首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent times, environmental safety has been on priority in the development of new materials leading to a recycling and reuse approach to conserve the materials resources. This has resulted in more focus on the application of natural materials such as lignocellulosic fibers. This paper presents the characterization of continuous and aligned jute fabrics obtained from new and used sacks as well as the preparation and characterization of their composites incorporated into recycled polyethylene or as isolated pieces up to 40 wt%. These environmentally friendly composites were subjected to bend test and the fracture surface analyzed by SEM. The fabric from new sacks showed greater damage tolerance than that from the used sacks. The flexural stress increased steadily with increasing used fabric content up to 30 wt%, which is explained using fractographic studies on ruptured specimens. Used jute fabric composites are found to be viable alternative materials for low strength conventional materials based on cost–performance comparison with conventional materials.  相似文献   

2.
Natural composites have been important materials system due to preservation of earth environments. Natural fibers such as jute, hemp, bagasse and so on are very good candidate of natural composites as reinforcements. On the other hand regarding matrix parts thermosetting polymer and thermoplastic polymer deriver form petrochemical products are not environmental friendly material, even if thermoplastic polymer can be recycled. In order to create fully environmental friendly material (FEFM) biodegradable polymer which can be deriver from natural resources is needed. Therefore poly(lactic acid) (PLA) polymer is very good material for the FEFM. In this paper jute fiber filled PLA resin (jute/PLA) composites was fabricated by injection moldings and mechanical properties were measured. It is believable that industries will have much attention to FEFM, so that injection molding was adopted to fabricate the composites. Long fiber pellet fabricated by pultrusion technique was adopted to prepare jute/PLA pellet. Because it is able to fabricate composite pellets with relative long length fibers for injection molding process, where, jute yarns were continuously pulled and coated with PLA resin. Here two kinds of PLA materials were used including the one with mold releasing agent and the other without it. After pass through a heated die whereby PLA resin impregnates into the jute yarns and sufficient cooling, the impregnated jute yarns were cut into pellets. Then jute/PLA pellets were fed into injection machine to make dumbbell shape specimens. In current study, the effects of temperature of PLA melting temperature i.e. impregnation temperature and the kinds of PLA were focused to get optimum molding condition. The volume fractions of jute fiber in pellet were measured by several measuring method including image analyzing, density measurement and dissolution methods. Additionally, thermal and mechanical properties were investigated. It is found that 250° is much suitable for jute/PLA long fiber pultrusion process because of its less heat degradation of jute, better impregnation, acceptable mechanical property and higher production efficiency. Additionally the jute fibers seem much effective to increase deflection temperature under load, tensile modulus and Izod strength.  相似文献   

3.
Sustainability, industrial ecology, eco-efficiency, and green chemistry are guiding the development of the next generation of materials, products, and processes. Biodegradable plastics and bio-based polymer products based on annually renewable agricultural and biomass feedstock can form the basis for a portfolio of sustainable, eco-efficient products that can compete and capture markets currently dominated by products based exclusively on petroleum feedstock. Natural/Biofiber composites (Bio-Composites) are emerging as a viable alternative to glass fiber reinforced composites especially in automotive and building product applications. The combination of biofibers such as kenaf, hemp, flax, jute, henequen, pineapple leaf fiber, and sisal with polymer matrices from both nonrenewable and renewable resources to produce composite materials that are competitive with synthetic composites requires special attention, i.e., biofiber–matrix interface and novel processing. Natural fiber–reinforced polypropylene composites have attained commercial attraction in automotive industries. Natural fiber—polypropylene or natural fiber—polyester composites are not sufficiently eco-friendly because of the petroleum-based source and the nonbiodegradable nature of the polymer matrix. Using natural fibers with polymers based on renewable resources will allow many environmental issues to be solved. By embedding biofibers with renewable resource–based biopolymers such as cellulosic plastics; polylactides; starch plastics; polyhydroxyalkanoates (bacterial polyesters); and soy-based plastics, the so-called green bio-composites are continuously being developed.  相似文献   

