共查询到20条相似文献,搜索用时 15 毫秒
1.
以电厂废弃物粉煤灰为原料、采用碱熔-水热法制备了粉煤灰合成A型沸石(以下简称沸石),再以沸石对溶液中的Cs+进行分离富集,最后在碱激发剂的作用下以粉煤灰和吸附后的沸石制得地聚合物固化体。对固化体的性能进行了评价,并探讨了固化机理。实验结果表明:在吸附温度25℃、初始Cs+质量浓度100 mg/L、固液比10.0 g/L的条件下,沸石对的Cs+的吸附率达98%,比粉煤灰提高了2倍以上;沸石掺量为20%~30%(w)时,固化体的抗压强度符合GB 14569.1—2011要求,固化体中Cs+的42 d浸出率和累计浸出分数均远优于GB 14569.1—2011限值,表现出优异的抗浸出性能。 相似文献
2.
This study reviews different technologies for extraction of heavy metals from fly ash. With this perspective processes like bioleaching using microbes, carrier in pulp method, chemical extraction via acids, alkaline leachates and chelating agents, chloride evaporation process, electrodialytic and thermal treatments were studied thoroughly. A comprehensive comparison of all the techniques is also done by studying in detail their reaction conditions, metals leached and percentage extraction achieved. The study concluded that depending on the type of fly ash and metal under consideration determines the suitability of the process adopted for detoxification of fly ash. In addition to these, factors like cost, time and energy also define the final selection process. 相似文献
3.
Jung-Geun Han Jong-Young Lee Ki-Kwon Hong Jai-Young Lee Young-Woong Kim Sun-Mi Hong 《Journal of Material Cycles and Waste Management》2010,12(3):227-234
The aim of the present study was to analytically provide adsorption characteristics of Cu2+ and Zn2+ using carbonized food waste (CFW); more specifically, batch tests were conducted using various concentrations of metal ions, contact times, and initial pH levels in an attempt to understand the adsorption removal of heavy metal ions in aqueous solution at concentrations ranging between 50 and 800 mg/l. The results confirmed that the adsorption equilibrium was established within a maximum of 80 min, and the maximum concentrations for adsorption of Cu2+ and Zn2+ were 28.3 and 23.5 mg/g, respectively. These adsorption levels indicate that CFW has better performance than many other adsorbents. In experiments using different pH conditions, the applicability to acid wastewater was found to be high, and an excellent adsorption removal ratio of 75%–90% was observed under acid conditions at pH 2–4. Furthermore, as the adsorption time increased, the calcium component in the CFW began to leach into the aqueous solution and raise the pH, accordingly causing the removal of heavy metal ions partially as a result of precipitation. When our results were analyzed using the Langmuir model and the Freundlich model for isothermal adsorptivity, the activity of CFW in this study was shown to be more consistent with the former; the adsorption speed of Cu2+ and Zn2+ according to a pseudosecond-order reaction model was found to be very fast for an initial concentration of not more than 100 mg/l. In a test in which an attempt was made to compare adsorption capacity values obtained from the experiments in this study with the aforementioned three models, the pseudosecond-order reaction model was found to provide results closest to the actual values. 相似文献
4.
5.
Brazil is the largest worldwide producer of alcohol and sugar from sugar-cane and has an extensive alternative program for car fuel which is unique. The objective of this work is to offer one management option of a solid residue produced by this industrial segment. The pressed sugar-cane bagasse is burned to produce steam and electricity by cogeneration. The combustion yields both bottom and fly ashes which contain high amounts of silicon oxide as a major component. Fly ash which contains a high volume (>30% by weight) of charcoal was used in this work. The ash was sieved to separate the thick charcoal from inorganic materials which are concentrated in the thinner fraction. The briquettes were hand pressed using charcoal mixed with a binder (starch) obtained from cassava flour (a tropical root). The results (density, mechanical resistance) obtained with 8% by weight of starch binder are presented here. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to characterize the ashes and the briquettes. The results show that sugar-cane bagasse fly ash (SCBFA) can be used to produce briquettes with an average density of 1.12 g cm?3 and an average calorific value of 25,551 kJ/kg. 相似文献
6.
