首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of relative parental investment on potential reproductive rates (PRRs) to explain sex differences in selectivity and competition in the dart-poison frog Dendrobates pumilio. We recorded the reproductive behavior of this species in a Costa Rican lowland rainforest for almost 6 months. Females spent more time on parental care than males, and `time out' estimates suggest that PRRs of males are much higher than than those of females, rendering females the limiting sex in the mating process. Males defended territories that provide suitable calling sites, space for courtship and oviposition, and prevent interference by competitors. Male mating success was highly variable, from 0 to 12 matings, and was significantly correlated with calling activity and average perch height, but was independent of body size and weight. Estimates of opportunity for sexual selection and variation in male mating success are given. The mating system is polygamous: males and females mated several times with different mates. Females were more selective than males and may sample males between matings. The discrepancy in PRRs between the sexes due to differences in parental investment and the prolonged breeding season is sufficient to explain the observed mating pattern i.e., selective females, high variance in male mating success, and the considerable opportunity for sexual selection. Received: 9 June 1998 / Received in revised form: 27 March 1999 / Accepted: 3 April 1999  相似文献   

2.
In sexually dimorphic, polygynous species, where males provide little parental care and competition between males for access to fertile females is high, sexual selection theory predicts sex differences in age-specific reproductive output and mortality profiles, and greater variance in lifetime reproductive success in males than in females. We examined age-specific reproductive output, mortality patterns and the extent and causes of variation in reproductive success for a semi-free-ranging colony of mandrills (Mandrillus sphinx, Cercopithecidae) in Franceville, Gabon, using long-term (20 year) demographic records and microsatellite parentage analysis. Although differences in the demography and feeding ecology of this closed, provisioned colony, in comparison with wild mandrills, limit interpretation of our results, sex differences in reproductive output and mortality showed the patterns predicted by sexual selection theory. Mortality was higher in males than in females after sexual maturity, and lifespan was significantly shorter in males (mean 14 year) than in females (>22 year). Age at first reproduction was significantly earlier in females (mean 4.2 year) than in males (11.6 year), and male reproductive output declined earlier. All females of breeding age produced offspring; while only 17 of 53 sexually mature males (32%) sired. Males sired a maximum of 41 offspring, versus 17 in females, and variance in male reproductive output was significantly greater than in females at all ages. The most important influence on variation in lifetime reproductive output in both sexes was joint variation between length of the breeding period and reproductive rate, due to lower reproductive rates in younger animals. Finally, social rank significantly influenced reproductive output in both sexes: high-ranking females began their reproductive careers earlier and had a higher subsequent reproductive rate than low-ranking females, while males that achieved top rank during their career sired far more offspring than males that did not.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
Summary Variance in lifetime mating success was measured for individuals of a population of Enallagma hageni, a non-territorial damselfly in northern Michigan. E. hageni is an explosive breeder with scramble competition for mates. Highly skewed operational sex ratios resulted in intense male-male competition which took the form of interference with tandem pairs. 41% of the males failed to mate in their lifetime as opposed to only 3.6% mating failure in females. The effect on mating success of size, age, longevity, and time spent at the breeding site were investigated. Intermediate sized males obtained the most matings, and male lifetime mating success was highly correlated with longevity.  相似文献   

4.
There is genetic variation in the female mating rate in the green-veined white butterfly (Pieris napi), and females benefit from male ejaculates that contain both sperm and accessory gland substances. Although polyandry corresponds to higher lifetime fecundity than monandry, some females abstain from remating irrespective of the number of available mates. Explaining genetic variation in mating rates requires that monandrous females perform better than polyandrous ones under some conditions. We experimentally explored the reproductive performance of females either with a low or high intrinsic mating rate by allowing them to mate, feed, and lay eggs freely in a laboratory. Individual females followed different life histories: during the early days of reproduction, females with a low mating rate produced more eggs than females with a high mating rate. Hence, refraining from the benefits of multiple mating may be beneficial, if the time for reproduction is limited, or other female traits associated with polyandry are traded off against longevity. Given the day length of 10 h, a model shows that even if polyandrous females enjoy higher lifetime reproductive success, changeable and unpredictable weather will favor monandry if each period of suitable weather lasts, on average, less than 5 days. Thus, a combination of life history cost and unpredictability of fitness may explain the maintenance of monandry in the wild. Our results are also consistent with the observation that frequency of monandry increases with latitude.  相似文献   