4.
Manufacturing composites with polymers and natural fibers has traditionally been performed using chopped fibers or a non-woven mat for reinforcement. Fibers from flax (Linum usitatissimum L.) are stiff and strong and can be processed into a yarn and then manufactured into a fabric for composite formation. Fabric directly impacts the composite because it contains various fiber types via fiber or yarn blending, fiber length is often longer due to requirements in yarn formation, and it controls the fiber alignment via weaving. Composites created with cotton and flax-containing commercial fabrics and recycled high-density polyethylene (HDPE) were evaluated for physical and mechanical properties. Flax fiber/recycled HDPE composites were easily prepared through compression molding using a textile preform. This method takes advantage of maintaining cotton and flax fiber lengths that are formed into a yarn (a continuous package of short fibers) and oriented in a bidirectional woven fabric. Fabrics were treated with maleic anhydride, silane, enzyme, or adding maleic anhydride grafted polyethylene (MAA-PE; MDEX 102-1, Exxelor® VA 1840) to promote interactions between polymer and fibers. Straight and strong flax fibers present problems because they are not bound as tightly within yarns producing weaker and less elastic yarns that contain larger diameter variations. As the blend percentage and mass of flax fibers increases the fabric strength, and elongation generally decrease in value. Compared to recycled HDPE, mechanical properties of composite materials (containing biodegradable and renewable resources) demonstrated significant increases in tensile strength (1.4–3.2 times stronger) and modulus of elasticity (1.4–2.3 times larger). Additional research is needed to improve composite binding characteristics by allowing the stronger flax fibers in fabric to carry the composites load.  相似文献   

5.
Switchgrass (SG) stems with lengths up to 10 cm have been used as reinforcement to make lightweight composites with polypropylene (PP) webs. The long SG stems, with simple cut or split and without chemical treatment, were used directly in the composites. Utilizing SG stems for composites not only increases the values of SG but also provides a green, sustainable and biodegradable material for the composites industry. Lightweight composites are preferred, especially for automotive applications due to the potential saving in energy. In this research, the effects of manufacturing parameters on the properties of composites have been studied. Although the tensile properties of SG stem are significantly worse than jute fiber, SG stem with low bulk density is found to better reinforce the lightweight composites. Compared with the jute-PP composites of the same density (0.47 g/cm3), composites reinforced by the split SG stems have 56% higher flexural strength, 19% higher modulus of elasticity, 15% higher impact resistance, 63% higher Young’s modulus, 52% lower tensile strength, and similar sound absorption property. The SG-PP composites with optimized properties have the potential to be used for industrial applications such as the support layers in automotive interiors, office panels and ceiling tiles.  相似文献   

6.
In this research, hybrid composite materials were prepared from combination of oil palm Empty fruit bunches (EFB) fibre and jute fibre as reinforcement, epoxy as polymer matrix. This study intended to investigate the effect of jute fiber hybridization and different layering pattern on the physical properties of oil palm EFB-Epoxy composites. Water absorption and thickness swelling test reveal that hybrid composite shows a moderate water absorption which is 11.20% for hybrid EFB/Jute/EFB composite and 6.08% for hybrid Jute/EFB/Jute composite. The thickness swelling and water absorption of the hybrid composites slightly increased as the layering pattern of hybrid composites changed. Hybrid composites are more water resistance and dimensional stable compare to the pure EFB composites. This is attributed to the more hydrophilic nature of EFB composites. Hybridization of oil palm EFB composites with jute fibres can improve the dimensional stability and density of pure EFB and Jute fibre reinforced composites has higher density of 1.2 g/cm3 compared to all other composites.  相似文献   

