首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
ABSTRACT: A study was conducted over a six-year period in East-Central Ohio to determine the effects of surface mining and reclamation on physical watershed conditions and on ground-water hydrology in three ground-water zones in three small experimental watersheds. Mining disturbances in watersheds adjacent to the experimental sites affected ground-water levels in the undisturbed experimental watersheds prior to actual mining in the experimental sites. New subsurface flow paths, with different characteristics, formed during mining and reclamation. At all three sites mining dewatered the saturated zone above the underclay of the mined coal seam. Mining and reclamation affected ground-water levels below the mined coal seam in the middle and lower zones within at least two sites. Ground-water level recovery in the mined upper saturated zone was slow and irregular both temporally and spatially after reclamation. Hydraulic conductivities of postmining (Phase 3) spoil were generally greater than those of Phase 1 bedrock, but wide spatial variability was observed. Modelers need to be aware of the complexities of new flow paths and physical characteristics of subsurface flow media that are introduced by mining and reclamation, including destruction of the upper-zone clay.  相似文献   

2.
ABSTRACT: Information is lacking on the watershed scale effects of mining and reclaiming originally undisturbed watersheds for coal on surface water chemical concentrations and load rates for a variety of constituents. These effects were evaluated on three small, geologically dissimilar watersheds subjected to surface mining in Ohio. Comparisons were made between phases of land disturbances using ratios of average concentrations and load rates: Phase 1 (natural), subphases of Phase 2 (mining and reclamation), and subphases of Phase 3 (partial reclamation and final condition) using 4,485 laboratory analyses of 34 constituents. Average concentration and load rate ratios were categorized into three classes—minor, moderate, and substantial. Mining and reclamation (M/R) affected flow duration curves in different ways‐baseflow changes were variable, but high flows generally increased. The average concentration ratios for all sites were classified as 15 percent “minor,” 36 percent “moderate,” and 49 percent “substantial” (average ratio of 2.4.) Generally load rate ratios increased due to mining and reclamation activities (average ratio of 3.3). Minor, moderate, and substantial impacts were found on average for 7 percent, 23 percent, and 70 percent, respectively, of load rate ratios. The impact of M/R on average load rates was not necessarily the same as on average concentrations due to changed hydrology and can be opposite in effect. The evaluation of the impacts of M/R requires knowledge of changing hydrologic conditions and changing supplies and rates of release of chemicals into streams. Median sediment concentration ratio is an indicator of average constituent load rate ratio of a wide variety of chemical constituents and is useful for development of best management practices to reduce chemical loads. The site at which diversion ditches were not removed during final reclamation sustained large chemical load rates, and removal of diversions at the other mined site reduced load rates. Revegetation of poorly reclaimed areas decreased chemical load rates. Chemical load rates were sensitive to geology, mining, and reclamation methods, diversions, and changing hydrology, concentration flow rate regressions, and watershed areas.  相似文献   

3.
The Deckers Creek watershed in northern West Virginia (USA), containing a land area of 166 km2 (63 mi2), has a long history of industrial development and attendant environmental abuses from both land and water pollution practices. The water in Deckers Creek was sampled in 1974 at 29 locations along the main stem and resampled in 1999-2000 to determine water quality changes over this 25-year period. Water samples were analyzed for pH, acidity, alkalinity, iron, and calcium at both times, while aluminum, manganese, zinc, and fecal coliform (FC) bacteria densities were added in 1999-2000. Water at almost all sampling points showed lower acidity and metal contents in 1999-2000 compared with 1974. Water pH increased at the mouth from 5.4 in 1974 to 6.0 in 1999-2000. Acidity and iron concentrations were decreased an average of 70% in the upper stretches of the creek. However, one major untreated point source of water from an abandoned underground mining complex continues to degrade the quality of the creek in its lower stretches. In the upper section, the water quality in Deckers Creek has improved due to decreased surface and underground coal mining activities, reclamation of abandoned and recently permitted surface mined lands, and natural healing of past land use scars from timbering and mining over time. The decrease in mineral extraction activities and the reclamation of disturbed lands has occurred due to the passage and enforcement of water quality and land reclamation laws and regulations. More time and additional reclamation projects will continue to enhance the water quality in the creek. Improved water chemistry in the majority of the creek, however, shows the previously unnoticeable biological contamination from sewage inputs.  相似文献   