5.
Recent studies have demonstrated that mating with multiple males can be beneficial for females and her offspring even if males contribute nothing but sperm. This was mainly established for species in which sperm from several males mix in the reproductive tract of the female, thus allowing sperm competition and/or female sperm choice. However, in species with last male sperm precedence, female re-mating decides against the previous male by strongly limiting his reproductive success. We tested the effect of female re-mating behaviour using the cellar spider Pholcus phalangioides, which shows strong last males sperm precedence and moderate levels of polyandry under natural situations. We predicted that females prevented from remating even though they are receptive would show reduced reproductive success compared to females that accept two copulations and females that reject a second male, since the latter two treatments were allowed to behave according to their decisions. However, if the number of matings per se had an effect on oviposition or on offspring performance, double-mated females should perform better compared to both treatments of once-mated females. We measured female fecundity and fertility over a period of 140 days, comparable to the species' natural reproductive peak season. Two thousand one hundred and fifty-two offspring from 67 first egg sacs were reared under two feeding levels. We registered development time and survival, and measured offspring adult size and mass. We found a positive effect of double mating, as in this treatment, oviposition probability was higher compared to the other treatments. Interestingly, adult female offspring of the DM treatment that were raised under low food level had a higher condition index compared to those from FS and RM, but development time, size and mass at adulthood were not affected by mating treatment. Female choice only seemed to affect hatching latency of the offspring. Overall, the main predictor of female reproductive output and success was female body size.  相似文献   

6.
Summary Over five hundred adult longhorn milkweed beetles, Tetraopes tetraophthalmus, were individually marked and their copulatory success followed for one month in a pasture of Asclepias syriaca in northern Indiana, USA. Migration of beetles from the field site was greatest from areas of low population density. Dispersal was significantly greater for males experiencing low copulatory success; a similar but nonsignificant trend was observed for females. Large males, which displayed greater site tenacity than small males, copulated more frequently than small males because of their ability to displace small males from females. Both large and small males demonstrated a preference for large females in laboratory tests. Male preference in combination with aggressive displacement of small males results in size-assortative mating which was much stronger under conditions of high population density. It contributes to variance in male reproductive success since female size is known to be correlated with fecundity and offspring viability. Variance in copulatory success is similar for males and females, suggesting that both sexes experience similar intensities of sexual selection with respect to this component of reproductive success. Futhermore, comparison of this with other studies suggests that the intensity of sexual selection among males is positively correlated with the variance in body size which appears to be under both stabilizing and directional sexual selection in males but not in females.  相似文献   

7.
The risk of disease transmission can affect female mating rate, and thus sexual conflict. Furthermore, the interests of a sexually transmitted organism may align or diverge with those of either sex, potentially making the disease agent a third participant in the sexual arms race. In Drosophila melanogaster, where sexual conflict over female mating rate is well established, we investigated how a common, non-lethal virus (sigma virus) might affect this conflict. We gave uninfected females the opportunity to copulate twice in no-choice trials: either with two uninfected males, or with one male infected with sigma virus followed by an uninfected male. We assessed whether females respond behaviorally to male infection, determined whether male infection affects either female or male reproductive success, and measured offspring infection rates. Male infection status did not influence time to copulation, or time to re-mating. However, male infection did affect male reproductive success: first males sired a significantly greater proportion of offspring, as well as more total offspring, when they were infected with sigma virus. Thus viral infection may provide males an advantage in sperm competition, or, possibly, females may preferentially use infected sperm. We found no clear costs of infection in terms of offspring survival. Viral reproductive success (the number of infected offspring) was strongly correlated with male reproductive success. Further studies are needed to demonstrate whether virus-induced changes in reproductive success affect male and female lifetime fitness, and whether virus-induced changes are under male, female, or viral control.  相似文献   