7.
Three to four billion pounds of chicken feathers are wasted in the United States annually. These feathers pose an environmental challenge. In order to find a commercial application of these otherwise wasted feathers, composites have been prepared from feathers. Flexural, impact resistance, and sound dampening properties of composites from chicken feather fiber (FF) and High Density Polyethylene/Polypropylene (HDPE/PP) fiber have been investigated and compared with pulverized chicken quill-HDPE/PP, and jute-HDPE/PP composites. Sound dampening by FF composites was 125% higher than jute and similar to quill although mechanical properties were inferior to the latter two. In ground form, FF and jute composite properties were similar except for 34% higher modulus of jute; under the same formulation and processing conditions, ground FF composites had nearly 50% lower mechanical properties compared with ground quill composites. It was found that voids and density of composites have effect on mechanical and sound dampening properties; however, no direct relationship was found between mechanical properties and sound dampening.  相似文献   

8.
This paper mainly focuses on the fabrication process of long fibre reinforced unidirectional thermoplastic composites made using both natural (untreated) treated jute yarns. Jute yarns were wound in layers onto a metallic frame. Polypropylene films were inserted between these layers and compression moulded to fabricate unidirectional jute/PP composite specimens. Static mechanical properties were evaluated from tensile three point bending tests. Pre- post-failure examination were carried out on the test specimens using optical scanning electron microscopy to analyse the test results and investigate the correlations between their impregnation state, processing conditions, mechanical performances and fracture morphologies. For the unidirectional jute/PP film-stacked composites, the results indicated that the processing condition at the moulding temperature of 160°C and moulding pressure of 2.0 MPa for 15 min was ideally suited to obtain optimized properties. Improved wettability of resin melts due to complete matrix fusion at this processing condition facilitated thorough impregnation with minimum microstructural imperfections (microvoids) being generated. Jute/PP composites that contained treated jute yarns have shown superiority in tensile bending properties. Jute yarns polished or coated with PVA/PP (polyvinyl alcohol/polypropylene) must have contributed positively to fibre/matrix interfacial interactions leading to matrix to fibre effective stress transfer, thereby improving their reinforcing effects. Tensile strength and modulus of PP resin increased by approximately 285% and 388%, respectively, due to 50 wt% reinforcement by natural jute yarns. Further improvements in strength and modulus were achieved by approximately 14% and 10%, respectively, when treated yarns were used . The maximum bending stress modulus of jute/PP composites containing untreated yarns were approximately 190% and 460% higher than those of the virgin PP materials, and bending properties were improved by further 11% and 23%, respectively, due to coating treatments on the yarn surface.  相似文献   

9.
Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torque rheometer (120 °C, 50 rpm) for 6 min. The mixtures obtained were molded by heat compression and further characterized. Addition of lignocellulosic fibers in the matrix decreased the water absorption at equilibrium. The diffusion coefficient decreased sharply around 5% fiber concentration, and further fiber additions caused only small variations. The thermogravimetric (TG) analysis revealed improved thermal stability of matrix upon addition of fibers. The Young’s modulus and ultimate tensile strength increased with fiber content in the matrix. The storage modulus increased with increasing fiber content, whereas tanδ curves decreased, confirming the reinforcing effect of the fibers. Morphology of the composites analyzed under the scanning electron microscope (SEM) exhibited good interfacial adhesion between the matrix and the added fibers. Matrix degraded rapidly in compost, and addition of increased amounts of coconut fiber in the matrix caused a slowdown the biodegradability of the matrix. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may be suitable.  相似文献   