4.
Surface mining followed by reclamation to pasture is a major driver of land use and cover change in Appalachia. Prior research suggests that many aspects of ecosystem recovery are either slow or incomplete. We examined ecosystem structure—including soil physical and chemical properties, arbuscular mycorrhizal fungal (AMF) infectivity and community composition, and plant diversity and community composition—on a chronosequence of pasture-reclaimed surface mines and a non-mined pasture in northern West Virginia. Surface mining and reclamation dramatically altered ecosystem structure. Some aspects of ecosystem structure, including many measures of soil chemistry and infectivity of AMF, returned rapidly to levels found on the non-mined reference site. Other aspects of ecosystem structure, notably soil physical properties and AMF and plant communities, showed incomplete or no recovery over the short-to-medium term. In addition, invasive plants were prevalent on reclaimed mine sites. The results point to the need for investigation on how reclamation practices could minimize establishment of exotic invasive plant species and reduce the long-term impacts of mining on ecosystem structure and function.  相似文献   

5.
ABSTRACT: A study was conducted to determine the effects of mining and reclaiming originally undisturbed watersheds on surface-water hydrology in three small experimental watersheds in Ohio. Approximately six years of data were collected at each site, with differing lengths of premining (Phase 1), mining and reclamation (Phase 2), and post-reclamation (Phase 3) periods. Mining and reclamation activities showed no consistent pattern iii base-flow, and caused slightly more frequent higher daily flow volumes. Phase 2 activities can cause reductions in seasonal variation in double mass curves compared with Phase 1. Restoration of seasonal variations was noticeably apparent at one site during Phase 3. The responses of the watersheds to rainfall intensities causing larger peak flow rates generally decreased due to mining and reclamation, but tended to exceed responses observed in Phase 1 during Phase 3. Natural Resources Conservation Service (NRCS) curve numbers increased due to mining and reclamation (Phase 2), ranging from 83 to 91. During Phase 3, curve numbers remained approximately constant from Phase 2, ranging from 87 to 91.  相似文献   

6.
Mine reclamation with biosolids increases revegetation success but nutrient addition well in excess of vegetation requirements has the potential to increase leaching of NO3 and other biosolids constituents. A 3-yr water quality monitoring study was conducted on a Pennsylvania mine site reclaimed with biosolids applied at the maximum permitted and standard loading rate of 134 Mg ha(-1). Zero-tension lysimeters were installed at 1-m depth 1 yr before reclamation: three in the biosolids application area, one in a control area (no biosolids). Before reclamation, all water samples had pH in the range 4.7 to 6.2, acidity < 20 mg L(-1), and very low levels of all other measured parameters. Following reclamation, percolate water in the biosolids-treated area had lower pH and greater acidity than the control area. Acidity was greatest during the first winter following biosolids application, decreased during the spring, and showed a similar pattern but with much smaller concentrations the second year. Maximum first- year leachate NO3 concentrations were approximately 300 mg L(-1) and half as large the second year. Estimated inorganic N leaching loss during the first 2 yr after biosolids application was 2327 kg N ha(-1). Aluminum, Mn, Cu, Ni, Pb, and Zn followed similar leaching patterns as did acidity, and their mobilization appeared to be the result of the increased acidity. These results indicate that large applications of low-C/N-ratio biosolids could negatively impact area water quality and that biosolids reclamation practices should be modified to reduce this possibility.  相似文献   

7.
ABSTRACT: Ground-water level decline patterns in parts of Nebraska conform to the circular island concept of Bredehoeft et al. (1982), which indicates how water is derived by wells developed in a circular island. If elongated, the center of the island corresponds to a regional ground-water divide while the shoreline corresponds to a regional river. In both versions, ground-water table elevation is a function of recharge and transmissivity. A dynamic equilibrium exists such that the gradient of the water table will convey all recharge to discharge areas. Withdrawals of ground water result initially in mining, with a new equilibrium attained when pumping equals capture. During early development, capture is an important source of water in discharge areas, while mining is more significant in recharge areas. The pattern observed in many areas shows the greatest ground-water level decline in the vicinity of ground-water divides and the steepest gradient near regional rivers. A similar pattern has been observed adjacent to the Arkansas River in south-central Kansas. Similar decline patterns can be modeled for a hypothetical ground-water basin. This is of major importance to water-resource managers because it dictates that management programs be applied to the entire hydrologic system.  相似文献   

