首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Slope aspect modifies microclimate and influences ecological processes and spatial distribution of species across forest landscapes, but the impact of slope aspect on community responses to disturbance is poorly understood. Such insight is necessary to understand landscape community dynamics and resilience. We compared bryophyte (liverworts and mosses) communities in matched 0.02-ha plots of four boreal stand types in central Sweden: recently clear-felled and mature stands dominated by Norway spruce in south-facing and north-facing slopes. Differences between forests and clear-cuts were interpreted as effects of clear-cutting, and differences between south- and north-facing slopes as effects of aspect. In response to clear-cutting, bryophyte cover and composition changed more in south-facing slopes. Only one out of ten significantly declining species in south-facing slopes also declined significantly in north-facing slopes. North-facing slopes lost fewer bryophyte species, and among those, fewer forest species and fewer species associated with wood and bark. In north-facing slopes, the average proportions of mosses and liverworts shared between the forest and the clear-cut plot were 88% and 74%, respectively. Corresponding numbers for south-facing slopes were 79% and 33%. In addition, more bryophyte species were added in north- than south-facing slopes after clear-cutting, somewhat reducing the difference in compositional change between aspects. South- and north-facing mature forests differed in species composition, mostly due to higher richness of mosses in south-facing slopes. The smaller changes in bryophyte communities on north-facing slopes in response to clear-cutting have implications for ecosystem dynamics and management as high local survival may enhance landscape-level resilience.  相似文献   

2.
Edge Effects on the Understory Bird Community in a Logged Forest in Uganda   总被引:3,自引:0,他引:3  
Abstract: Understanding how the fauna of logged tropical rainforests responds to fragmentation and the creation of edges is vital to ensure conservation of biodiversity. We studied the composition of the understory bird community from the edge of a 15-ha clearing toward the interior of the forest in a part of Budongo Forest Reserve, Uganda, that was selectively logged about 45 years ago. Mist netting was conducted along five transects from the edge and 500 m into the interior. The total number of individuals captured did not change with distance from the edge, but there was a significant increase in the number of species. We sampled fewer, but more common species near the edge, whereas the interior of the forest had more, and less common species. Guild composition also changed with distance from the edge. Frugivore-insectivores and nectarivores were most common close to the edge. Among insectivores, ground foragers, bark-gleaners, and leaf-gleaners were most common in the interior of the forest, whereas sallying insectivores favored the edge. Graminivores were unaffected by the edge. Analysis of common species showed that Ispidina picta , Andropadus curvirostris , A. latirostris , Camaroptera brachyura , Terpsiphone rufiventer , and Nectarinia olivacea were associated with the edge, but no species showed significant avoidance of the edge. This finding may be explained by the generally low sample sizes of interior species. Our results show that even bird communities in logged forests respond to edges. Estimates of edge effects suggested that changes in bird densities may have occurred several hundred meters from the edge. In conclusion, logged forests provide habitat for bird species avoiding forest edges, and this should be considered in the management of such forests for conservation.  相似文献   

3.
Abstract: Despite many studies on fragmentation of tropical forests, the extent to which plant and animal communities are altered in small, isolated forest fragments remains obscure if not controversial. We examined the hypothesis that fragmentation alters the relative abundance of tree species with different vegetative and reproductive traits. In a fragmented landscape (670 km2) of the Atlantic Forest of northeastern Brazil, we categorized 4056 trees of 182 species by leafing pattern, reproductive phenology, and morphology of seeds and fruit. We calculated relative abundance of traits in 50 1‐ha plots in three types of forest configurations: forest edges, small forest fragments (3.4–83.6 ha), and interior of the largest forest fragment (3500 ha, old growth). Although evergreen species were the most abundant across all configurations, forest edges and small fragments had more deciduous and semideciduous species than interior forest. Edges lacked supra‐annual flowering and fruiting species and had more species and stems with drupes and small seeds than small forest fragments and forest interior areas. In an ordination of species similarity and life‐history traits, the three types of configurations formed clearly segregated clusters. Furthermore, the differences in the taxonomic and functional (i.e., trait‐based) composition of tree assemblages we documented were driven primarily by the higher abundance of pioneer species in the forest edge and small forest fragments. Our work provides strong evidence that long‐term transitions in phenology and seed and fruit morphology of tree functional groups are occurring in fragmented tropical forests. Our results also suggest that edge‐induced shifts in tree assemblages of tropical forests can be larger than previously documented.  相似文献   

