth components was used to evaluate the impacts of climate change on irrigated corn in locations near Albany, New York, Indianapolis, Indiana, and Oklahoma City, Oklahoma. The models evaluated the combined effects of modified water demand, supply and crop management (planting date, cultivar selection, irrigation). Simulations were duplicated for 100-year weather sequences based on current (1961–1988) weather statistics, and statistics modified by outputs from the GFDL GCM runs showing the effects from doubling of atmospheric CO2. Climate impacts differed greatly with location and management. Effects were most adverse in New York and least damaging in Indiana. At all sites, the beneficial effects of longer growing season and increased water supply were generally overcome by the detrimental impacts of increased evapotranspiration and reduced solar radiation during plant maturing stages. Adverse impacts of climate change can be substantially reduced by irrigation and appropriate selection of planting dates and cultivars.  相似文献   

9.
ABSTRACT: Water abundance has led most North American societies to use water freely without priorizing its use. As water scarcity becomes reality in the southern part of Saskatchewan, planners and managers of water require information about the value of water in irrigation, as well as in alternative uses. In this study, the value of water to the producer in irrigation is developed both for the short and long run. The basis of this imputation is a derived demand function for water using linear programming. Water demand was bound to be inelastic at lower prices, and highly elastic at higher prices. The short-run value of water varied between $0.44 and $127.82 (1986 dollars) per acre-foot for different levels of product prices. However, the long-run value was estimated between zero and $1.59 per acre-foot of water.  相似文献   

10.
An examination of 100 years of flood record at Windsor on the Hawkesbury River in Eastern Australia suggests that Warragamba Dam, which encloses 62 percent of the catchment area, has negligible effect upon flooding. Secular climate change is the important variable in determining changes in flood regime.  相似文献   

11.
ABSTRACT: Estimates of mean annual precipitation (MAP) over areas are the starting point for all computations of water and chemical balances for drainage basins and surface water bodies. Any errors in the estimates of MAP are propagated through the balance computations. These errors can be due to: (1) failures of individual gages to collect the amount of precpitation that actually falls; (2) operator errors; and (3) failure of the raingage network to adequately sample the region of interest. This paper attempts to evaluate the last of these types of error by applying kriging in two different approaches to estimating MAP in New Hampshire and Vermont, USA. The data base is the 1951–1980 normal precipitation at 120 raingages in the two states and in adjacent portions of bordering states and provinces. In the first approach, kriging is applied directly to the MAP values, while in the second, kriging is applied to a “precipitation delivery factor” that represents the MAP with the orographic effect removed. The first approach gives slightly better kriged estimates of MAP at seven validation stations that were not included in the original analysis, but results in an error surface that is highly contorted and in larger maximum errors over most of the region. The second approach had a considerably smoother error surface and, thus, is generally preferable as a basis for point and areal estimates of MAP. MAP estimates in the region have 95 percent confidence intervals of about 20 cm/yr at low and moderate elevations, and up to 35 cm/yr at high elevations. These uncertainties amount to about 20 percent of estimated MAP values.  相似文献   

12.
ABSTRACT: The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2°C; a 15 percent increase for a warming of 4°C. A warming of 2° to 4°C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from ?39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently.  相似文献   

13.
The paper describes an approach towards optimal allocation of surface and ground water resources to three agricultural areas in the Jordan Valley under conditions of scarce water supply. The optimizing model allocates water from three main rivers, each with reservoir storage, and from two ground water sources to three irrigation regions. Productivity of irrigation water, expressed as the net present value of the regional agricultural output, but allowing for crop water deficits, is first maximized using nonlinear programming. The allocation process then adopts techniques of linear programming to determine the least cost alternative based on the unit cost of water from each resource at each destination, as it varies with time.  相似文献   

14.
ABSTRACT: Conflicts caused through development of urban areas in proximity to irrigated agriculture in water-scarce regions can be minimized through the direct urbanization of irrigated lands. This shifts the water supply from one use to another on the same site rather than creating an additional use in an adjoining area. This condition has prevailed in the Phoenix region. In the Tucson region, the municipality is buying and retiring farmland in an adjacent agricultural area, for the purpose of acquiring the water right in order to transfer water to municipal use. This land purchase is necessitated by existing Arizona water law, which ties the water to the land. This method of transfer creates problems concerning how much water can be transferred per acre retired; what to do with the abandoned farmland; inequities to agribusiness and taxing entities; and loss of food crop production which have not been resolved. An alternative to the retirement of farms, applicable in the Tucson region, is to exchange treated municipal wastewater for irrigation water. While this method appears to be the least disruptive, it requires the resolution of certain institutional problems concerned with land and water management method.  相似文献   

