首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports the first results of geochemical survey carried out in and around Siddipet, taking soil (topsoil 0–25 cm and subsoil 70–95 cm) as the sampling media. The data were obtained in a consistent way from 61 sites. The samples were analyzed for 29 elements (As, Ba, Cd, Co, Cr, Cu, F, Mo, Ni, Pb, Rb, Se, Sr, Th, U, V, Y, Zn, Zr, Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, and P) by X-ray fluorescence spectrometer, and baseline levels for these elements are presented. Results reveal that the correlation between the geochemical patterns in the soils developed on different litho-variants is not straight forward, but some general trends can be observed. Regional parent materials and pedogenesis are the primary factors influencing the concentrations of trace elements while anthropogenic activities have secondary influence.  相似文献   

2.
Soils play a vital role in the quality of the urban environment and the health of its residents. City soils and street dusts accumulate various contaminants and particularly potentially toxic elements (PTEs) from a variety of human activities. This study investigates the current condition of elemental concentration in the urban soils of Hamedan, the largest and the fastest-growing city in western Iran. Thirty-four composite soil samples were collected from 0 to 10 cm topsoil of various land uses in Hamedan city and were analyzed for total concentration of 63 elements by ICP-MS. The possible sources of elemental loadings were verified using multivariate statistical methods (principal component analysis and cluster analysis) and geochemical indices. The spatial variability of the main PTEs was mapped using geographic information system (GIS) technique. The results revealed a concentration for As, Co, Cr, Mn, Mo, Ni, and V in the soil samples comparable to the background values as well as a range of associations among these elements in a single component suggesting geogenic sources related to geological and pedogenic processes, while the soils mostly presented a moderate to considerable enrichment/contamination of Cd, Zn, Pb, and Sb and moderate enrichment/contamination of Cu, Zn, and Mo. It was found that anthropogenic factors, vehicular traffic in particular, control the concentration of a spectrum of elements that are typical of human activities, i.e., Cd, Cu, Hg, Pb, Sb, and Zn. Lead and Sb were both the most enriched elements in soils with no correlation with land use highlighting general urban emissions over time and the impact of transport networks directly on soil quality. The highest concentrations of As were recorded in the southern part of the city reflecting the influence of metamorphic rocks. The effect of the geological substrate on the Co and Ni contents was confirmed by their maximum concentrations in the city’s marginal areas. However, high spatial variability of urban elements’ contents displayed the contribution of various human activities. In particular, the increased concentration of Cd, Sb, and Pb was found to be consistent with the areas where vehicular traffic is heaviest.  相似文献   

3.
从新疆某地典型城-郊-乡梯度带采集了77个表层(0~20 cm)土壤样品,基于GIS技术与多元统计分析方法,研究各梯度带表层土壤中Hg、As、V、Co、Ni、Cu、Zn、Cd、Pb和Sb等10种微量元素的空间分布特征与主要来源。结果表明:Hg元素在城区、郊区和乡村表层土壤中的平均含量均超出研究区土壤背景值,As元素在城区和郊区表层土壤中的平均含量超出背景值,Zn和Pb元素在城区表层土壤中的平均含量超出背景值,其余元素在3个梯度带表层土壤中的平均含量均低于相应的背景值。研究区表层土壤中,V、Co、Ni、Zn、Cd、Pb和Sb等7种元素的空间分布格局基本相似,均呈现沿城市化梯度带分布的地带性格局;As、Cu和Hg等3种元素的空间分布呈现岛状格局。来源分析结果表明,各梯度带表层土壤中的微量元素的来源各不相同。  相似文献   

4.
The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0–20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg?1, respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0–20- and 20–40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0–20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by ‘natural’ factors and As originated from natural sources, deposition and irrigation water.  相似文献   