8.
ABSTRACT: H2SO4 (sulfuric acid) is formed by a chemical process that occurs in unreclaimed coal mines. The highly toxic acid then flows into the lower swamp areas where it causes considerable damage to the ecosystem. The major effect of the acid is the mass destruction of thousands of trees and various other phreatophytic plants. The contamination is so serious that most of the wildlife has migrated out of the affected area of the swamp in order to survive. Certain geological features such as coal bearing monadanocks make the area somewhat sensitive to mining activities and related geologic hazards. New methods of mine acid abatement make the concept of mass reclamation more realistic than at any time in the past. The constant annihilation of swamp life and processes emphasizes the urgent need for reclamation of the swamp.  相似文献   

9.
Governments differ significantly in their attempts to mitigate the effects of mining disturbance. The approaches of Australia, Canada and the United States are reviewed here, relative to coal-mining reclamation. State and provincial examples (Queensland, Alberta and Montana) are used to illustrate legislation and planning below the national level. This paper explores three main issues that contribute to coal-mining reclamation: governmental level of legislation and planning; legislative scope; and inter-governmental co-ordination. The legislative histories vary, but are young and evolving. All require the submission of a reclamation plan before granting mining permits, enforce reclamation standards by security deposits and contain provisions for non-compliance. Australia and Canada are only beginning to address reclamation planning at the national level, whereas the United States has done so since 1977. The relationship to the environmental impact assessment process is uneven across the three nations. The United States and Canada have a larger percentage of their mined landscapes in a reclamation process, due partly to more stringent regulation. Reclamation effectiveness seems to centre less on centralization versus decentralization, and more on comprehensive scope, preventive approaches and multi-level governmental co-ordination.  相似文献   

10.
ABSTRACT: The Palmer Drought Severity Index (PDSI) is perhaps the most widely used regional drought index. However, there is considerable ambiguity about its value as a measure of hydrologic drought. In this paper the PDSI for climatic divisions in New Jersey is compared to the occurrence within each climatic division of streamflows in their lower quartile for the month (streamflow index), and ground-water levels in their lower quartile for the month (ground-water index). These indices are found to have distinct properties. It is not uncommon for PDSI values to indicate “severe” or “extreme” drought at times when the streamflow or groundwater index is above its lower quartile at many stations within the climatic division. The PDSI values and groundwater index indicate more persistent subnormal conditions than the streamflow index for truncation levels yielding the same total duration of drought over a period. The ground-water index tends to indicate a later beginning to droughts and of the three indices is the most conservative indicator of a drought's end. Drought timing and duration properties for the ground-water index are found to be highly influenced by the average depth to water in the well. Overall, the three indices of drought can provide three very different characterizations of drought. In particular, the results indicate that considerable caution should be exercised in drawing conclusions about hydrologic drought from the PDSI.  相似文献   

11.
ABSTRACT: Prior to PL95–87 little research had been conducted to determine the impacts of mining and reclamation practices on sediment concentrations and yields on a watershed scale. Furthermore, it was unknown whether sediment yield and other variables would return to undisturbed levels after reclamation. Therefore, three small watersheds, with differing lithologies and soils, were monitored for runoff and suspended sediment concentrations during three phases of watershed disturbances: undisturbed watershed condition, mining and reclamation disturbances, and post‐reclaimed condition. Profound increases in suspended‐sediment concentrations, load rates, and yields due to mining and reclamation activities, and subsequent drastic decreases after reclamation were documented. Even with increases in runoff potential, reductions in suspended‐sediment concentrations and load rates to below or near undisturbed‐watershed levels is possible by using the mulch‐crimping technique and by removing diversions. Maximum concentrations and load rates occurred during times of active disturbances that exposed loose soil and spoil to high‐intensity rains. Sediment concentrations remained elevated compared with the undisturbed watershed when diversions were not well maintained and overtopped, and when they were not removed for final reclamation. Diversions are useful for vegetation establishment, but should be maintained until they are removed for final reclamation after good vegetative cover is established.  相似文献   

12.
Sources of salinity near a coal mine spoil pile, north-central Colorado   总被引:2,自引:0,他引:2  
A small (1 km2) salt-affected stream drainage on the High Plains north of Denver, Colorado was sampled to determine the near-surface dispersion of soluble salts and metals from low-sulfur coal mining waste (spoil). Surface waters collected along the 0.8-km stream reach, and aqueous leachates of spoil and naturally saline local soil, were analyzed for chemical constituents and sulfur isotopes. In this semiarid setting with abundant carbonate-bearing surficial sediments, the limited, mildly acidic drainage from the spoil pile is quickly neutralized, restricting the mobility of many elements. However, some spoil-derived constituents were clearly traceable within the upper 0.4 km of the stream reach. Spoil leachates and surface water near the spoil pile have distinctive compositions of major anions and cations, and elevated levels of dissolved nitrate compared with downstream waters. Spoil-derived sulfate was traceable because it has generally positive values of delta34S that contrasted with generally negative values of delta34S in soil leachates and evaporite salts from the surrounding area. Spatial-chemical sampling of surface water showed an abrupt increase in dissolved U, Se, B, Li, and Mn in the lower 0.4 km of the stream reach where shallow ground water from surrounding irrigated fields contributed to surface flow. The downstream evolution of surface water chemistry and sulfur isotopic composition is consistent with mixing between spoil-affected upstream water and irrigation-return water. The methods described should be applicable at other sites in similar settings where the environmental effect of low-sulfur coal mining waste must be assessed and where access to samples of shallow ground water is limited.  相似文献   