4.
The cascading effects of biodiversity loss on ecosystem functioning of forests have become more apparent. However, how edge effects shape these processes has yet to be established. We assessed how edge effects alter arthropod populations and the strength of any resultant trophic cascades on herbivory rate in tropical forests of Brazil. We established 7 paired forest edge and interior sites. Each site had a vertebrate-exclosure, procedural (exclosure framework with open walls), and control plot (total 42 plots). Forest patches were surrounded by pasture. Understory arthropods and leaf damage were sampled every 4 weeks for 11 months. We used path analysis to determine the strength of trophic cascades in the interior and edge sites. In forest interior exclosures, abundance of predaceous and herbivorous arthropods increased by 326% and 180%, respectively, compared with control plots, and there were significant cascading effects on herbivory. Edge-dwelling invertebrates responded weakly to exclusion and there was no evidence of trophic cascade. Our results suggest that the vertebrate community at forest edges controls invertebrate densities to a lesser extent than it does in the interior. Edge areas can support vertebrate communities with a smaller contingent of insectivores. This allows arthropods to flourish and indirectly accounts for higher levels of plant damage at these sites. Increased herbivory rates may have important consequences for floristic community composition and primary productivity, as well as cascading effects on nutrient cycling. By interspersing natural forest patches with agroforests, instead of pasture, abiotic edge effects can be softened and prevented from penetrating deep into the forest. This would ensure a greater proportion of forest remains habitable for sensitive species and could help retain ecosystem functions in edge zones.  相似文献   

5.
Abstract: We studied the occurrence of carabid beetles (Coleoptera, Carabidae) in boreal forest fragments, their edges, and adjacent clearcuts in central Finland. Beetles were collected with pitfall traps along transects extending 60 m from the edge into clearcuts and 60 m into forest interior. Our main findings were that (1) species richness was significantly higher in the clearcut than in the forest fragments, (2) clearcuts hosted many open-habitat species, which increased overall species richness in these sites, (3) carabid assemblages in the edges were more similar to forest assemblages than to those found in the clearcuts, (4) no edge specialists were found, and (5) open-habitat species did not penetrate into the forest fragments from the clearcut. Because forest specialists occurred all the way to the edge on the forest side, it seems that edge effects per se do not adversely affect these species, at least in the short term. In the long term, however, habitat conditions in the edges may deteriorate for interior species because of trees falling over in strong winds, thereby reducing the size of the fragments and widening the edge zone.  相似文献   

6.
Although riparian buffers are an important aspect of forest management in the boreal forest of Canada, little is known about the habitat conditions within buffers, due in part to complex edge effects in response to both the upland clearcut and the stream. We investigated microclimatic conditions and bryophyte growth and vitality in seven locations between the stream edge and 60 m into the upland undisturbed conifer forests and at the clearcut sites with riparian buffer 30 km northwest of Thunder Bay, Ontario, Canada. We hypothesized that the growth and vitality of a pleurocarpous moss, Hylocomium splendens, and an acrocarpous moss, Polytrichum commune, would be directly related to the microclimatic gradients detected. We further hypothesized that sensitivity of the bryophytes to environmental factors will vary depending on their life form type, i.e., pleurocarpous moss will respond differently than the acrocarpous moss. Both bryophyte species were transplanted in pots and placed at 10-m intervals along 60-m transects perpendicular to the stream across the buffer and undisturbed sites. Bryophyte growth, cover, and vitality, as well as microclimatic parameters and plant cover, were measured over the summer in 2003. The riparian buffers were simultaneously affected by microclimatic gradients extending from both the clearcut edge and the riparian-upland ecotonal edge. Both bryophyte species responded to changes in the microclimatic conditions. However, vapor pressure deficit (VPD) was the most important factor influencing the growth of H. splendens, whereas for P. commune growth soil moisture was most important. Our study confirms earlier findings that interior forest bryophytes such as H. splendens can be used as indicators to monitor edge effects and biodiversity recovery following forest harvesting. We demonstrate that growth and vitality of these bryophytes reflect the prevailing near-ground microclimatic conditions at the forest edges. Abundance estimates of such bryophytes can be used to determine the depth of edge effects across both ecotonal edges (e.g., riparian-upland forest edge) and anthropogenically created edges (e.g., clearcut edge). Forest management practices must consider depth of edge in determining the appropriate width of riparian buffers that would be necessary to sustain biodiversity and associated values at the land/water interface.  相似文献   