8.
Investment into reproduction is influenced by multiple factors and varies substantially between males and females. Theory predicts that males should adjust their ejaculate size or quality in response to variation in female experience or phenotypic quality. In addition, sperm investment by males may also be influenced by their own status and experience. Although such adjustments of male ejaculate size can impact reproductive success (via fertilization success), fitness returns from male sperm investment may be influenced (either limited or facilitated) by the level of maternal investment. To test this hypothesis, we conducted an experiment that simultaneously evaluated the effect of paternal and maternal experience (which incorporates mating status, age, body size, and other related variables) on paternal sperm investment and maternal reproductive allocation in the lizard Anolis sagrei. During staged mating trials, experienced males were more likely to copulate with females, but these individuals were less likely to transfer sperm during mating than were naïve individuals. Maternal experience had no impact on these mating behaviors. In contrast to expectations, experience and phenotypic quality (of both sexes) had no impact on male ejaculate size or quality (proportion of live sperm) or on maternal reproductive investment (in terms of egg size and yolk steroids). These findings were intriguing given the mating system and past evidence for differential maternal investment in relation to sire quality in A. sagrei. The results found in this study highlight the complexity of reproductive investment patterns, and we urge caution when applying general conclusions across populations or taxa.  相似文献   

9.
For polygynous mammals with no paternal care, the number of offspring sired is often the sole measure of male reproductive success. The potential for polygyny is highest when resources or other environmental factors such as restricted breeding sites force females to aggregate. In these circumstances, males compete intensely for females and mating success may vary greatly among males, further intensifying selection for those traits that confer an advantage in reproduction. Hence, determinants of male success in competition for females are likely to be under strong sexual selection. Paternity analysis was used in conjunction with measures of age, site fidelity, and behavior during the breeding season to assess variance in male breeding success in Weddell seals (Leptonychotes weddellii) breeding at Turtle Rock, McMurdo Sound (77.727S, 166.85E) between 1997 and 2000. Paternity could be assigned to 177 pups at relaxed or 80% confidence level or 111 pups at strict or 95% confidence levels. Weddell seals at Turtle Rock show a modest degree of polygyny with the greatest number of pups sired by any individual male in a single season equalling 5 or ∼10% of the pups born. Over four consecutive years, most (89.2%) males sired at least one pup. In a generalized linear model (GLM), age and the age first seen at the study site as an adult were unrelated to mating success, but adult experience, either site-specific or elsewhere in McMurdo Sound, over the reproductive life span of males explained nearly 40% of variance in total mating success with 80% confidence and 24% of variance at 95% confidence. While learning where females are likely to be may enhance male reproductive success, aquatic mating reduces the ability of males to monopolize females, and thereby increases equity in mating success.  相似文献   

10.
We investigated the effects of male population density and male-biased operational sex ratio (OSR) with constant and limited resource density on male mating tactics shown by a freshwater fish, the European bitterling, Rhodeus sericeus. This species spawns inside living unionid mussels. Large males defended territories and were aggressive towards conspecifics under equal sex ratios. They also monopolised pair spawnings with females, releasing 98% of all sperm clouds during mating. However, the mating tactic changed at high male density where large males ceased to be territorial and instead competed with groups of smaller males to release sperm when females spawned. Large, medium and small males now obtained 61%, 33%, and 6% of sperm releases respectively, thereby reducing the opportunity for sexual selection by half. Females spawned at equal rates in the two densities of males, despite lower courtship at high density. These results run counter to the usual expectation that an increasingly male-biased OSR should lead to higher variance in male mating success. Instead, the use of alternative reproductive behaviours by males can lead to lower resource competition and mating variance at high male densities.  相似文献   