10.
The use of composites made from non-biodegradable conventional plastic materials (e.g., polypropylene, PP) is creating global environmental concern. Biodegradable plastics such as poly(butylene succinate) (PBS) are sought after to reduce plastic waste accumulation. Unfortunately, these types of plastics are very costly; therefore, natural lignocellulosic fibers are incorporated to reduce the cost. Kenaf fibers are also incorporated into PP and PBS for reinforcing purposes and they have low densities, high specific properties and renewable sourcing. However without good compatibilization, the interfacial adhesion between the matrix and the fibers is poor due to differences in polarity between the two materials. Maleic anhydride-grafted compatibilizers may be introduced into the system to improve the matrix-fiber interactions. The overall mechanical, thermal and water absorption properties of PP and PBS composites prepared with 30 vol.% short kenaf fibers (KFs) using a twin-screw extruder were being investigated in this study. The flexural properties for both types of composites were enhanced by the addition of compatibilizer, with improvements of 56 and 16 % in flexural strength for the PP/KF and PBS/KF composites, respectively. Good matrix-fiber adhesion was also observed by scanning electron microscopy. However, the thermal stability of the PBS/KF composites was lower than that of the PP/KF composites. This result was confirmed by both DSC and TGA thermal analysis tests. The water absorption at equilibrium of a PBS composite filled with KFs is inherently lower than of a PP/KF composite because the water molecules more readily penetrate the PP composites through existing voids between the fibers and the matrix. Based on this research, it can be concluded that PBS/KF composites are good candidates for replacing PP/KF composites in applications whereby biodegradability is essential and no extreme thermal and moisture exposures are required.  相似文献   

11.
Municipal solid wastes generated each year contain potentially useful and recyclable materials for composites. Simultaneously, interest is high for the use of natural fibers, such as flax (Linum usitatissimum L.), in composites thus providing cost and environmental benefits. To investigate the utility of these materials, composites containing flax fibers with recycled high density polyethylene (HDPE) were created and compared with similar products made with wood pulp, glass, and carbon fibers. Flax was either enzyme- or dew-retted to observe composite property differences between diverse levels of enzyme formulations and retting techniques. Coupling agents would strengthen binding between fibers and HDPE but in this study fibers were not modified in anyway to observe mechanical property differences between natural fiber composites. Composites with flax fibers from various retting methods, i.e., dew- vs. enzyme-retting, behaved differently; dew-retted fiber composites resulted in both lower strength and percent elongation. The lowest level of enzyme-retting and the most economical process produces composites that do not appear to differ from the highest level of enzyme-retting. Flax fibers improved the modulus of elasticity over wood pulp and HDPE alone and were less dense than glass or carbon fiber composites. Likely, differences in surface properties of the various flax fibers, while poorly defined and requiring further research, caused various interactions with the resin that influenced composite properties.  相似文献   

12.
This study focuses on the structural characterization of Natural Fiber Reinforced Polymeric (NFRP) laminates for their potential application in structural insulated panels in order to replace traditional Oriented Strand Board (OSB) laminates. To this end, mechanical testing such as bending test and low velocity impact test were performed on the laminates made up of bleached and unbleached jute fibers and the results were compared with OSB laminates and Glass/Polypropylene (G/PP) laminates. The results showed significant improvement in the mechanical properties of the resulting laminates such as bending strength by 176%, the modulus of elasticity by 129% and, the load carrying capacity by 179%. The energy absorbed by NFRP was 18% higher than OSB and 26% higher resistance to impact loading.  相似文献   

13.
Treated sisal fibers were used as reinforcement of polypropylene (PP) composites, with maleic anhydride-grafted PP (MAPP) as coupling agent. The composites were made by melting processing of PP with the fiber in a heated roller followed by multiple extrusions in a single-screw extruder. Injection molded specimens were produced for the characterization of the material. In order to improve the adhesion between fiber and matrix and to eliminate odorous substances, sisal fibers were treated with boiling water and with NaOH solutions at 3 and 10 wt.%. The mechanical properties of the composites were assessed by tensile, bend and impact tests. Additionally, the morphology of the composites and the adhesion at he fiber–matrix interface were analyzed by SEM. The fiber treatment led to very light and odorless materials, with yields of 95, 74 and 62 wt.% for treatments with hot water, 3 and 10 wt.% soda solution respectively. Fiber treatment caused an appreciable change in fiber characteristics, yet the mechanical properties under tensile and flexural tests were not influenced by that treatment. Only the impact strength increased in the composites with alkali-treated sisal fibers.  相似文献   