7.
Rain forest fragmentation and the proliferation of successional trees   总被引:9,自引:0,他引:9  
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.  相似文献   

8.
Abstract: Forest fragmentation leads to a dramatic increase in forest edge, and these edges may function as traps and concentrators for wind-borne nutrients and pollutants. We assessed the influence of forest edges on atmospheric deposition and subsequent inputs to the forest floor in deciduous-forest fragments in the eastern United States. To quantify these inputs, we collected throughfall—water that has passed through the forest canopy—from edge and interior zones of forests adjacent to open fields. During the 1995 growing season, atmospheric input (wet and dry deposition) of sulfur to forest edge zones was elevated compared with input to forest interiors. Throughfall fluxes of dissolved inorganic nitrogen and calcium were also greater at edges than interiors. The mean edge increases ranged from 17% to 56% for the nutrients and pollutants we measured. When we manipulated the structure of forest edges by removing all vegetation below half the canopy height, throughfall flux in the edge zone declined sharply and was less than that of the respective interior zone. Changing the vegetation structure of the edge also shifted the zone of highest throughfall flux farther into the interior of the forest. Our data suggest that forest edges can function both as significant traps for airborne nutrients and pollutants from adjoining agricultural or urban landscapes and effective concentrators of below-canopy chemical fluxes. These enhanced fluxes may have cascading effects on soil-nutrient cycling, microbial activity, seedling dominance, and other ecological processes near forest edges.  相似文献   

9.
In studies of forest fragmentation, a fundamental inconsistency exists in the distance criterion used to define the discreteness of forest fragments. We examined three types of ubiquitous, narrow, forest-dividing corridors for effects that influence the relative abundance and community composition of forest-nesting birds. Fixed-radius (100-meter) point counts were conducted on 54 transects established along three width classes of corridors: unpaved roads (8 meters wide), paved roads (16 meters wide), and powerlines (23 meters wide). Transect locations were distributed equally among corridor edge, forest margin 100 meters from corridor edge, and forest interior 300 meters from corridor edge. Forest-interior species of Neotropical migrants had significantly reduced relative abundances on edge transects along 16- and 23-meter corridors, compared with 8-meter corridors and with forest interior points along all three corridor-width classes. At a landscape scale, the consequences of apparently small reductions in forest area by the presence of narrow forest-dividing corridors may be cumulatively significant for abundances of forest-interior species. Brown-headed Cowbirds were more abundant than 20 of 21 forest-interior Neotropical migrants. We found surprisingly high abundances of cowbirds associated with narrow forest-dividing corridors, especially those with mowed grass. Corridor widths as narrow as 8 meters produce forest fragmentation effects in part by attracting cowbirds and nest predators to corridors and adjacent forest interiors. The most serious implication of this study is that narrow forest-dividing corridors may function as ecological traps for forest-interior Neotropical migrants. We suggest that these widespread corridors may be inconspicuous but important contributors to declines of forest-interior nesting species in eastern North America.  相似文献   

10.
Resilience of Southwestern Amazon Forests to Anthropogenic Edge Effects   总被引:2,自引:0,他引:2  
Abstract:  Anthropogenic edge effects can compromise the conservation value of mature tropical forests. To date most edge-effect research in Amazonia has concentrated on forests in relatively seasonal locations or with poor soils in the east of the basin. We present the first evaluation from the relatively richer soils of far western Amazonia on the extent to which mature forest biomass, diversity, and composition are affected by edges. In a southwestern Amazonian landscape we surveyed woody plant diversity, species composition, and biomass in 88 × 0.1 ha samples of unflooded forest that spanned a wide range in soil properties and included samples as close as 50 m and as distant as >10 km from anthropogenic edges. We applied Mantel tests, multiple regression on distance matrices, and other multivariate techniques to identify anthropogenic effects before and after accounting for soil factors and spatial autocorrelation. The distance to the nearest edge, access point, and the geographical center of the nearest community ("anthropogenic-distance effects") all had no detectable effect on tree biomass or species diversity. Anthropogenic-distance effects on tree species composition were also below the limits of detection and were negligible in comparison with natural environmental and spatial factors. Analysis of the data set's capacity to detect anthropogenic effects confirmed that the forests were not severely affected by edges, although because our study had few plots within 100 m of forest edges, our confidence in patterns in the immediate vicinity of edges is limited. It therefore appears that the conservation value of most "edge" forests in this region has not yet been compromised substantially. We caution that because this is one case study it should not be overinterpreted, but one explanation for our findings may be that western Amazonian tree species are naturally faster growing and more disturbance adapted than those farther east.  相似文献   

