首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimal redesign of groundwater quality monitoring networks: a case study   总被引:2,自引:0,他引:2  
Assessment and redesign of water quality monitoring networks is an important task in water quality management. This paper presents a new methodology for optimal redesign of groundwater quality monitoring networks. The measure of transinformation in discrete entropy theory and the transinformation–distance (T–D) curves are used to quantify the efficiency of sampling locations and sampling frequencies in a monitoring network. The existing uncertainties in the T–D curves are taken in to account using the fuzzy set theory. The C-means clustering method is also used to classify the study area to some homogenous zones. The fuzzy T–D curve of the zones is then used in a multi-objective hybrid genetic algorithm-based optimization model. The proposed methodology is utilized for optimal redesign of monitoring network of the Tehran aquifer in the Tehran metropolitan area, Iran.  相似文献   

2.
Only with a properly designed water quality monitoring network can data be collected that can lead to accurate information extraction. One of the main components of water quality monitoring network design is the allocation of sampling locations. For this purpose, a design methodology, called critical sampling points (CSP), has been developed for the determination of the critical sampling locations in small, rural watersheds with regard to total phosphorus (TP) load pollution. It considers hydrologic, topographic, soil, vegetative, and land use factors. The objective of the monitoring network design in this methodology is to identify the stream locations which receive the greatest TP loads from the upstream portions of a watershed. The CSP methodology has been translated into a model, called water quality monitoring station analysis (WQMSA), which integrates a geographic information system (GIS) for the handling of the spatial aspect of the data, a hydrologic/water quality simulation model for TP load estimation, and fuzzy logic for improved input data representation. In addition, the methodology was purposely designed to be useful in diverse rural watersheds, independent of geographic location. Three watershed case studies in Pennsylvania, Amazonian Ecuador, and central Chile were examined. Each case study offered a different degree of data availability. It was demonstrated that the developed methodology could be successfully used in all three case studies. The case studies suggest that the CSP methodology, in form of the WQMSA model, has potential in applications world-wide.  相似文献   

3.
One of the difficulties in accurate characterization of unknown groundwater pollution sources is the uncertainty regarding the number and the location of such sources. Only when the number of source locations is estimated with some degree of certainty that the characterization of the sources in terms of location, magnitude, and activity duration can be meaningful. A fairly good knowledge of source locations can substantially decrease the degree of nonuniqueness in the set of possible aquifer responses to subjected geochemical stresses. A methodology is developed to use a sequence of dedicated monitoring network design and implementation and to screen and identify the possible source locations. The proposed methodology utilizes a combination of spatial interpolation of concentration measurements and simulated annealing as optimization algorithm for optimal design of the monitoring network. These monitoring networks are to be designed and implemented sequentially. The sequential design is based on iterative pollutant concentration measurement information from the sequentially designed monitoring networks. The optimal monitoring network design utilizes concentration gradient information from the monitoring network at previous iteration to define the objective function. The capability of the feedback information based iterative methodology is shown to be effective in estimating the source locations when no such information is initially available. This unknown pollution source locations identification methodology should be very useful as a screening model for subsequent accurate estimation of the unknown pollution sources in terms of location, magnitude, and activity duration.  相似文献   

4.
In this study, Grey model (GM) and artificial neural network (ANN) were employed to predict suspended solids (SSeff) and chemical oxygen demand (CODeff) in the effluent from a wastewater treatment plant in industrial park of Taiwan. When constructing model or predicting, the influent quality or online monitoring parameters were adopted as the input variables. ANN was also adopted for comparison. The results indicated that the minimum MAPEs of 16.13 and 9.85% for SSeff and CODeff could be achieved using GMs when online monitoring parameters were taken as the input variables. Although a good fitness could be achieved using ANN, they required a large quantity of data. Contrarily, GM only required a small amount of data (at least four data) and the prediction results were even better than those of ANN. Therefore, GM could be applied successfully in predicting effluent when the information was not sufficient. The results also indicated that these simple online monitoring parameters could be applied on prediction of effluent quality well.  相似文献   