11.
In mammals with solitary females, the potential for males to monopolize matings is relatively low, and scramble competition polygyny is presumed to be the predominant mating system. However, combinations of male traits and mating tactics within this type of polygyny have been described. The main aim of our study was to identify the relative importance of, and interactions among, potential determinants of contrasting male reproductive tactics, and to determine their consequences for male reproductive success in a small solitary nocturnal Malagasy primate, the gray mouse lemur (Microcebus murinus). We studied their mating behavior over three consecutive annual mating seasons. In addition, we determined the genetic relationships among more than 300 study animals to quantify the reproductive success of individual males. We found that, with a given relatively low overall monopolization potential, successful male mouse lemurs roamed extensively in search of mates, had superior finding ability and mated as early as possible. However, contest competition was important too, as temporary monopolization was also possible. Males exhibited different mating tactics, and heavier males had a higher reproductive success, although most litters had mixed paternities. Switching between tactics depended on short-term local variation in monopolization potential determined by a pronounced dynamic in fertilization probability, number of alternative mating opportunities, and the operational sex ratio. This study also revealed that the dynamics of these determinants, as well as the mutual interactions between them, necessitate a detailed knowledge of the mating behavior of a species to infer the impact of determinants of alternative mating tactics.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by S. AlbertsThis revised version was published online in August 2004 with corrections to Figure 2.  相似文献   

12.
Lekking behavior in the neotropical frog Ololygon rubra   总被引:2,自引:0,他引:2  
Summary This is the first study to document in detail the satisfaction of Bradbury's four criteria for categorizing any anuran as a classical lekking species. The paternal care of male neotropical frogs, Ololygon rubra, consisted of minimal contributions of their genes. Males competed acoustically at traditional, defended, clustered sites (Fig. 1, Table 3) to attract gravid females, who paired with the males at these locations but took the amplectant males to oviposition sites away from the pairing sites. Individual males apparently did not control resources necessary for attracting females, because there were no correlations between male numbers and measured habitat variables, or between male numbers and oviposition sites. On chorusing nights, males always arrived at their display arenas before any females were observed. Females moved freely among clusters and males, before making their choices of mates. However, males employed other mate acquisition strategies that tended to undermine the initial female choices. The predictions that lekking species should have a relatively extended breeding season, a highly biased operational sex ratio (OSR), and an absence of male control of resources essential for female acquisition were also evaluated and corroborated. These frogs have two long breeding seasons encompassing a total of about 6 months (Fig. 2). There were strongly male biased nightly OSRs (Table 1), that contributed to high variance in male reproductive success (RS), but reduced indices of sexual selection, and a relatively low coefficient of variation (CV) of male RS (Table 5) compared to other amphibians. Thus, all of this evidence supports the conclusion that O. rubra in coastal Guyana uses a lek mating system.  相似文献   

13.
Males vary in the degree to which they invest in mating. Several factors can explain this variation, including differences in males’ individual condition and the fact that males allocate their energy depending on the context they face in each mating attempt. Particularly, female quality affects male reproductive success. Here, we studied whether male guppies (Poecilia reticulata) strategically allocated more mating effort, in terms of mating behaviour and male–male competition, when they were matched with a receptive (R) female than a non-receptive one. In accordance with our prediction, we found that males increased their mating behaviour when they were with a receptive female. Even though male guppies can inseminate non-receptive females, we only found high levels of courtship between males that were with a receptive female rather than a non-receptive one. Although there was little affect of female receptivity on male–male competition, we found that males chased and interrupted courtships more with receptive females than with non-receptive females regardless of odour. Finally, we also studied whether the sexual pheromone produced by receptive female guppies is a cue that males use in order to increase their mating effort. We found that males were more attracted to a female when they perceived the sexual pheromone, but only increased their mating and aggressive behaviours when females showed receptive behaviour. This strategic increase in mating effort could result in higher male reproductive success because mating attempts towards receptive females are likely to be less costly and males could have a greater probability of fertilisation.  相似文献   