11.
Edge Effects on Lizards and Frogs in Tropical Forest Fragments   总被引:4,自引:1,他引:3  
Abstract: We investigated whether forest-pasture edges affect the distribution of an assemblage of small vertebrate ectotherms in a consistent and predictable manner. We describe the abundance and distribution of two species of anoline lizards (   Norops ) and five species of leaf-litter frogs (   Eleutherodactylus ) along the edges and in the interiors of nine forest fragments near Las Cruces, Costa Rica. Over 4 months, we surveyed 44 pairs of plots by visual encounter. In each pair of plots, one was immediately adjacent to the pasture and the second was within the forest "interior." Both plots of a pair were searched simultaneously. This block design controlled for the effects of weather, topography, and searcher ability. The distribution of all species was highly variable with respect to edges. Only two species of frogs, Eleutherodactylus podiciferus and E. cruentus , were significantly more abundant in interior plots than in edge plots, although not consistently so. Both species of Norops lizards were more abundant along forest edges during the dry season. Both Norops species and several Eleutherodactylus species, however, appeared to become more abundant in the forest interior after the onset of the wet season, suggesting a seasonal edge effect. In Norops polylepis , the most abundant anole, rates of ectoparasitism were lower along edges than in forest interiors. The magnitude of the edge effect on any one species was not influenced by the size of fragments or by the distance of the interior plot from the nearest edge. We believe that edge effects should not be defined by the distance to which they are detected. Rather, they should be viewed as highly dynamic in space and time; taxa appear to respond to different components of edge effects according to their particular biological requirements.  相似文献   

12.
Londré RA  Schnitzer SA 《Ecology》2006,87(12):2973-2978
Lianas (woody vines) are an important and dynamic component of many forests throughout the world, and increases in CO2, mean winter temperature, and forest fragmentation may promote their growth and proliferation in temperate forests. In this study, we used a 45-year data set to test the hypothesis that lianas have increased in abundance and basal area in the interiors of 14 deciduous temperate forests in Wisconsin (USA) since 1959. We also censused woody plants along a gradient from the forest edge to the interior in seven of these forests to test the hypothesis that the abundance of lianas declines significantly with increasing distance from the forest edge. We found that lianas did not increase in abundance within the interiors of temperate forests in Wisconsin over the last 45 years. However, relative and absolute liana abundance decreased sharply with increasing distance from forest edges. Our findings suggest that forest fragmentation, not climate change, may be increasing the abundance of lianas in northern deciduous temperate forests, and that lianas may further increase in abundance if the severity of forest fragmentation intensifies.  相似文献   

13.
Abstract: Many forested landscapes are fragmented by roads, but our understanding of the effects of these roads on the function and diversity of the surrounding forest is in its infancy. I investigated the effect of roads in otherwise continuous forests on the macroinvertebrate fauna of the soil. I took soil samples along transects leading away from the edges of unpaved roads in the Cherokee National Forest in the Southern Appalachian mountains of the United States. Roads significantly depressed both the abundance and the richness of the macroinvertebrate soil fauna. Roads also significantly reduced the depth of the leaf-litter layer. These effects persisted up to 100 m into the forest. Wider roads and roads with more open canopies tended to produce steeper declines in abundance, richness, and leaf-litter depth, but these effects were significant only for canopy cover and litter depth. The macroinvertebrate fauna of the leaf litter plays a pivotal role in the ability of the soil to process energy and nutrients. These macroinvertebrates also provide prey for vertebrate species such as salamanders and ground-foraging birds. The effect of roads on the surrounding forest is compounded by the sprawling nature of the road system in this and many other forests. My data suggest that even relatively narrow roads through forests can produce marked edge effects that may have negative consequences for the function and diversity of the forest ecosystem.  相似文献   

