首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
β-受体阻断剂是一类常用的心血管疾病治疗药物. 建立了城市污水中索他洛尔、普萘洛尔、卡维地洛、奈比洛尔和纳多洛尔5种β-受体阻断剂的超高效液相色谱-串联质谱联用检测方法. 水样经MCX固相萃取小柱富集、净化,采用0.1%甲酸水溶液与乙腈为流动相进行梯度洗脱,经BEH C18色谱柱分离,通过多反应监测模式进行测定. 该方法对5种β-受体阻断剂的线性范围为0.1~100.0 μg/L,相关系数(R2)均大于0.99. 污水中索他洛尔、普萘洛尔、卡维地洛、奈比洛尔和纳多洛尔的定量限为0.2~2.0 ng/L,加标回收率为54.1%~113.4%,相对标准偏差小于22%,可用于城市污水中相关物质的分析测定.   相似文献   

2.
建立了一种高效液相色谱串联质谱法同时测定水中26种痕量水平抗生素的分析方法。采用HLB柱对500 mL pH=2.0水样进行固相萃取,用2%氨水-甲醇/乙腈(1∶1,V/V)洗脱,浓缩定容至1.0 mL。选择C18色谱柱,0.1%甲酸水-甲醇作为流动相对目标物进行分离,采用正离子电离模式测定,内标法定量。结果表明,26种抗生素的检出限为0.4~2.1 ng/L,目标物在0~500μg/L范围内,相关性良好(R>0.994),精密度为3.8%~17%,痕量水平下回收率范围为63.1%~102%。该方法简便、快速、准确、涵盖目标物种类多,适用于水质中抗生素的多残留同时测定。  相似文献   

3.
为评估双酚类环境激素对水环境可能造成的环境影响,建立固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)法测定斑马鱼暴露体系中的双酚C(BPC)、双酚F(BPF)、双酚S(BPS)、双酚Z(BPZ). 对前处理条件进行优化,斑马鱼样品依次采用6 mL乙腈溶液提取,30 min超声萃取及振荡混合,8 000 r/min下离心10 min,重复2次,于?80 ℃冷冻除脂48 h,过滤并用超纯水稀释至500 mL. 采用Generik H2P柱萃取上述鱼样及养殖水体样品,依次用10 mL 10%甲醇水溶液(V/V)淋洗,10 mL甲醇溶液洗脱. 优化参数确定最佳质谱条件,以甲醇-水溶液为流动相进行梯度洗脱,采用电喷雾电离、负离子选择反应监控(SRM)模式、同位素内标法进行测定. 结果表明:①固相萃取-超高效液相色谱-串联质谱法的检出限为0.019~0.60 μg/L,定量限为0.06~1.89 μg/L,BPS在0.5~100 μg/L范围内线性关系良好,相关系数为0.999 0,BPZ、BPF和BPC在1~100 μg/L范围内线性关系良好,相关系数在0.998 9~0.999 8范围内. ②在1.5、4.5、15 μg/L双酚类环境激素的添加浓度下,养殖水体中目标物的回收率为91.45%~102.91%,相对标准偏差为1.47%~11.04%,斑马鱼体内目标物的回收率为85.95%~97.45%,相对标准偏差为4.63%~16.36%. ③高浓度暴露组中,鱼体内BPF、BPS、BPC含量约是低浓度暴露组的10倍,而BPZ含量在两组间无明显差异. 研究显示,BPC、BPF、BPS、BPZ短时间内在斑马鱼体内产生了富集,通过分析斑马鱼全鱼样品、养殖水样及实际景观水体样品,证明固相萃取-超高效液相色谱-串联质谱法样品回收率高、检出限低、灵敏度高、重现性好,具有较好的实用性.   相似文献   

4.
5.
建立了采用固相萃取-超快速液相色谱-串联质谱(SPE-RRLC-MS/MS)测定制药废水中阿维菌素残留的方法.水样经离心、沉淀蛋白质后,上清液采用HLB固相萃取柱富集和净化;以0.1%甲酸水溶液和50%~90%甲醇为流动相,采用AgilentPlusC18柱进行RRLC分离,在串联质谱ESI(+)模式下采用多反应监测模...  相似文献   