14.
This work focused on the durability of short jute fiber reinforced poly(lactic acid) (PLA) composites in distilled water at different temperatures (23, 37.8 and 60 °C). Morphological, thermal and mechanical properties (tensile, flexural, and impact) of jute/PLA composites were investigated before and after aging. Different from traditional synthetic fiber reinforced polymer composites, the stability of jute/PLA composites in water was significantly influenced by hydrothermal temperature. The mechanical properties of the composites and molecular weight of PLA matrix declined quickly at 60 °C, however, this process was quite slower at temperatures of 23 and 37.8 °C. Impact properties of the composites were hardly decreased, but the tensile and flexural properties suffered a drop though to various degrees with three degradation stages at 23 and 37.8 °C. The poor interface of composites and the degradation of PLA matrix were the main damage mechanism induced by hydrothermal aging. Furthermore, considering the hydrolysis of PLA matrix, the cleavage of PLA molecular chain in different aging time was quantitatively investigated for the first time to illustrate hydrolysis degree of PLA matrix at different aging time.  相似文献   

15.
Fabrication of complex injection molded parts often involves the use of multiple gates. In such situations, polymer melts from different gates meld to form the molded part (weld line). This paper reports on the fabrication and characterization of the mechanical and morphological properties of short fiber reinforced jute/poly butylene succinate (PBS) biodegradable composites. The effect of a dual gated mold in the fabrication of welded specimens was a key focus of the investigation. It was observed that incorporation of jute fiber (10 wt%) conferred drastic changes on the stress–strain properties of the matrix as the elongation at break (EB), dropped from 160% in the matrix to just 10% in the composite. The tensile strength of the composite was lower than that of the matrix. However, it is noteworthy that the tensile modulus of the composite increased. Bending test also revealed that both bending strength and modulus increased with the incorporation of jute. Morphological studies of the tensile fracture surface using SEM revealed two types of failure mode. Ductile failure was indicated by plastic deformation at the initiation of fracture followed by brittle failure. The good interfacial bonding indicated between jute and PBS was attributed to positive interaction between the two polar polymers. A comparison of the non-weld and weld-line samples revealed that the weld-line composites have better mechanical integrity than the corresponding polymer matrix with weld line. The results also revealed that elongation at break and toughness are most sensitive to the presence of the weld-line whereas flexural properties are least sensitive.  相似文献   

16.
This research demonstrates that chicken feathers can be used as matrix to develop completely biodegradable composites with properties similar to that of composites having polypropylene (PP) as matrix. Feathers are ubiquitous and inexpensive but have limited industrial applications. Feathers have been preferably used for composite applications due to their low density and presence of hollow structures that facilitate sound absorption. However, previous approaches on using feathers for composites have used the whole feather or the feather fractions as reinforcement with synthetic polymers as matrix resulting in partially degradable composites. In addition, the hydrophilicity of the feathers and hydrophobicity of the synthetic matrix results in poor compatibility and therefore less than optimum properties. Although it has been shown that feathers can be made thermoplastic and suitable to develop films and other thermoplastics, there are no reports on using feathers as matrix for composites. In this research, chicken feathers were used as matrix and jute fibers as reinforcement to develop completely biodegradable composites. Tensile, flexural and acoustic properties of the feather-jute composites were compared to PP-jute composites. Utilizing feathers as matrix could enable us to develop low cost 100 % biodegradable composites containing feathers or other biopolymers as the reinforcement.  相似文献   

17.
Poly(vinyl chloride) (PVC) and natural fiber composites were prepared by melt compounding and compression molding. The influence of fiber type (i.e., bagasse, rice straw, rice husk, and pine fiber) and loading level of styrene-ethylene-butylene-styrene (SEBS) block copolymer on composite properties was investigated. Mechanical analysis showed that storage modulus and tensile strength increased with fiber loading at the 30% level for all composites, but there was little difference in both properties among the composites from various fiber types. The use of SEBS decreased storage moduli, but enhanced tensile strength of the composites. The addition of fiber impaired impact strength of the composites, and the use of SEBS led to little change of the property for most of the composites. The addition of fiber to PVC matrix increased glass transition temperature (Tg), but lowered degradation temperature (Td) and thermal activation energy (Ea). After being immersed in water for four weeks, PVC/rice husk composites presented relatively smaller water absorption (WA) and thickness swelling (TS) rate compared with other composites. The results of the study demonstrate that PVC composites filled with agricultural fibers had properties comparable with those of PVC/wood composite.  相似文献   