7.
Unburned carbon (UC) is the major source of organic contaminants in municipal solid waste (MSW) fly ash. So most organic contaminants can be removed by the removal of the UC from the MSW fly ash. In this paper, we first used a technique of column flotation to remove UC from MSW fly ash. The influences of column flotation parameters on the recovery efficiency of UC were systematically studied. It was found that the UC recovery efficiency was greatly influenced by the gas flow rate, pH value, collector kerosene's concentration and the types of fly ash. By optimizing the above parameters, we have successfully removed 61.2% of the UC from MSW fly ash having 5.24% UC content. The removal mechanism was well accounted for the kinetic theory of column flotation and surface-chemistry theory. The results indicate that the column flotation technique is effective in removing the UC from MSW fly ash, and show that there is a strong possibility for practical application of this technique in removing the organic contaminants from MSW fly ash. 相似文献
8.
By utilising MSW fly ash from the Shanghai Yuqiao municipal solid waste (MSW) incineration plant as the main raw material, diopside-based glass-ceramics were successfully synthesized in the laboratory by combining SiO(2), MgO and Al(2)O(3) or bottom ash as conditioner of the chemical compositions and TiO(2) as the nucleation agent. The optimum procedure for the glass-ceramics is as follows: melting at 1500 degrees C for 30 min, nucleating at 730 degrees C for 90 min, and crystallization at 880 degrees C for 10h. It has been shown that the diopside-based glass-ceramics made from MSW fly ash have a strong fixing capacity for heavy metals such as lead (Pb), chromium (Cr), cadmium (Cd) etc. 相似文献
9.
Hospital solid waste incinerator (HSWI) fly ash contains a large number of carbon constituents including powder activated carbon and unburned carbon, which are the major source of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in fly ash. Therefore, the removal of carbon constituents could reduce PCDD/Fs in fly ash greatly. In this study, the effects of the main flotation parameters on the removal of carbon constituents were investigated, and the characteristics of the final product were evaluated. The results showed that loss on ignition (LOI) of fly ash increased from 11.1% to 31.6% during conditioning process. By optimizing the flotation parameters at slurry concentration 0.05 kg/l, kerosene dosage 12 kg/t, frother dosage 3 kg/t and air flow rate 0.06 m3/h, 92.7% of the carbon constituents were removed from the raw fly ash. Under these conditions, the froth product has LOI of 56.35% and calorific values of 12.5 MJ/kg, LOI in the tailings was below 5%, and the total toxic equivalent (TEQ) of PCDD/Fs decreased from 5.61 ng-TEQ/g in the raw fly ash to 1.47 ng-TEQ/g in the tailings. The results show that column flotation is a potential technology for simultaneous separation of carbon constituents and PCDD/Fs from HSWI fly ash. 相似文献
10.
Jeong-Geol Na Byung-Hwan Jeong Soo Hyun Chung Seong-Soo Kim 《Journal of Material Cycles and Waste Management》2006,8(2):126-132
Catalytic pyrolysis of low-density polyethylene (LDPE) was investigated using various fly ash-derived silica–alumina catalysts
(FSAs). FSAs were prepared by a simple activation method that basically includes NaOH treatment of fly ash by a fusion method,
followed by an aging process. A series of LDPE pyrolysis experiments was conducted and the catalytic performance of FSAs was
assessed in terms of the degradation temperature and the simulated boiling point distribution of the liquid products. The
effects of synthesis conditions such as NaOH/fly ash weight ratio and aging time were examined by X-ray diffractometer (XRD),
Brunauer-Emmett-Teller (BET) surface area analyzer, and scanning electron microscope to clarify the controlling factors affecting
the catalytic activity. To obtain catalyst with high activity, it is necessary to produce sufficient silica and alumina species
that can be easily co-precipitated into solid acid catalyst by destruction of the fly ash structure and to optimize the activation
time for catalyst synthesis to prevent the transformation into inactive phases. The catalytic performance of FSA obtained
from optimal conditions was equivalent to that of commercial catalysts, demonstrating the effectiveness of the catalyst. 相似文献
11.