5.
The principal instrument to temporally and spatially manage water resources is a water quality monitoring network. However, to date in most cases, there is a clear absence of a concise strategy or methodology for designing monitoring networks, especially when deciding upon the placement of sampling stations. Since water quality monitoring networks can be quite costly, it is very important to properly design the monitoring network so that maximum information extraction can be accomplished, which in turn is vital when informing decision-makers. This paper presents the development of a methodology for identifying the critical sampling locations within a watershed. Hence, it embodies the spatial component in the design of a water quality monitoring network by designating the critical stream locations that should ideally be sampled. For illustration purposes, the methodology focuses on a single contaminant, namely total phosphorus, and is applicable to small, upland, predominantly agricultural-forested watersheds. It takes a number of hydrologic, topographic, soils, vegetative, and land use factors into account. In addition, it includes an economic as well as logistical component in order to approximate the number of sampling points required for a given budget and to only consider the logistically accessible stream reaches in the analysis, respectively. The methodology utilizes a geographic information system (GIS), hydrologic simulation model, and fuzzy logic.  相似文献   

6.
Pollution and the eutrophication process are increasing in lake Yahuarcocha and constant water quality monitoring is essential for a better understanding of the patterns occurring in this ecosystem. In this study, key sensor locations were determined using spatial and temporal analyses combined with geographical information systems (GIS) to assess the influence of weather features, anthropogenic activities, and other non-point pollution sources. A water quality monitoring network was established to obtain data on 14 physicochemical and microbiological parameters at each of seven sample sites over a period of 13 months. A spatial and temporal statistical approach using pattern recognition techniques, such as cluster analysis (CA) and discriminant analysis (DA), was employed to classify and identify the most important water quality parameters in the lake. The original monitoring network was reduced to four optimal sensor locations based on a fuzzy overlay of the interpolations of concentration variations of the most important parameters.  相似文献   

7.
The design of a water quality monitoring network (WQMN) is a complicated decision-making process because each sampling involves high installation, operational, and maintenance costs. Therefore, data with the highest information content should be collected. The effect of seasonal variation in point and diffuse pollution loadings on river water quality may have a significant impact on the optimal selection of sampling locations, but this possible effect has never been addressed in the evaluation and design of monitoring networks. The present study proposes a systematic approach for siting an optimal number and location of river water quality sampling stations based on seasonal or monsoonal variations in both point and diffuse pollution loadings. The proposed approach conceptualizes water quality monitoring as a two-stage process; the first stage of which is to consider all potential water quality sampling sites, selected based on the existing guidelines or frameworks, and the locations of both point and diffuse pollution sources. The monitoring at all sampling sites thus identified should be continued for an adequate period of time to account for the effect of the monsoon season. In the second stage, the monitoring network is then designed separately for monsoon and non-monsoon periods by optimizing the number and locations of sampling sites, using a modified Sanders approach. The impacts of human interventions on the design of the sampling net are quantified geospatially by estimating diffuse pollution loads and verified with land use map. To demonstrate the proposed methodology, the Kali River basin in the western Uttar Pradesh state of India was selected as a study area. The final design suggests consequential pre- and post-monsoonal changes in the location and priority of water quality monitoring stations based on the seasonal variation of point and diffuse pollution loadings.  相似文献   