14.
The relative influence of genetic and phenotypic quality on pairing status and mating patterns in socially monogamous species remains poorly documented. We studied social status and pairing patterns in relation to genetic similarity and multilocus heterozygosity (MLH) estimates from 11 microsatellite markers, and both tarsus length and wing chord (as a measure of competitive ability in territorial defence) in a socially monogamous tropical bird species where individuals defend territories year-round, alone or in pairs, the Zenaida dove, Zenaida aurita. Tarsus length and wing chord did not differ between unpaired territorial birds and paired ones in either sex, whereas paired females, but not paired males, tended to be more heterozygous than unpaired ones. Among 84 pairs, we found no evidence for assortative mating for tarsus length, wing chord, MLH or genetic similarity. However, within pairs, male wing chord was positively related to female MLH and female tarsus length was positively related to male MLH, with no evidence for local effects, suggesting assortative mating by individual quality. Although the observed pattern of mating in Zenaida doves may be the product of mutual mate choice, further assessment of this hypothesis requires direct investigation of both mating preference in each sex and lifetime reproductive success in relation to body size and MLH.  相似文献   

15.
The degree of resource monopolization relates to the distribution of resources in space and time. In general, monopolization is predicted to be high when resources (food or mates) are clumped in space, dispersed in time, and predictable in space or time. Using the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae), we qualitatively tested a general model that predicts the distribution of mating success among competing males based on the temporal pattern of female arrivals relative to mating time and a ranking of males in priority of access to the resource (here by body size). In a laboratory experiment approximating the natural mating situation, a constant number of males of various sizes were allowed to compete for females. As predicted, mate monopolization decreased as the temporal clumping of female arrivals increased, mediated by either a decrease in the mean or an increase in the variance of female inter-arrival times, which were manipulated independently. Males appeared to adjust their behavior to variation in female arrivals in a manner consistent with the marginal value theory of Parker and associates: forcible take-overs of females were rarer, and copula durations shorter, when females arrived regularly at short intervals. Therefore, a complex interaction of variation in intrinsic characteristics affecting male resource holding potential, mating time and stochastic, extrinsic variables increasing temporal clumping of mates generally reduces the variance in mating success among competing males and thus ultimately the opportunity and intensity of sexual selection on traits influencing male success. This theory extends operational sex ratio theory at the mechanistic, behavioral level.  相似文献   

16.
In small, insular populations, behavioral patterns that lead to increased variance in individual reproductive success can accelerate loss of genetic variation. Over a 1-year period, we documented behavior and hormone levels in a breeding group of adult Cuban iguanas (Cyclura nubila) at Guantánamo Bay. Male dominance was associated with body and head size, display behavior, testosterone levels, home-range size, and proximity to females. Based on their success in agonistic encounters, we ranked males in a linear dominance hierarchy. During the subsequent breeding season, we conducted a removal experiment in which the five highest-ranking males were temporarily relocated from the study site. Although we were unable to assess reproductive success directly, previously lower-ranking males assumed control of vacated territories, won more fights, and increased their proximity to females in the absence of the dominant males. When it results in greater mating opportunities for otherwise socially suppressed individuals, temporary alteration of local social structure may help limit erosion of genetic variation in small, insular populations. Electronic Publication  相似文献   

17.
We used data from a long-term study (15 years) of fallow deer to report for the first time the lifetime mating success, overall variance in lifetime mating success, and age-specific mortality levels of males. Fallow bucks that gain matings have higher social dominance rank, higher rates of fighting, and invest more in vocal display during the breeding season than unsuccessful males. Therefore, we examined if mating was associated with trade-offs in terms of survival, lifespan, and mating potential. We found that the variance in lifetime mating success was very high: 34 (10.7%) males mated, and of those, the 10 most successful males gained 73% of all matings (n=934). Mortality rates were generally high and only 22.3% (71/318) of males reached social maturity, i.e., 4 years. The oldest male was 13 years old. We found that fallow bucks that mated were not more likely to die during the following year, did not suffer from a reduction in lifespan, and did not incur lower mating success later in life as a result of mating during the early years of social maturity. Our results show that mating males at age 5 years (and possibly 9 years) may be more likely to survive than non-mating males. Additionally, the number of matings gained by males during the first years of social maturity was positively correlated with lifespan. We suggest that mating males are of higher quality than non-mating males because they are not more likely to incur trade-offs as a result of their increased reproductive efforts. Received: 9 November 1999 / Revised: 30 April 2000 / Accepted: 27 May 2000  相似文献   