13.
Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed.  相似文献   

14.
ABSTRACT: The U.S. Geological Survey (USGS) is assessing the ground-water resources of the carbonate bedrock aquifers in Indiana and Ohio as part of their Regional Aquifer Systems Analysis program. Part of this assessment includes the determination of unknown aspects of the hydraulic characteristics, boundaries, and flow paths of the carbonate aquifer. To accomplish this, the USGS drilled three wells through the carbonate aquifer near the Kankakee River in northwestern Indiana. Geophysical logs were used to help determine depths and thicknesses for testing and to help describe geology at the three wells. Packer tests were used to determine direction of ground-water flow and to provide data for an analysis of the distribution of transmissivity in the carbonate aquifer. Transmissivity of the carbonates is associated with two physical characteristics of the rocks: fractures and interconnected porosity. Almost all of the transmissivity is derived from horizontal fracturing; however, only a few of the fractures present in the carbonate are transmissive. Some transmissivity is associated with a zone of fossiliferous, vuggy dolomite, which yields water from the rock matrix. Most of the transmissivity is associated with large fractures and solution crevices in the upper 30 feet of the bedrock; less transmissivity is associated with the deeper vuggy reef material, even where extensively fractured. Transmissivity of individual fractures and fossiliferous zones ranges from 300 to 27,000 feet squared per day. The aquifer bottom is defined by a lack of transmissive fractures and an increased shale content near the contact of the Silurian and Ordovician sections. Water-level data from the three wells indicate that flow is horizontal at well site 1 north of the Kankakee River, upward at well site 2 near the river, and downward at well site 3 south of the river. Most of the flow occurs in the upper part of the carbonate bedrock where fracturing and solution-enlarged crevices are most developed. Water levels indicate the the Kankakee River is a hydrologic boundary for the regional carbonate bedrock aquifer.  相似文献   

15.
The application of composite or consolidated tailings (CT) technology provides Alberta's oil sands industry with a means of reducing the volume of the fines fraction in extraction tailings and allows for faster reclamation and revegetation of mining sites. This study examined the effects of coagulant aids (gypsum and alum), used in the production of CT, on the ion content, growth, and survival of greenhouse-grown red-osier dogwood (Cornus sericea L. subsp. sericea). Seedlings were planted in gypsum-CT and alum-CT substrates, and compared with those planted in reclamation material (salvaged peat and till). The seedlings were bottom-watered with one of the following: (i) Hoagland mineral solution prepared in deionized water (Epstein, 1972); (ii) Hoagland solution in gypsum-based CT release water; or (iii) Hoagland solution in alum-based CT release water. Pore water of CT substrates and CT release waters had similar chemical characteristics, including salinity levels. However, plants in CT substrates had higher concentrations of ions (particularly Na and B), reduced growth, and higher mortality than plants in reclamation material and treated with CT waters. The presence of H2S indicated low-oxygen conditions in the CT substrates, while in the reclamation materials with CT release water treatments, no evidence of sulfides was observed. Low-oxygen conditions in the CT substrate treatments may have interfered with plant exclusion mechanisms for Na and B. Therefore, substrate properties may modify responses of reclamation plants to pore water chemistry due to the effects on oxygen availability to roots.  相似文献   