6.
高效液相色谱-串联质谱法测定水中邻苯二甲酸酯   总被引:5,自引:0,他引:5  
建立了水中7种邻苯二甲酸酯(PAEs)的液相色谱-串联质谱分析方法.样品经过甲醇饱和正己烷超声波萃取后,采用液质联用法测定邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二己酯(DHXP)、邻苯二甲酸二壬酯(DNP...  相似文献   

7.
采用固相萃取-超高效液相色谱-串联质谱法(UPLC-MS/MS)通过对固相萃取柱、洗脱液、流动相等的优化,建立了水中16种芳氧苯氧丙酸酯类(APP)除草剂的分析方法。确定以Oasis HLB为固相萃取柱、丙酮-正己烷(1∶1,V/V)为淋洗液、水-乙腈(3∶7,V/V)为流动相进行水样预处理,在最优条件下,各目标物在水中的回收率均达到74.5%~124.9%,相对标准偏差为4.2%~9.6%,线性范围为1~2 000μg/L,各目标物标准品在UPLCMS/MS系统中有效的线性相关系数(R2)达到0.998以上。该方法具有检测限低、回收率高等优点,经实际样品测试,可适用于水中16种APP类除草剂的同时检测。  相似文献   

8.
采用固相萃取-高效液相色谱法对水中苯胺含量进行定性、定量分析.结果显示:苯胺含量在2 mg/L∽ 50 mg/L之间呈良好线性关系,回归方程为Y=8.852 5X-3.174 4,相关系数为0.99964,最低检出限为0.1mg/L,样品加标回收率在72.42% ∽78.65%之间,相对标准偏差(RSD)为2.53% ∽4.11% (n =7).该方法操作简便、快捷,是水中苯胺含量快速而准确的检测方法.  相似文献   

9.
采用固相萃取-高效液相色谱法对水中的丙烯酰胺定性、定量分析。结果显示:丙烯酰胺含量在20μg/L~400μg/L之间呈良好线性关系,回归方程Y=0.476 8X+0.845 4,相关系数R为0.997 72,检出限0.1μg/L,样品回收率在71.85%~92.28%之间,相对标准偏差为3.4%~10.9%。该方法减少了有机溶剂用量,缩短了有机溶剂暴露时间,降低污染,且能满足地表水环境质量标准(GB 3838-2002)限值要求,是水中丙烯酰胺含量准确稳定的检测方法。用该方法测定了呼和浩特市引黄入呼左岸、右岸、中浅和中深4个断面水样,均未检出丙烯酰胺。  相似文献   

10.
王倩倩  鲁建江  刘江  吕新明 《环境工程》2016,34(12):153-157
采用超高效液相色谱-串联质谱法(UPLC-MS/MS),建立了同时检测水样中三类共计14种抗生素的分析方法。水样经HLB小柱萃取富集后,用10%甲醇含0.1%的甲酸溶液定容,以高效液相色谱-串联质谱对目标物进行分析。在最优实验条件下,14种抗生素的线性范围为1.0~500μg/L,相关系数均大于0.99,方法的检出限为0.30~1.23 ng/L。将建立的方法应用于检测艾比湖湖水中14种抗生素的残留分析,结果表明:14种抗生素中共检测出12种,其中氧氟沙星、洛美沙星、环丙沙星、土霉素的检出率为100%,洛美沙星的浓度最高。  相似文献   

11.
This work described the development, optimization and validation of an analytical method for rapid detection of multiple-class pharmaceuticals in both municipal wastewater and sludge samples based on ultrasonic solvent extraction, solid-phase extraction, and ultra high performance liquid chromatography-tandem mass spectrometry quantification. The results indicated that the developed method could effectively extract all the target pharmaceuticals (25) in a single process and analyze them within 24 min. The recoveries of the target pharmaceuticals were in the range of 69%-131% for wastewater and 54%-130% for sludge at different spiked concentration levels. The method quantification limits in wastewater and sludge ranged from 0.02 to 0.73 ng/L and from 0.02 to 1.00μg/kg, respectively. Subsequently, this method was validated and applied for residual pharma- ceutical analysis in a wastewater treatment plant located in Beijing, China. All the target pharmaceuticals were detected in the influent samples with concentrations varying from 0.09 ng/L (tiamulin) to 15.24 μg/L (caffeine); meanwhile, up to 23 pharmaceuticals were detected in sludge samples with concentrations varying from 60 ng/kg (sulfamethizole) to 8.55 mg/kg (ofloxacin). The developed method demonstrated its selectivity, sensitivity, and reliability for detecting multiple-class pharmaceuticals in complex matrices such as municipal wastewater and sludge.  相似文献   