14.
Fire is a natural part of most forest ecosystems in the western United States, but its effects on nonnative plant invasion have only recently been studied. Also, forest managers are engaging in fuel reduction projects to lessen fire severity, often without considering potential negative ecological consequences such as nonnative plant species introductions. Increased availability of light, nutrients, and bare ground have all been associated with high-severity fires and fuel treatments and are known to aid in the establishment of nonnative plant species. We use vegetation and environmental data collected after wildfires at seven sites in coniferous forests in the western United States to study responses of nonnative plants to wildfire. We compared burned vs. unburned plots and plots treated with mechanical thinning and/or prescribed burning vs. untreated plots for nonnative plant species richness and cover and used correlation analyses to infer the effect of abiotic site conditions on invasibility. Wildfire was responsible for significant increases in nonnative species richness and cover, and a significant decrease in native cover. Mechanical thinning and prescribed fire fuel treatments were associated with significant changes in plant species composition at some sites. Treatment effects across sites were minimal and inconclusive due to significant site and site x treatment interaction effects caused by variation between sites including differences in treatment and fire severities and initial conditions (e.g., nonnative species sources). We used canonical correspondence analysis (CCA) to determine what combinations of environmental variables best explained patterns of nonnative plant species richness and cover. Variables related to fire severity, soil nutrients, and elevation explained most of the variation in species composition. Nonnative species were generally associated with sites with higher fire severity, elevation, percentage of bare ground, and lower soil nutrient levels and lower canopy cover. Early assessments of postfire stand conditions can guide rapid responses to nonnative plant invasions.  相似文献   

15.
Effect of Edge Structure on the Flux of Species into Forest Interiors   总被引:13,自引:0,他引:13  
Abstract: A key goal of conservation biology is to prevent the spread of exotic species. Previous work on exotic invasion has two limitations: (1) the lack of a spatially explicit approach and (2) a primary focus on the net effect of invasion by examining invasive species already present in the community. We address these limitations by focusing on the arrival of a potential invader into a community and use a spatially explicit approach to quantify the flow of seeds from the surrounding landscape into the interior of a forest. We hypothesize that the structure of forest-edge vegetation influences how the edge mediates seed flux. To test our hypothesis, we experimentally altered vegetation structure within 20 m of the edge to create two edge treatments: thinned and intact. We quantified the flux of seeds moving into the forest interior across the two treatments. We used seed traps randomly arrayed on transects from 5 to 50 m into the forest. More seeds crossed the thinned treatment than crossed the intact treatment to reach the forest interior. In addition, seeds that crossed the thinned treatment dispersed farther into the forest than those that crossed the intact treatment. These results were consistent throughout the period of maximum autumn dispersal, including periods before and after leaf drop. Our results show that the structure of vegetation on the edge interacts with the flux of wind-dispersed seed across the edge. We demonstrated that an edge with intact vegetation can function as a physical barrier to seed dispersal. Therefore, the structure of vegetation on edges can influence the function of edges as barriers to seed flux into the forest interior.  相似文献   

16.
Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant–myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant–myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant–myrmecophyte networks differ among dam‐induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant–myrmecophyte networks on islands. Ant–myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant–plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant–myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal–plant mutualistic networks. Efectos de la Fragmentación del Paisaje Inducida por Presas sobre Redes Mutualistas Hormiga‐Planta Amazónicas  相似文献   

17.
Abstract: Although enhancing reserve shape has been suggested as an alternative to enlarging nature reserves, the importance of reserve shape relative to reserve area remains unclear. Here we examined the relative importance of area and shape of forest patches to species richness, species composition, and species abundance (abundance of each species) for 3 taxa (33 birds, 41 butterflies, and 91 forest‐floor plants) in a fragmented landscape in central Hokkaido, northern Japan. We grouped the species according to their potential edge responses (interior‐, neutral‐, and edge‐species groups for birds and forest‐floor plants, woodland‐ and open‐land‐species groups for butterflies) and analyzed them separately. We used a shape index that was independent of area as an index of shape circularization. Hierarchical partitioning and variation partitioning revealed that patch area was generally more important than patch shape for species richness and species composition of birds and butterflies. For forest‐floor plants, effects of patch area and shape were small, whereas effects of local forest structure were large. Patch area and circularization generally increased abundances of interior species of birds and forest‐floor plants and woodland species of butterflies. Nevertheless, only patch circularization increased abundances of 1 woodland species of butterfly and 2 and 6 interior species of birds and forest‐floor plants, respectively. We did not find any significant interaction effects between patch area and shape. Our results suggest that although reserves generally should be large and circular, there is a trade‐off between patch area and shape, which should be taken into consideration when managing reserves.  相似文献   