8.
Identification of representative sampling sites is a critical issue in establishing an effective water quality monitoring program. This is especially important at the urban-agriculture interface where water quality conditions can change rapidly over short distances. The objective of this research was to optimize the spatial allocation of discrete monitoring sites for synoptic water quality monitoring through analysis of continuous longitudinal monitoring data collected by attaching a water quality sonde and GPS to a boat. Sampling was conducted six times from March to October 2009 along a 6.5 km segment of the Wen-Rui Tang River in eastern China that represented an urban-agricultural interface. When travelling at a velocity of ~2.4 km h(-1), this resulted in water quality measurements at ~20 m interval. Ammonia nitrogen (NH(4)(+)-N), electrical conductivity (EC), dissolved oxygen (DO), and turbidity data were collected and analyzed using Cluster Analysis (CA) to identify optimal locations for establishment of long-term monitoring sites. The analysis identified two distinct water quality segments for NH(4)(+)-N and EC and three distinct segments for DO and turbidity. According to our research results, the current fixed-location sampling sites should be adjusted to more effectively capture the distinct differences in the spatial distribution of water quality conditions. In addition, this methodology identified river reaches that require more comprehensive study of the factors leading to the changes in water quality within the identified river segment. The study demonstrates that continuous longitudinal monitoring can be a highly effective method for optimizing monitoring site locations for water quality studies.  相似文献   

9.
A methodology based on the integration of a seismic-based artificial neural network (ANN) model and a geographic information system (GIS) to assess water leakage and to prioritize pipeline replacement is developed in this work. Qualified pipeline break-event data derived from the Taiwan Water Corporation Pipeline Leakage Repair Management System were analyzed. “Pipe diameter,” “pipe material,” and “the number of magnitude-3?+? earthquakes” were employed as the input factors of ANN, while “the number of monthly breaks” was used for the prediction output. This study is the first attempt to manipulate earthquake data in the break-event ANN prediction model. Spatial distribution of the pipeline break-event data was analyzed and visualized by GIS. Through this, the users can swiftly figure out the hotspots of the leakage areas. A northeastern township in Taiwan, frequently affected by earthquakes, is chosen as the case study. Compared to the traditional processes for determining the priorities of pipeline replacement, the methodology developed is more effective and efficient. Likewise, the methodology can overcome the difficulty of prioritizing pipeline replacement even in situations where the break-event records are unavailable.  相似文献   

10.
Eco-environment quality evaluation is an important research theme in environment management. In the present study, Fuzhou city in China was selected as a study area and a limited number of 222 sampling field sites were first investigated in situ with the help of a GPS device. Every sampling site was assessed by ecological experts and given an Eco-environment Background Value (EBV) based on a scoring and ranking system. The higher the EBV, the better the ecological environmental quality. Then, three types of eco-environmental attributes that are physically-based and easily-quantifiable at a grid level were extracted: (1) remote sensing derived attributes (vegetation index, wetness index, soil brightness index, surface land temperature index), (2) meteorological attributes (annual temperature and annual precipitation), and (3) terrain attribute (elevation). A Back Propagation (BP) Artificial Neural Network (ANN) model was proposed for the EBV validation and prediction. A three-layer BP ANN model was designed to automatically learn the internal relationship using a training set of known EBV and eco-environmental attributes, followed by the application of the model for predicting EBV values across the whole study area. It was found that the performance of the BP ANN model was satisfactory and capable of an overall prediction accuracy of 82.4%, with a Kappa coefficient of 0.801 in the validation. The evaluation results showed that the eco-environmental quality of Fuzhou city is considered as satisfactory. Through analyzing the spatial correlation between the eco-environmental quality and land uses, it was found that the best eco-environmental areas were related to forest lands, whereas the urban area had the relatively worst eco-environmental quality. Human activities are still considered as a major impact on the eco-environmental quality in this area.  相似文献   