5.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

6.
Geochemical association plots are used as a screening tool for environmental site assessments and use empirical log–log relationships between total trace metal concentrations and concentrations of a major (i.e., reference) soil metal constituent, such as iron (Fe), to discern sites with naturally elevated trace metal levels from sites with anthropogenic contamination. Log–log relationships have been consistently observed between trace metal and reference metal concentrations and are often considered constant. Consequently, we used a regional geochemistry data set to evaluate background trace metal/Fe log–log associations across soils with highly diverse composition. Our results indicate that, although geochemical associations may be proportional, they significantly differ across predominant United States Department of Agriculture (USDA) soil orders. This suggests that highly complex interactions between soil-forming factors and variable secondary clay mineral composition affect the ratio of trace metals to Fe concentrations in soils. Also, intra-order variability in trace metal/Fe ratios generally ranged multiple orders of magnitude which suggest that the order level of the USDA soil taxonomic system is insufficient to reasonably classify background trace metal concentrations. Consequently, geochemical association plots are a useful screening tool for environmental site assessments, but ubiquitous application of generic background metal data sets could result in erroneous conclusions. Because significantly different ratios were observed across predominant USDA soil orders, an agglomerative clustering technique was used to elucidate hierarchical patterns of association. We present these results as a mechanism to aid environmental assessors in screening candidate background metal data sets for their applicability to site-specific soil composition; although site-specific background metal data should be utilized if ample pristine reference sites with similar (i.e., sub-order) soil composition can be identified and sampled.  相似文献   

7.
An appropriate sampling method that provides for the representation of the collected material and the reliability of results plays a crucial role in environmental monitoring. This is especially important in soil quality investigations on sites with a differentiated surface microrelief, as in the case of afforested post-arable soils that have a specific, deep furrow-and-ridge microrelief. The present research was carried out on three sites afforested with pine (4-, 8-, and 15-year-old stands) located near a large tailings pond collecting the wastes from copper ore enrichment. Soils were sampled at depths of 0–10 and 0–30 cm, separately in the furrows and ridges. The “wide-furrow plow” contributed to the spatial variation in soil properties, including higher pH, organic carbon, and Cu content in soils of the ridges. The difference in Cu content in the ridges and furrows initially reached 300 %, and decreased with the decline of the furrow-and-ridge microrelief to 60 % at 15 years after the plowing. Observed rate of the furrow shallowing allows for an estimation of the time necessary for the complete disappearance of the furrow-and-ridge microrelief and associated variability in soil properties to at least 30–40 years after the plowing. Afforestation plowing had little impact on the Zn variability which was not influenced by the emissions from the tailings pond. Soil sampling in contaminated sites with furrow-and-ridge microrelief must collect equal quantities of soil samples from both furrows and ridges to allow a reliable estimation of the mean trace elements’ concentration.  相似文献   

8.
In order to investigate the distribution of the total petroleum hydrocarbons (TPH) in groundwater and soil, a total of 71 groundwater samples (26 unconfined groundwater samples, 37 confined groundwater samples, and 8 deeper confined groundwater samples) and 80 soil samples were collected in the Songyuan oilfield, Northeast China, and the vertical variation and spatial variability of TPH in groundwater and soil were assessed. For the groundwater from the unconfined aquifer, petroleum hydrocarbons were not detected in three samples, and for the other 23 samples, concentrations were in the range 0.01–1.74 mg/l. In the groundwater from the confined aquifer, petroleum hydrocarbons were not detected in two samples, and in the other 35 samples, the concentrations were 0.04–0.82 mg/l. The TPH concentration in unconfined aquifer may be influenced by polluted surface water and polluted soil; for confined aquifer, the injection wells leakage and left open hole wells may be mainly responsible for the pollution. For soils, the concentrations of TPH varied with sampling depth and were 0–15 cm (average concentration, 0.63 mg/g), >40–55 cm (average concentration, 0.36 mg/g), >100–115 cm (average concentration, 0.29 mg/g), and >500–515 cm (average concentration, 0.26 mg/g). The results showed that oil spillage and losses were possibly the main sources of TPH in soil. The consequences concluded here suggested that counter measures such as remediation and long-term monitoring should be commenced in the near future, and effective measures should be taken to assure that the oilfields area would not be a threat to human health.  相似文献   