18.
Growing interest in green products has provided fresh impetus to the research in the field of renewable materials. Plant fibers are not only renewable but also light in weight and low in cost. Polymer composites manufactured using them find applications in diverse fields such as automobiles, housing, and furniture. However, their hydrophilic nature and inadequate adhesion with matrix limits their use in high performance applications. In this study, a novel method for improving adhesion characteristics of natural fibers has been developed. This method is carried out by treating hemp fibers with a fungus: Ophiostoma ulmi, obtained from elm tree infected with Dutch elm disease. Treated fibers showed improved acid–base characteristics and resistance to moisture. Improved acid–base interactions between fiber and resin are expected to improve the interfacial adhesion, whereas improved moisture resistance would benefit the durability of the composites. Finally, composites were prepared using untreated/treated fibers and unsaturated polyester resin. Composites with treated fibers showed slightly better mechanical properties, which is most probably due to improved interfacial adhesion.  相似文献   

19.
This paper investigates and compares the performances of polylactic acid (PLA)/kenaf (PLA-K) and PLA/rice husk (PLA-RH) composites in terms of biodegradability, mechanical and thermal properties. Composites with natural fiber weight content of 20% with fiber sizes of less than 100 μm were produced for testing and characterization. A twin-screw extrusion was used to compound PLA and natural fibers, and extruded composites were injection molded to test samples. Flexural and Izod impact test, TGA, soil burial test and SEM were used to investigate properties. All results were compared to a pure PLA matrix sample. The flexural modulus of the PLA increased with the addition of natural fibers, while the flexural strength decreased. The highest impact strength (34 J m−1), flexural modulus (4.5 GPa) and flexural strength (90 MPa) were obtained for the composite made of PLA/kenaf (PLA-K), which means kenaf natural fibers are potential to be used as an alternative filler to enhance mechanical properties. On the other hand PLA-RH composite exhibits lower mechanical properties. The impact strength of PLA has decreased when filled with natural fibers; this decrease is more pronounced in the PLA-RH composite. In terms of thermal stability it has been found that the addition of natural fibers decreased the thermal stability of virgin PLA and the decrement was more prominent in the PLA-RH composite. Biodegradability of the composites slightly increased and reached 1.2 and 0.8% for PLA-K and PLA-RH respectively for a period of 90 days. SEM micrographs showed poor interfacial between the polymer matrix and natural fibers.  相似文献   

20.
The aim of the research described in this paper was to prepare and characterize a maleated polylactide (MAPLA) and to study whether use of this additive might enhance the properties of polylactide (PLA) biocomposites. PLA and MAPLA prepared in the laboratory were characterized using various analytical techniques and the effect of using MAPLA as an additive was investigated by three methods: (a) compounding with a commercially available l-PLA and wood fiber in a Brabender mixer, (b) compounding with commercially available l-PLA and nanoclay in a Haake mini-extruder, and (c) solution treatment of jute fiber mats that were then used to prepare jute-PLA composites by a compression molding process. Scanning electron microscopy (SEM) photomicrographs of the wood-PLA compound prepared in the Brabender mixer suggested some improvement in adhesion might have occurred in the presence of MAPLA. Rheological and X-ray diffraction measurements on nanoclay-PLA compounded in the mini-extruder gave mixed results but did not indicate beneficial effects from addition of MAPLA to the process. Tensile testing of jute-PLA composites showed a reduction in composite tensile strength resulting from addition of MAPLA to the fibers. Possible reasons for these results and options for further research are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号