11.
An application of a newly developed optimal monitoring network for the delineation of contaminants in groundwater is demonstrated in this study. Designing a monitoring network in an optimal manner helps to delineate the contaminant plume with a minimum number of monitoring wells at optimal locations at a contaminated site. The basic principle used in this study is that the wells are installed where the measurement uncertainties are minimum at the potential monitoring locations. The development of the optimal monitoring network is based on the utilization of contaminant concentration data from an existing initial arbitrary monitoring network. The concentrations at the locations that were not sampled in the study area are estimated using geostatistical tools. The uncertainty in estimating the contaminant concentrations at such locations is used as design criteria for the optimal monitoring network. The uncertainty in the study area was quantified by using the concentration estimation variances at all the potential monitoring locations. The objective function for the monitoring network design minimizes the spatial concentration estimation variances at all potential monitoring well locations where a monitoring well is not to be installed as per the design criteria. In the proposed methodology, the optimal monitoring network is designed for the current management period and the contaminant concentration data estimated at the potential observation locations are then used as the input to the network design model. The optimal monitoring network is designed for the consideration of two different cases by assuming different initial arbitrary existing data. Three different scenarios depending on the limit of the maximum number of monitoring wells that can be allowed at any period are considered for each case. In order to estimate the efficiency of the developed optimal monitoring networks, mass estimation errors are compared for all the three different scenarios of the two different cases. The developed methodology is useful in coming up with an optimal number of monitoring wells within the budgetary limitations. The methodology also addresses the issue of redundancy, as it refines the existing monitoring network without losing much information of the network. The concept of uncertainty-based network design model is useful in various stages of a potentially contaminated site management such as delineation of contaminant plume and long-term monitoring of the remediation process.  相似文献   

12.
Monitoring long-term change in forested landscapes is an intimidating challenge with considerable practical, methodological, and theoretical limitations. Current field approaches used to assess vegetation change at the plot-to-stand scales and nationwide forest monitoring programs may not be appropriate at landscape scales. We emphasize that few vegetation monitoring programs (and, thus, study design models) are designed to detect spatial and temporal trends at landscape scales. Based primarily on advice from many sources, and trial and error, we identify 14 attributes of a reliable long-term landscape monitoring program: malpractice insurance for landscape ecologists. The attributes are to: secure long-term funding and commitment; develop flexible goals; refine objectives; pay adequate attention to information management; take an experimental approach to sampling design; obtain peer-review and statistical review of research proposals and publications; avoid bias in selection of long-term plot locations; insure adequate spatial replication; insure adequate temporal replication; synthesize retrospective, experimental, and related studies; blend theoretical and empirical models with the means to validate both; obtain periodic research program evaluation; integrate and synthesize with larger and smaller scale research, inventory, and monitoring programs; and develop an extensive outreach program. Using these 14 attributes as a guide, we describe one approach to assess the potential effect of global change on the vegetation of the Front Range of the Colorado Rockies. This self-evaluation helps identify strengthes and weaknesses in our program, and may serve the same role for other landscape ecologists in other programs.  相似文献   

13.
Clear and effective legislation is a requisite to bring sustainable development from theory into practice. This paper develops a methodology to investigate how Italian regional legislation disciplines the use of Strategic Environmental Assessment (SEA), the procedure used in the European Union (EU) to pursue sustainable development of policies, plans, and programs (PPPs). Our case study is the Italian regional level, examined to identify eventual flaws and areas for improvement for each regional legislative framework. For this purpose, this study refers to a selection of analytical criteria recurring in the international debate on sustainability assessments. Statistical multi-dimensional analysis is used to identify Italian regions with similar SEA legislation. We recognize four taxonomies, depending on the way regional legislation provides information about i) legislation and guidelines, ii) integration between SEA and PPPs, iii) sustainability goals, iv) technical organization, v) participatory organization, and vi) monitoring. The results suggest that Italian administrators should cooperate to improve legislation at the regional level. Acknowledging the institution-centred nature of SEA, this methodology could drive the EU to better support SEA development in countries with diversified traditions.  相似文献   