12.
Aristolochic acid (AA) is a known nephrotoxin and potential carcinogen, which can form covalent DNA adducts after metabolic activation in vivo and in vitro. A simple method for preparation and characterization of aristolochic acid-DNA adducts was developed. Four AA-adducts were synthesized by a direct reaction of AAI/AAII with 2’-deoxynucleosides. The reaction mixture was first cleaned-up and pre-concentrated using solid phase extraction (SPE), and further purified by a reversed-phase high performance liquid chromatography (HPLC). By the application of developed SPE procedure, matrices and byproducts in reaction mixture could be greatly reduced and adducts of high purity (more than 94% as indicated by HPLC) were obtained. The purified AA-DNA adducts were identified and characterized with liquid-electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-Q-TOF-MS/MS) and LC-Diode array detector-fluorescence (LC-DAD-FL) analysis. This work provides a robust tool for possible large-scale preparation of AA-DNA adduct standards, which can promote the further studies on carcinogenic and mutagenic mechanism of aristolochic acids.  相似文献   

13.
14.
This work describes a systematic approach to the development of a method for simultaneous determination of three classes of veterinary antibiotics in the suspended solids (SS) of swine wastewater, including five sulfonamides, three tetracyclines and one macrolide (tiamulin). The entire procedures for sample pretreatment, ultrasonic extraction (USE), solid-phase extraction (SPE), and liquid chromatography-mass spectrometry (LC-MS) quantification were examined and optimized. The recovery efficiencies were found to be 76%-104% for sulfonamides, 81%-112% for tetracyclines, and 51%-64% for tiamulin at three spiking levels. The intra-day and inter-day precisions, as expressed by the relative standard deviation (RSD), were below 17%. The method detection limits (MDLs) were between 0.14 and 7.14 μg/kg, depending on a specific antibiotic studied. The developed method was applied to field samples collected from three concentrated swine feeding plants located in Beijing, Shanghai and Shandong province of China. All the investigated antibiotics were detected in both SS and liquid phase of swine wastewater, with partition coefficients (logKd) ranging from 0.49 to 2.30. This study demonstrates that the SS can not be ignored when determining the concentrations of antibiotics in swine wastewater.  相似文献   

15.
A rapid, sensitive, and cost-effective analytical method was developed for the analysis of selected semi-volatile organic compounds in water. The method used an automated online solid-phase extraction technique coupled with programmed-temperature vaporization large-volume injection gas chromatography/mass spectrometry. The water samples were extracted by using a fully automated mobile rack system based on x-y-z robotic techniques using syringes and disposable 96-well extraction plates. The method was validated for the analysis of 30 semivolatile analytes in drinking water, groundwater, and surface water. For a sample volume of 10 mL, the linear calibrations ranged from 0.01 or 0.05 to 2.5 μg·L−1, and the method detection limits were less than 0.1 μg·L−1. For the reagent water samples fortified at 1.0 μg·L−1 and 2.0 μg·L−1, the obtained mean absolute recoveries were 70%–130% with relative standard deviations of less than 20% for most analytes. For the drinking water, groundwater, and surface water samples fortified at 1.0 μg·L−1, the obtained mean absolute recoveries were 50%–130% with relative standard deviations of less than 20% for most analytes. The new method demonstrated three advantages: 1) no manipulation except the fortification of surrogate standards prior to extraction; 2) significant cost reduction associated with sample collection, shipping, storage, and preparation; and 3) reduced exposure to hazardous solvents and other chemicals. As a result, this new automated method can be used as an effective approach for screening and/or compliance monitoring of selected semi-volatile organic compounds in water.  相似文献   

16.
An improved method for trace level quantification of dicyandiamide in stream water has been developed. This method includes sample pretreatment using solid phase extraction. The extraction procedure (including loading, washing, and eluting) used a flow rate of 1.0 mL/min, and dicyandiamide was eluted with 20 mL of a methanol/acetonitrile mixture (V/V = 2:3), followed by pre-concentration using nitrogen evaporation and analysis with high performance liquid chromatography–ultraviolet spectroscopy (HPLC–UV). Sample extraction was carried out using a Waters Sep-Pak AC-2 Cartridge (with activated carbon). Separation was achieved on a ZIC®-Hydrophilic Interaction Liquid Chromatography (ZIC-HILIC) (50 mm × 2.1 mm, 3.5 μm) chromatography column and quantification was accomplished based on UV absorbance. A reliable linear relationship was obtained for the calibration curve using standard solutions (R2 > 0.999). Recoveries for dicyandiamide ranged from 84.6% to 96.8%, and the relative standard deviations (RSDs, n = 3) were below 6.1% with a detection limit of 5.0 ng/mL for stream water samples.  相似文献   