Abdullah Mofarrah Tahir Husain Bing Chen 《Journal of Material Cycles and Waste Management》2014,16(3):482-490
In order to explore the beneficial utilization of heavy oil fly ash (HOFA) generated in the power plants, the present study is intended to optimize the chromium(VI) [Cr(VI)] adsorption on activated carbon produced from HOFA. The raw HOFA obtained from a power plant was washed by nitric/hydrochloric acid and activated at 800 °C with a holding time of 60 min to produce fly ash activated carbon (FAC). Phosphoric acid was used as a chemical agent to improve the surface characteristics of the HOFA during the activation process. Batch adsorption experiments were employed to evaluate the effects of different parameters such as initial Cr(VI) concentration, pH, and FAC dose on the removal of Cr(VI) from aqueous solution. A total of 17 adsorption experimental runs were carried out employing the detailed conditions followed the response surface methodology based on the Box–Behnken design. The results indicate that developed FAC has the potential for removing Cr(VI) from wastewater. Under the test conditions, a maximum of 91.51 % Cr(VI) removal efficiency was achieved. 相似文献
12.
Xie Qiaoling Wang Dandan Han Zhichao Tao Huchun Liu Sitong 《Journal of Material Cycles and Waste Management》2023,25(1):62-73
Journal of Material Cycles and Waste Management - A ball milling pretreatment with additives for fly ash and the combined use of reagents as flotation collectors in fly ash flotation were... 相似文献
13.
Zeolitic sorbents for CO2 adsorption were prepared from waste coal fly ash (FA) through hydrothermal treatment at various ratios of NaOH/FA and NaAlO2/FA, including an initial alkali fusion step. The fusion step decomposed the fly ash into very small amorphous particulate zeolite forms. The fly ash was converted to Na-P1 type with a NaOH/FA ratio of 0.5 and Na-A type with a NaAlO2/FA ratio of 0.53. The product properties were affected by the reaction temperature: Na-P1 and Na-A types were formed at 100°C. Temperatures above 140°C led to the formation of more sodalite because of the redissolving and recrystallization of zeolite crystals. Alkali metal and alkaline earth metal cations were impregnated in the synthesized Na-P1 and Na-A zeolite through an ion-exchange method. The completed zeolitic sorbents were applied to the adsorption of low-level CO2. As a result of the experiments, calcium ions were found to be the best for CO2 adsorption owing to their electrostatic behavior and acid-base interaction. 相似文献
14.
This work presents a method capable of melting the incinerator bottom ash and fly ash in a plasma furnace. The performance of slag and the strategies for recycling of bottom ash and fly ash are improved by adjusting chemical components of bottom ash and fly ash. Ashes are separated by a magnetic process to improve the performance of slag. Analytical results indicate that the air-cooled slag (ACS) and magnetic-separated slag (MSS) have hardness levels below 590 MPa, indicating fragility. Additionally, the hardness of crystallized slag (RTS) is between 655 and 686 MPa, indicating toughness. The leached concentrations of heavy metals for these three slags are all below the regulatory limits. ACS appears to have better chemical stability than MSS, and is not significantly different from RTS. In the potential alkali-silica reactivity of slag, MSS falls on the border between the harmless zone and the potentially harmful zone. ACS and RTS fall in the harmless zone. Hence, the magnetic separation procedure of ashes does not significantly improve the quality of slag. However, RTS appears to improve its quality. 相似文献
15.
《Waste management & research》1990,8(6):429-449
The results of large-scale lysimeter tests in which two pulverized coal fly ashes (PCFA) have been exposed to natural weather conditions for up to seven years are presented and compared with those of laboratory leaching tests. Laboratory column leaching tests on PCFA show good reproducibility, and comparisons between lysimeter and laboratory leaching results are promising for several salt ions and trace elements in the leachate when expressed in terms of the leachate to solids ratio (L/S). A long-term disposal strategy which takes into account the largely insoluble nature of PCFA is suggested. 相似文献
16.