9.
Understanding spatial variability of dynamic soil attributes provides information for suitably using land and avoiding environmental degradation. In this paper, we examined five neighboring land use types in Indagi Mountain Pass - Cankiri, Turkey to spatially predict variability of the soil organic carbon (SOC), bulk density (BD), textural composition, and soil reaction (pH) as affected by land use changes. Plantation, recreational land, and cropland were the lands converted from the woodland and grassland which were original lands in the study area. Total of 578 disturbed and undisturbed soil samples were taken with irregular intervals from five sites and represented the depths of 0-10 and 10-20 cm. Soil pH and BD had the lower coefficient of variations (CV) while SOC had the highest value for topsoil. Clay content showed greater CV than silt and sand contents. The geostatistics indicated that the soil properties examined were spatially dependent to the different degrees and interpolations using kriging showed the dynamic relationships between soil properties and land use types. The topsoil spatial distribution of SOC highly reflected the changes in the land use types, and kriging anticipated significant decreases of SOC in the recreational land and cropland. Accordingly, BD varied depending on the land use types, and also, the topsoil spatial distribution of BD differed significantly from that of the subsoil. Generally, BD greatly decreased in places where the SOC was relatively higher except in the grassland where overgrazing was the more important factor than SOC to determine BD. The topsoil spatial distributions of clay, silt, and sand contents were rather similar to those of the subsoil. The cropland and grassland were located on the very fine textured soils whereas the woodland and plantation were on the coarse textured soils. Although it was observed a clear pattern for the spatial distributions of the clay and sand changing with land uses, this was not the case for the silt content, which was attributed to the differences of dynamic erosional processes in the area. The spatial distribution of the soil pH agreed with that of the clay content. Soils of the cropland and grassland with higher amounts of clay characteristically binding more cations and having higher buffering capacities had the greater pH values when compared to the soils of other land uses with higher amounts of sand naturally inclined to be washed from the base cations by the rainwater.  相似文献   

10.
Arsenic in the soil and water of eastern districts of Uttar Pradesh (Ballia and Ghazipur) was estimated. Survey results revealed that arsenic in soil samples ranged from 5.40 to 15.43 parts per million (ppm). In water samples, it ranged from 43.75 to 620.75 parts per billion (ppb) which far exceeded the permissible limit of 10 ppb as recommended by the World Health Organization. Maximum concentration of arsenic in water was found in Haldi village of Ballia (620.75 ppb). However, mean arsenic concentration in water followed the order: Karkatpur (257.21 ppb) < Haldi (310.15 ppb) < Sohaon (346.94 ppb) < Dharmarpur (401.75 ppb). In case of soil, maximum arsenic was detected in soil of Sohaon (15.43 ppm). Mean arsenic levels in soils followed the order: Karkatpur (9.24 ppm) < Haldi (9.82 ppm) < Dharmarpur (11.32 ppm) < Sohaon (14.08 ppm). Arsenic levels were higher in soils collected from 15–30 cm depth than 0–15 cm from the soil surface.  相似文献   