17.
We established an improved method for the determination of four estrogens including estriol (E3), 17 -estradiol (E2), 17 -ethynylestrodiol (EE2) and estrone (E1) in water. The method consisted of solid-phase extraction (0.5 L water) and subsequent analysis of analytes by ultra-performance liquid chromatography (UPLC) with an ultraviolet detector (UVD). Base-line separation was achieved for all studied estrogens using a column (50 mm 2.1 mm) packed with 1.7 m particle size stationary phase. Recovery was higher than 88% and detection limits ranged between 12.5–23.7 ng/L for the four estrogens, with the RSD ranging from 7% to 11%. The method was successfully applied to determine E2 and EE2 in simulated natural water, which found that about 70% of E2 was degraded (with a half-life of about 30 hr) within 48 hr and about 55% of EE2 was degraded (with a half-life of about 36 hr). Low levels of E1 were found, however E3 was undetectable during the process.  相似文献   

18.
An analytical method based on TiO2 nanotubes solid-phase extraction (SPE) combined with gas chromatography (GC) was established for the analysis of seven polycyclic aromatic hydrocarbons (PAHs): acenaphtylene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene and pyrene. Factors a ecting the extraction e ciency including the eluent type and its volume, adsorbent amount, sample volume, sample pH and sample flow rate were optimized. The characteristic data of analytical performance were determined to investigate the sensitivity and precision of the method. Under the optimized extraction conditions, the method showed good linearity in the range of 0.01–0.8 g/mL, repeatability of the extraction (RSD were between 6.7% and 13.5%, n = 5) and satisfactory detection limits (0.017–0.059 ng/mL). The developed method was successfully applied to the analysis of surface water (tap, river and dam) samples. The recoveries of PAHs spiked in environmental water samples ranged from 90% to 100%. All the results indicated the potential application of titanate nanotubes as solid-phase extraction adsorbents to pre-treat water samples.  相似文献   

19.
Seven polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulates were determinated by high performance liquid chromatography (HPLC) with fluorescence detector using direction injection and an on-line enrichment trap column.The method simplified the sample pretreatment,saved time and increased the efficiency.With the on-line trap column,PAHs were separated availably even underground injecting 1.0 ml sample with relatively high column efficiency.The recoveries of the seven PAHs were from 85% to 120% for spiked atmospheric particulate sample.The limit of detection was 15.3-39.6 ng/L (S/N=3.3).There were good linear correlations between the peak areas and concentrations of the seven kinds of PAHs in the range of 1-50 ng/ml with the correlation coefficients over 0.9970.Furthermore,it also indicated that the method is available to determine PAHs in atmospheric particulates well.  相似文献   

20.
Pharmaceutical residues have become tightly controlled environmental contaminants in recent years, due to their increasing concentration in environmental components. This is mainly caused by their high level of production and everyday consumption. Therefore there is a need to apply new and sufficiently sensitive analytical methods, which can detect the presence of these contaminants even in very low concentrations. This study is focused on the application of a reliable analytical method for the analysis of 10 selected drug residues, mainly from the group of non-steroidal anti-inflammatory drugs (salicylic acid, acetylsalicylic acid, clofibric acid, ibuprofen, acetaminophen, caffeine, naproxen, mefenamic acid, ketoprofen, and dicofenac), in wastewaters and surface waters. This analytical method is based on solid phase extraction, derivatization by N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) and finally analysis by comprehensive two-dimensional gas chromatography with Time-of-Flight mass spectrometric detection (GC×GC- TOF MS). Detection limits ranged from 0.18 to 5 ng/L depending on the compound and selected matrix. The method was successfully applied for detection of the presence of selected pharmaceuticals in the Svratka River and in wastewater from the wastewater treatment plant in Brno-Modrice, Czech Republic. The concentration of pharmaceuticals varied from one to several hundreds of ng/L in surface water and from one to several tens of μg/L in wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号