18.
In this study, influence of slope position (south-facing vs. north-facing), species type and sampling time on fine (0-2 mm), small (2-5 mm) and coarse (5-10 mm) root biomass and carbon storage of oriental spruce (Picea orientalis) and oriental beech (Fagus orientalis) were investigated. Mean total root biomass of oriental spruce was 20160 kg ha(-1) in south-facing slopes and 17140 kg ha(-1) in north-facing slopes. Mean total belowground C storage of oriental spruce was 7861 kg ha(-1) in south-facing slopes and 6840 kg ha(-1) in north-facing slopes. Similarly, biomass and C storage of oriental beech were 17190 and 6690 kg ha(-1) in south-facing slopes, and 13260 and 5200 kg ha(-1) in north-facing slopes, respectively. Oriental spruce had significantly higher fine root biomass than did oriental beech in south-facing slopes. Fine root biomass was significantly higher in fall than in spring in south-facing slopes.  相似文献   

19.
Contribution of Roads to Forest Fragmentation in the Rocky Mountains   总被引:18,自引:0,他引:18  
The contribution of roads to forest fragmentation has not been adequately analyzed. We quantified fragmentation due to roads in a 30,213-ha section of the Medicine Bow-Routt National Forest in sout heastern Wyoming with several indices of landscape structure using a geographic information system. The number of patches, mean patch area, mean interior area, mean area of edge influence, mean patch perimeter, total perimeter, and mean patch shape identified patch- and edge-related landscape changes. Shannon-Wiener diversity, dominance, contagion, contrast, and angular second moment indicated effects on landscape diversity and texture. Roads added to forest fragmentation more than clearcuts by dissecting large patches into smaller pieces and by converting forest interior habitat into edge habitat. Edge habitat created by roads was 1.54–1.98 times the edge habitat created by clearcuts. The total landscape area affected by clearcuts and roads was 2.5–3.5 times the actual area occupied by these disturbances. Fragmentation due to roads could be minimized if road construction is minimized or rerouted so that its fragmentation effects are reduced. Geographic information system technology can be used to quantify the potential fragmentation effects of individual roads and the cumulative effects of a road network on landscape structure.  相似文献   

20.
The ongoing scientific controversy over a putative "global pollination crisis" underscores the lack of understanding of the response of bees (the most important taxon of pollinators) to ongoing global land-use changes. We studied the effects of distance to forest, tree management, and floral resources on bee communities in pastures (the dominant land-use type) in southern Costa Rica. Over two years, we sampled bees and floral resources in 21 pastures at three distance classes from a large (approximately 230-ha) forest patch and of three common types: open pasture; pasture with remnant trees; and pasture with live fences. We found no consistent differences in bee diversity or abundance with respect to pasture management or floral resources. Bee community composition, however, was strikingly different at forest edges as compared to deforested countryside only a few hundred meters from forest. At forest edges, native social stingless bees (Apidae: Meliponini) comprised approximately 50% of the individuals sampled, while the alien honeybee Apis mellifera made up only approximately 5%. Away from forests, meliponines dropped to approximately 20% of sampled bees, whereas Apis increased to approximately 45%. Meliponine bees were also more speciose at forest edge sites than at a distance from forest, their abundance decreased with continuous distance to the nearest forest patch, and their species richness was correlated with the proportion of forest cover surrounding sample sites at scales from 200 to 1200 m. Meliponines and Apis together comprise the eusocial bee fauna of the study area and are unique in quickly recruiting foragers to high-quality resources. The diverse assemblage of native meliponine bees covers a wide range of body sizes and flower foraging behavior not found in Apis, and populations of many bee species (including Apis), are known to fluctuate considerably from year to year. Thus, the forest-related changes in eusocial bee communities we found may have important implications for: (1) sustaining a diverse bee fauna in tropical countryside; (2) ensuring the effective pollination of a diverse native plant community; and (3) the efficiency and stability of agricultural pollination, particularly for short-time-scale, mass-flowering crops such as coffee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号