11.
In regions with high livestock densities, the usage of antibiotics and metals for veterinary purposes or as growth promoters poses a risk in manured soils. We investigated to which degree the concentrations and depth distributions of Cu, Zn, Cr and As could be used as a tracer to discover contaminations with sulfonamides, tetracyclines and fluoroquinolones. Besides, we estimated the potential vertical translocation of antibiotics and compared the results to measured data. In the peri-urban region of Beijing, China, soil was sampled from agricultural fields and a dry riverbed contaminated by organic waste disposal. The antibiotic concentrations reached 110 μg kg?1 sulfamethazine, 111 μg kg?1 chlortetracycline and 62 μg kg?1 enrofloxacin in the topsoil of agricultural fields. Intriguingly, total concentrations of Cu, Zn, Cr and As were smaller than 65, 130, 36 and 10 mg kg?1 in surface soil, respectively, therewith fulfilling Chinese quality standards. Correlations between sulfamethazine concentrations and Cu or Zn suggest that in regions with high manure applications, one might use the frequently existing monitoring data for metals to identify potential pollution hotspots for antibiotics in topsoils. In the subsoils, we found sulfamethazine down to ≥2 m depth on agricultural sites and down to ≥4 m depth in the riverbed. As no translocation of metals was observed, subsoil antibiotic contamination could not be predicted from metal data. Nevertheless, sulfonamide stocks in the subsoil could be estimated with an accuracy of 35–200 % from fertilisation data and potential leaching rates. While this may not be sufficient for precise prediction of antibiotic exposure, it may very well be useful for the pre-identification of risk hotspots for subsequent in-depth assessment studies.  相似文献   

12.
Bioindicators are widely used in the study of trace elements inputs into the environment and great efforts have been conducted to separate atmospheric from soil borne inputs on biomass accumulation. Many monitoring studies of trace element pollution take into account the dust particles located in the plant surface plus the contents of the plant tissues. However, it is usually only the trace element content in the plant tissues that is relevant on plant health. Enrichment factor equations take into account the trace element enrichment of biomasses with respect soil or bedrocks by comparing the ratios of the trace element in question to a lithogenic element, usually Al. However, the enrichment equations currently in use are inadequate because they do not take into account the fact that Al (or whichever reference element) and the element in question may have different solubility-absorption-retention levels depending on the rock and soil types involved. This constrain will become critical when results from different sites are compared and so in this article we propose that the solubility factors of each element are taken into account in order to overcome this constrain. We analysed Sb, Co, Ni, Cr, Pb, Cd, Mn, V, Zn, Cu, As, Hg, and Al concentration in different zones of Catalonia (NE Spain) using the evergreen oak Quercus ilex and the moss Hypnum cupressiforme as target species. We compared the results obtained in rural and non industrial areas with those from the Barcelona Metropolitan Area. We observed differences in Al concentrations of soils and bedrocks at each different site, together with the differences in solubility between Al and the element in question, and a weak correlation between total soil content and water extract content through different sites for most trace elements. All these findings show the unsuitability of the current enrichment factors for calculating lithospheric and atmospheric contributions to trace element concentrations in biomass tissues. The trace element enrichment factors were calculated by subtracting the part predicted by substrate composition (deduced from water extracts from soils and bedrock) from total concentrations. Results showed that for most of the trace elements analysed, trace elements enrichment factors were higher inside the Barcelona Metropolitan Area than outside, a finding that indicates that greater atmospheric inputs occur in urban areas. The results show that the most useful and correct way of establishing a reference for lithospheric and atmospheric inputs into the plant tissues is, first, to analyse samples of the same plant species collected from a number of sites possessing similar environmental conditions (climate, vegetation type, soil type) and, second, to use this new enrichment factor obtained by subtracting from the total concentration in plant tissue the predicted contribution of soil or bedrock extracts instead of that of total soil or bedrock concentrations.  相似文献   

13.
The biogeochemical and ecological assessment of the industrial city territory including urban soils and trees was carried out. Chemical (macroelement and microelement) composition of the city soils, morphological and biochemical properties of the linden leaves, possible impact of de-icing salts on soil and tree state, the correlation between the content of trace elements, and the S-containing plant compounds (phytochelatins) were included in the assessment. It was found that concentrations of trace elements in the soils near road with intensive traffic are changed from the soils, located at a distance of 40–50 m from the road. They have higher concentrations of As, Fe, Mn, Se, and Sr and lower concentration of Zn. The linden leaves from the roadside were characterized by the increase in As, Cu, Fe, Zn, and Cr and sharp decrease in the Mn and Sr concentrations. The analysis of soil water extracts showed a slight decrease of pH and low content of Ca, Mg, K, and Na for the distant sites. The phytochelatin test of linden leaves was weakly effective as well as asymmetry degree study of leaf lamina. The main differences were observed in the damage symptoms of leaves (chlorosis and necrosis) and the content of pigments (chlorophyll and carotenoids). The biochemical and ecological assessment of soils and trees showed relatively satisfactory ecological state of the investigated area in Moscow. The data obtained shows the weak local impact of the application of de-icing salts and automobile emissions.  相似文献   