14.
The spatio-temporal changes in the land cover states of the Nyando Basin were investigated for auxiliary hydrological impact assessment. The predominant land cover types whose conversions could influence the hydrological response of the region were selected. Six Landsat images for 1973, 1986, and 2000 were processed to discern the changes based on a methodology that employs a hybrid of supervised and unsupervised classification schemes. The accuracy of the classifications were assessed using reference datasets processed in a GIS with the help of ground-based information obtained through participatory mapping techniques. To assess the possible hydrological effect of the detected changes during storm events, a physically based lumped approach for infiltration loss estimation was employed within five selected sub-basins. The results obtained indicated that forests in the basin declined by 20% while agricultural fields expanded by 16% during the entire period of study. Apparent from the land cover conversion matrices was that the majority of the forest decline was a consequence of agricultural expansion. The model results revealed decreased infiltration amounts by between 6% and 15%. The headwater regions with the vast deforestation were noted to be more vulnerable to the land cover change effects. Despite the haphazard land use patterns and uncertainties related to poor data quality for environmental monitoring and assessment, the study exposed the vast degradation and hence the need for sustainable land use planning for enhanced catchment management purposes.  相似文献   

15.
In order to resolve the spatial component of the design of a water quality monitoring network, a methodology has been developed to identify the critical sampling locations within a watershed. This methodology, called Critical Sampling Points (CSP), focuses on the contaminant total phosphorus (TP), and is applicable to small, predominantly agricultural-forested watersheds. The CSP methodology was translated into a model, called Water Quality Monitoring Station Analysis (WQMSA). It incorporates a geographic information system (GIS) for spatial analysis and data manipulation purposes, a hydrologic/water quality simulation model for estimating TP loads, and an artificial intelligence technology for improved input data representation. The model input data include a number of hydrologic, topographic, soils, vegetative, and land use factors. The model also includes an economic and logistics component. The validity of the CSP methodology was tested on a small experimental Pennsylvanian watershed, for which TP data from a number of single storm events were available for various sampling points within the watershed. A comparison of the ratios of observed to predicted TP loads between sampling points revealed that the model's results were promising.  相似文献   

16.
This paper aims at evaluating and revising the spatial and temporal sampling frequencies of the water quality monitoring system of the Jajrood River in the Northern part of Tehran, Iran. This important river system supplies 23% of domestic water demand of the Tehran metropolitan area with population of more than 10 million people. In the proposed methodology, by developing a model for calculating a discrete version of pair-wise spatial information transfer indices (SITIs) for each pair of potential monitoring stations, the pair-wise SITI matrices for all water quality variables are formed. Also, using a similar model, the discrete temporal information transfer indices (TITIs) using the data of the existing monitoring stations are calculated. Then, the curves of the pair-wise SITI versus distance between monitoring stations and TITI versus time lags for all water quality variables are derived. Then, using a group pair-wise comparison matrix, the relative weights of the water quality variables are calculated. In this paper, a micro-genetic-algorithm-based optimization model with the objective of minimizing a weighted average spatial and temporal ITI is developed and for a pre-defined total number of stations, the best combination of monitoring stations is selected. The results show that the existing monitoring system of the Jajrood River should be partially strengthened and in some cases the sampling frequencies should be increased. Based on the results, the proposed approach can be used as an effective tool for evaluating, revising, or redesigning the existing river water quality monitoring systems.  相似文献   

17.
This paper presents a new methodology for the optimal design of space–time hydraulic head monitoring networks and its application to the Valle de Querétaro aquifer in Mexico. The selection of the space–time monitoring points is done using a static Kalman filter combined with a sequential optimization method. The Kalman filter requires as input a space–time covariance matrix, which is derived from a geostatistical analysis. A sequential optimization method that selects the space–time point that minimizes a function of the variance, in each step, is used. We demonstrate the methodology applying it to the redesign of the hydraulic head monitoring network of the Valle de Querétaro aquifer with the objective of selecting from a set of monitoring positions and times, those that minimize the spatiotemporal redundancy. The database for the geostatistical space–time analysis corresponds to information of 273 wells located within the aquifer for the period 1970–2007. A total of 1,435 hydraulic head data were used to construct the experimental space–time variogram. The results show that from the existing monitoring program that consists of 418 space–time monitoring points, only 178 are not redundant. The implied reduction of monitoring costs was possible because the proposed method is successful in propagating information in space and time.  相似文献   