16.
The Las Vegas, Nevada area like most semi-arid basins, was developed through exploitation of available ground-water resources. Area growth in this large valley has occurred in a scattered and sporadic manner with development both in incorporated areas and within the County. As a result, today there exist five major water suppliers which are: a water district, three municipalities, and a large corporation, in addition to numerous small water companies and thousands of domestic wells. In the past 20 years the area has grown from a population of less than 50,000 to over 300,000 today. The bulk of the water demand for this growth has been met from the ground-water resource and as a result the basin is being severely mined. Current extractions are over three times the estimated annual replenishment. Rapidly declining water levels are increasing the costs of water and are creating water shortages during periods of peak demand. To meet both the current and anticipated water demands, the Southern Nevada Water Supply Project is being constructed to import additional water from nearby Lake Mead. Agriculture in the area is very limited, and primarily uses reclaimed waste water for irrigation. The chief water demands in the area are thus municipal and industrial, with the former predominating. This study was designed to determine how best the Las Vegas Valley Water District, supplier of 80 percent of the domestic water, might integrate the use of the existing ground water and anticipated imported surface water. Additionally the consequences of application of certain provisions in the Nevada Water Law were examined to determine their effects on the ground-water system and costs of water. To achieve these objectives, a dynamic programming technique was utilized. The problem as formulated consists of a single decision variable, single state variable dynamic programming algorithm evaluated over a fifty-year planning horizon at monthly intervals. Three alternative solutions, with different ground-water law constraints are evaluated. In all solutions certain basic operating rules regarding ground-water pumping distribution and use of surface-water systems are kept constant. The problem is considered as deterministic in all respects. Recharge to ground water is assumed to equal the estimated average annual replenishment evenly distributed over the year and additionally is not considered to be a function of average basin ground water potential. The only surface supply, Lake Mead, is considered to operate at near constant elevation and not be subject to shortage conditions. In light of the size of Lake Mead, the Colorado River flow and the size of Nevada's allotment, 300,000 ac ft, the latter assumption is reasonable. Demand for water is considered as a known function of time. Optimization of conjunctive use for the Water District is based on the objective function of minimizing water production costs. Costs of distributing water are considered to be constant regardless of source, and so are not included. Also, fixed costs of amortizing the pipeline project and well fields are not considered. Results of the study are presented as a series of policy traces under each of the three alternatives considered. These traces describe the ground-water basin response under optimal operating conditions, given an estimate as to the present worth of ground-water pumping rights, and prescribe monthly water-procurement schedules for the operation of the Water District.  相似文献   

17.
Surface coal mining operations alter landscapes of the Appalachian Mountains, United States, by replacing bedrock with mine spoil, altering topography, removing native vegetation, and constructing mine soils with hydrologic properties that differ from those of native soils. Research has demonstrated hydrologic effects of mining and reclamation on Appalachian landscapes include increased peakflows at newly mined and reclaimed watersheds in response to strong storm events, increased subsurface void space, and increased base flows. We review these investigations with a focus on identifying changes to hydrologic flow paths caused by surface mining for coal in the Appalachian Mountains. We introduce two conceptual control points that govern hydrologic flow paths on mined lands, including the soil surface that partitions infiltration vs. surface runoff and a potential subsurface zone that partitions subsurface storm flow vs. deeper percolation. Investigations to improve knowledge of hydrologic pathways on reclaimed Appalachian mine sites are needed to identify effects of mining on hydrologic processes, aid development of reclamation methods to reduce hydrologic impacts, and direct environmental mitigation and public policy.  相似文献   

18.
ABSTRACT: The method of identifying dry stream reaches in carbonate terrane as surface indicators of potential ground-water reservoirs offers a valuable exploration technique that is more rapid and less expensive than traditional exploration methods involving random test drilling. In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. The occurrence and hydraulic characteristics of such reservoirs are highly variable, as attested to by the wide range of well yields. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: (1) remotely sensed black and white infrared aerial photography; and (2) surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.  相似文献   

19.
Eli Sani 《Resources Policy》1980,6(4):303-319
The US Congress is currently studying various ways through which legislation similar to that of the Surface Mining Control and Reclamation Act of 1977— which is concerned mainly with coal, can be applied to all minerals other than coal. This study analyses three US mineral industries—copper, iron ore, and phosphate rock - and identifies a number of areas which Congress and other decision makers ought to consider in arriving at such legislation. The author concludes that reclamation costs may affect the economic and financial performance of each of these industries in a different manner; furthermore, their economic behaviour is significantly different from that of coal. The author's main recommendation is that if surface mining regulations are to be legislated, they should be industry- and commodity-specific rather than umbrella legislation for all non-coal minerals.  相似文献   

20.
采煤沉陷已成为煤矿区危害范围最广、影响程度最大、延续时间最长的一种工程地质灾害,在对赵各庄煤矿矿山地质环境调查的基础上,分析采空沉陷区对土地资源影响特征,并预测采空沉陷区土地资源影响和破坏发展趋势,指出了沉陷区土地复垦规划原则,提出了合理的复垦建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号