15.
ABSTRACT: Accurately estimating the price elasticity of demand for irrigation electricity is important to major electricity suppliers such as the Bonneville Power Administration (BPA) of the Pacific Northwest. The BPA has a revenue maximization objective, and the elasticity of demand is central to its rate setting process. Several studies have attempted to estimate demand for irrigation electricity, but none has explicitly included federal agricultural policy and program variables. Tins paper discusses how agricultural programs may influence farmers irrigation decisions and thus their demand for irrigation electricity. It suggests that existing programs serve to make farmers more responsive to electricity rate increases than would otherwise be the case. Thus, studies that fail to include them may underestimate the responsiveness of farmers to electricity rate increases.  相似文献   

16.
ABSTRACT: Irrigated agriculture is one of the most important water-use sectors in terms of total water diversion and consumptive use. For at least the last 25 years, improving irrigation efficiency has been a widely advocated and accepted goal. This paper uses a sample of 16 Bureau of Reclamation irrigation projects to examine the pattern of average irrigation efficiency and change in efficiency over time. In general, the highest average efficiencies are found in the arid Southwest while the lowest are found in the semi-arid to sub-humid Great Plains region. Over the 22-year period of analysis, there has been no observable trend toward improvement in efficiency at any of the projects.  相似文献   

17.
ABSTRACT: This paper critically evaluates the nature of irrigation distribution in India using the Rawlsian criterion of equity in dis. tribution and estimates the performance of different states in India according to the Rawlsian notion of fairness in distribution. It is found that there is considerable inequality across farm-size groups in the distribution of irrigated areas in general and canal irrigated areas in particular, and that there are wide interstate differences in the levels of this inequality. Further, it is found that switching over to a Rawlsian based distribution of canal irrigation will help in reducing the levels of inequality in overall irrigation distribution in all states.  相似文献   

18.
Recent progress in operations research has refined stochastic programming with recourse sufficiently to significantly increase its potential for use in water resource planning. To demonstrate its strengths and weaknesses this paper considers an irrigation planning problem and illustrates how more and more refined variants of this problem are successively cast into stochastic programming with recourse forms. The result is an outline of the state of the art with method limitations and demands on model formulation clearly indicated.  相似文献   

19.
ABSTRACT: Ground water irrigation pumpage of the High Plains Aquifer is controlled at the state level in Texas and Oklahoma but at the regional level in Kansas and Nebraska. Critical declines in the aquifer that threatened the reliability of local public water supply wells prompted Nebraska's Upper Republican Natural Resources District (URNRD) to mandate water restrictions in 1978. Under current regulations, irrigators may not extract more than 1,842 millimeters of water per certified hectare (ha) in any five‐year period. Meter monitoring ensures that irrigators comply with restrictions. Farmers now incorporate irrigation scheduling into their cropping practices in order to meet URNRD controls. This study examines whether irrigators are using ground water efficiently while complying with pumpage limits. Crop irrigation requirements (CIR) from 1986 to 1999 were derived from a water balance approach incorporating Penman‐Monteith evapotranspira‐tion (ET) calculations from weather data supplied by the High Plains Climate Center automated weather station network. A ratio of average water pumped per well to the CIR was developed to verify irrigation efficiency. Results indicate that irrigation applications were less than CIR during most irrigation seasons. Irrigation efficiency increases can be attributed to crop rotations, favorable growing season precipitation, use of ET estimates to schedule irrigation, and water allocations limited to less than all certified hectares.  相似文献   

20.
ABSTRACT: In areas where water is scarce, drip irrigation provides the most efficient way to conserve irrigation water, but its cost of £1000 an acre is prohibitive for most small farmers in developing countries. The cost was reduced by 90 percent by (1) making dripper lines moveable, so that each line reaches ten rows instead of one; (2) replacing 25-cent emitters with simple 0.70 mm holes punched by a heated needle; and (3) using £3.00 off-the-shelf 20 liter containers with cloth filters in place of expensive filter systems. This reduced the cost of a half-acre system to £50. The low cost system was field tested in the hill areas of Nepal, and in mulberry cultivation in Andhra Pradesh, India. Uniformity of flow from emitters was 73–84 percent. Small farmers reported that the low cost trickle irrigation system cut labor requirements in half, and doubled the area irrigated by the same amount of water. The low cost drip system is likely to be widely adopted by small farmers in semi-arid and hilly regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号