Two different coal fly ashes coming from the burning of two coals of different rank have been used as a precursor for the preparation of steam activated carbons. The performance of these activated carbons in the SO2 removal was evaluated at flue gas conditions (100 °C, 1000 ppmv SO2, 5% O2, 6% H2O). Different techniques were used to determine the physical and chemical characteristics of the samples in order to explain the differences found in their behaviour. A superior SO2 removal capacity was shown by the activated carbon obtained using the fly ash coming from a subbituminous–lignite blend. Experimental results indicated that the presence of higher amount of certain metallic oxides (Ca, Fe) in the carbon-rich fraction of this fly ash probably has promoted a deeper gasification in the activation with steam. A more suitable surface chemistry and textural properties have been obtained in this case which explains the higher efficiency shown by this sample in the SO2 removal. 相似文献
17.
以二乙烯三胺(DETA)、CS2、环氧氯丙烷和NaOH为原料合成了重金属螯合剂(HMCA),采用红外光谱对其结构进行了表征,通过SEM及电子能谱观察分析了螯合产物的形貌和组成.红外光谱谱图表明,HMCA分子中已成功接入-CSS-基团.采用HMCA处理镀铬废水,HMCA与Cr3+可形成稳定的螯合产物.电子能谱分析表明,HMCA螯合产物中S与Cr的摩尔比为4.097∶1,与理论值较接近,基本上按n(-CSS-)∶n(Cr3+)=2∶1形成螯合物.HMCA处理镀铬废水的最佳pH为8.5,最佳HMCA加入量为8.52 g/L,此时Cr3+去除率为99.94%,残余Cr3+质量浓度为0.16 mg/L. 相似文献
18.
Diaz-Loya EI Allouche EN Eklund S Joshi AR Kupwade-Patil K 《Waste management (New York, N.Y.)》2012,32(8):1521-1527
Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively. 相似文献
19.
Tomohito Kameda Chisato Shoji Shoko Fukushima Guido Grause Toshiaki Yoshioka 《Journal of Material Cycles and Waste Management》2013,15(3):404-408
The permeation of Cl? ions from a NaCl/ethylene glycol (EG) solution during electrodialysis was investigated using alumina and alumina/zeolite membranes. Voltage changes had very little effect on Cl? permeation through the alumina membrane, suggesting that the driving force for the permeation was concentration-gradient-induced diffusion, and not the electric field. Solvation of the Na+ ions by EG resulted in EG migration through the membrane. Replacement of the deionized water (electrolyte) in the anodic cell with NaOH resulted in increased Cl? permeation, although a greater amount of EG migrated into the NaOH solution as well. No notable difference was observed in Cl? permeation through the alumina and alumina/zeolite membranes, but EG migration decreased when using the latter membrane, suggesting that EG migration was prevented by the zeolite layer. The proposed alumina/zeolite membrane is, hence, useful for solvent recovery by electrodialysis, but its mechanical stability must be improved for industrial applications. 相似文献
20.
Xinying Li Quanyuan Chen Yasu Zhou Mark Tyrer Yang Yu 《Waste management (New York, N.Y.)》2014,34(12):2494-2504
The objective of this work was to investigate the feasibility and effectiveness of silica fume on stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash. In addition to compressive strength measurements, hydrated pastes were characterized by X-ray diffraction (XRD), thermal-analyses (DTA/TG), and MAS NMR (27Al and 29Si) techniques. It was found that silica fume additions could effectively reduce the leaching of toxic heavy metals. At the addition of 20% silica fume, leaching concentrations for Cu, Pb and Zn of the hydrated paste cured for 7 days decreased from 0.32 mg/L to 0.05 mg/L, 40.99 mg/L to 4.40 mg/L, and 6.96 mg/L to 0.21 mg/L compared with the MSWI fly ash. After curing for 135 days, Cd and Pb in the leachates were not detected, while Cu and Zn concentrations decreased to 0.02 mg/L and 0.03 mg/L. The speciation of Pb and Cd by the modified version of the European Community Bureau of Reference (BCR) extractions showed that these metals converted into more stable state in hydrated pastes of MSWI fly ash in the presence of silica fume. Although exchangeable and weak-acid soluble fractions of Cu and Zn increased with hydration time, silica fume addition of 10% can satisfy the requirement of detoxification for heavy metals investigated in terms of the identification standard of hazardous waste of China. 相似文献