18.
An economic and quick methodology for performing a preliminary spatial assessment of a city air quality with the purpose to identify locations and zones susceptible to high pollution levels is proposed. A Patras case-study is selected, regarding the air pollutants of sulfur dioxide (SO2) and oxides of nitrogen (NOx). A total number of 451 samples of short duration, of which 225 were randomly picked in morning rush hours and 226 within evening rush hours, were collected from 50 locations of the major Patras area during a year period, when peaks of primary air pollutants usually occur. Concentration measurements at prescribed locations used to statistically calculate spatial average concentrations approximating 1-h mean values with mean probable errors less than 25.9% for SO2, NO and NOx and less than 15.5% for NO2. Then iso-concentration contour diagrams plotted indicate high pollution zones and possibly appropriate locations for continuous or random monitoring according to the European Community (EC) Directives. The 1-h mean concentrations were in good correlation to the corresponding traffic rates and useful relationships are given (0.54 ≤ r ≤ 0.63). In addition, comparisons with data available for other cities, as well as with the limit and guide values provided by the EC and the World Health Organization (WHO) were given. The present data could be useful for the design and optimization of a city network of stations for monitoring air quality, for environmental impact assessments, future reference and comparisons due to city development needs, as well as for validating dispersion models.  相似文献   

19.
EU legislation stipulates that GM crops have to be monitored for potential adverse environmental effects. Monitoring preferably should take place in the most exposed areas-the cultivated fields and their neighbouring environment. Current monitoring designs do not give detailed consideration to the different exposure intensities in agricultural practice. At the same time, the selection of specific, more exposed sites is difficult considering the dynamic and diversity of crop cultivation and rotation systems and their environments. We developed an approach for prioritising the monitoring of on-farm and neighbouring sites based on differing exposure levels using a minimum dataset of cultivation and land use information. Applying a Bt-maize cultivation scenario to Brandenburg, Germany, where presently no GM crops are cultivated, we systemised and categorised areas with different spatio-temporal exposure intensities including 50 m, 200 m and 1000 m buffers. These categories correspond to different suitabilities to serve as monitoring sites. Sites are prioritised using a sequential scheme. This yields an improved and objective spatial monitoring design providing detailed exposure information. This methodology is flexible and transferable to any agricultural setting, therefore enabling superior statistical comparisons between locations and regions and thus enhancing monitoring data quality.  相似文献   

20.
An objective methodology is presented for determining the number and disposition of ambient air quality stations in a monitoring network for the primary purpose of compliance with air quality standards. The methodolgy utilizes a data base with real or simulated data from an air quality dispersion model for application with a two-step process for ascertaining the optimal monitoring network. In the first step, the air quality patterns in the data base are collapsed into a single composite pattern through a figure-of-merit (FOM) concept. The most desirable locations are ranked and identified using the resultant FOM fields. In the second step the network configuration is determined on the basis of the concept of spheres of influence (SOI) developed from cutoff values of spatial correlation coefficients between potential monitoring sites and adjacent locations. The minimum number of required stations is then determined by deletion of lower-ranked stations whose SOIs overlap. The criteria can be set to provide coverage of less than some fixed, user-provided percentage of the coverage of tha SOIs of the higher ranked stations and for some desired level of minimum detection capability of concentration fluctuations.The methodology is applied in a companion paper (McElroy et al., 1986) to the Las Vegas, Nevada, metropolitan area for the pollutant carbon monoxide.Although the research described in this article has been funded wholly or in part by the United States Environmental Protection Agency through Contract No. 68-03-2446 to Systems Applications, Inc., it has not been subjected to Agency review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号