18.
Sex allocation theory predicts that if variance in reproductive success differs between the sexes, females who are able to produce high-quality young should bias offspring sex ratio towards the sex with the higher potential reproductive success. We tested the hypothesis that high-quality (i.e., heavy) female eastern kingbirds (Tyrannus tyrannus) that bred early in the breeding season would produce male-biased clutches. A significant opportunity for sexual selection also exists in this socially monogamous but cryptically polygamous species, and we predicted that successful extra-pair (EP) sires would be associated with an excess of male offspring. Although population brood sex ratio did not differ from parity, it increased significantly with female body mass and declined with female breeding date, but was independent of the morphology and display (song) behavior (correlates of reproductive success) of social males and EP sires. Male offspring were significantly heavier than female offspring at fledging. Moreover, the probability that male offspring were resighted in subsequent years declined with breeding date, and was greater in replacement clutches, but lower when clutch size was large. Probability of resighting female offspring varied annually, but was independent of all other variables. Given that variance in reproductive success of male kingbirds is much greater than that of females, and that male offspring are more expensive to produce and have a higher probability of recruitment if fledged early in the season, our results support predictions of sex allocation theory: high-quality (heavy) females breeding when conditions were optimal for male recruitment produced an excess of sons.  相似文献   

19.
Competition among males to mate is generally associated with male-biased size dimorphism. In this study we examine mating behavior in the northern water snake (Nerodia sipedon), a species in which males are much smaller than females despite substantial competition among males to mate. Competition among males was a consequence of a male-biased operational sex ratio due to slightly higher female mortality from a birth sex ratio of 1 : 1, and, in 1 year, more synchronous and longer mating activity by males. Approximately one-third of both males and females appeared not to mate in a given year. Larger males were generally more likely to attempt mating, but size did not explain the variance in the number of aggregations in which individual males participated. Within aggregations, males that were successful at achieving intromission were larger than unsuccessful males in 1 of 2 years. Variation in condition (mass relative to length) and relative tail length were not generally useful predictors of either mating effort or success in males. Because large size was often advantageous to males, sexual size dimorphism appeared not to be a consequence of sexual selection favoring smaller males. Because sexual dimorphism was evident at birth, and both males and females matured sexually at about 4 years, sexual dimorphism was not simply a consequence of one sex growing at the maximum rate for longer. Female fecundity increased with size, and sex differences in size-fecundity relations may underly the pattern of sexual size dimorphism. However, because multiple mating by females is common, sperm competition is likely to be important in determining male reproductive success. Therefore, allocation of energy to sperm rather than growth may also prove to be an important influence on male growth rates and sexual size dimorphism.  相似文献   

20.
We investigated the influence of mating frequency on lifetime reproductive success in females of the bulb mite, Rhizoglyphus robini. This species is highly promiscuous, and its colonial lifestyle promotes mating frequencies of at least several times a day. We manipulated mating frequencies either by keeping females continuously in the presence of a male, with males replaced every second day, or by exposing females to a new male for 4 h every second day (4 h is enough for a male to complete at least one copulation). We used males that were isolated from females either for 2 days, and thus had large reserves of sperm and seminal fluid, or for 2 h. We found that females with continuous access to a male had lower lifetime egg output than those exposed to males intermittently. This effect was mediated through decreased fecundity and not longevity. Male mating history had no significant effect on female fecundity or longevity. These results confirm that mating frequencies observed in bulb mite colonies exceed those necessary for sperm replenishment, and suggests that frequent mating is costly to females. We discuss possible explanations for the maintenance of mating frequencies that are detrimental to females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号