14.
In this study, we examined three horizontal and vertical soil profiles along a sewage drainage ditch in order to determine the spatial distribution of Cu, Pb, and Zn in soils and to assess the bioavailability and potential ecological risks associated with these metals in a potential groundwater source area. Results showed that the concentrations of Cu, Pb, and Zn were approximately at background level, suggesting that human activities (industrial and agricultural pollution) had a negligible influence on these metals in soil, and that the concentrations reflected the natural background levels in the study area. Cu, Pb, and Zn concentrations were slightly higher in topsoil (0–20 cm) than deeper in the soil profile. Using a modified BCR sequential extraction method to evaluate the mobility and bioavailability of metals showed that the potential bioavailability sequence of Cu, Pb, and Zn at three depths in the soil profile was in the order Cu?≈?Pb?<?Zn. The potential ecological risk from the metals was evaluated using risk assessment code, and the results suggest that Cu and Zn pose no or low risk, while there is a low or medium risk from Pb. Results from groundwater monitoring showed that the groundwater was not polluted by leaching from soil.  相似文献   

15.
In the peri-urban areas of central India, sewage water is a valuable resource for agricultural production. In this study, impact of domestic sewage water irrigation for 5 years on Vertisol with no previous history of sewage irrigation was investigated in an ongoing field experiment at Bhopal (India) under subtropical monsoon type climate. The wheat (Triticum aestivum) crop was grown during post-rainy winter season with 30 cm of irrigation (groundwater or sewage water) and four nutrient treatments (T1, 0; T2, 100%; T3, 50%; and T4, 50% of general recommended doses of NPK + FYM at 10 Mg/ha). Results showed that sewage irrigation of about 150 cm over a period of 5 years resulted significant increases in salinity as well as available fractions of N, P, K, and micronutrients, viz., Zn, Fe, and Mn in soils. Carbon and phosphorus applied through sewage water were accumulated more in subsoil layer compared to topmost plough layer. Soil microbiological activity, as indicated by soil respiration, microbial biomass C, as well as dehydrogenase enzyme activity was higher in sewage water-irrigated soils. There was also significant increase in fungal and actinomycetes as well as total coliform population in such soils. Nutrients supplied through sewage water were not able to raise the productivity of wheat to the level that obtained through fertilizers at the recommended level which indicated that additional nutrients through fertilizers are required to obtain higher productivity of wheat under sewage farming. Protein and Zn content in wheat grains were more when the crop was grown with sewage irrigation. Overall results show that except for increase in coliform population, short duration (5 years) of municipal sewage water irrigation did not have any appreciable harmful effect on soil quality as well as crop productivity; rather, it proved beneficial in improving soil fertility, wheat productivity, and produce quality.  相似文献   

16.
Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0–34 cm) than the KeS (0–134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43 % for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.  相似文献   

17.
The study deals with the combined contribution of polycyclic aromatic hydrocarbons (PAHs) and metals to health risk in Delhi soils. Surface soils (0–5 cm) collected from three different land-use regions (industrial, flood-plain and a reference site) in Delhi, India over a period of 1 year were characterized with respect to 16 US Environmental Protection Agency priority PAHs and five trace metals (Zn, Fe, Ni, Cr and Cd). Mean annual ∑16PAH concentrations at the industrial and flood-plain sites (10,893.2?±?2826.4 and 3075.4?±?948.7 μg/kg, respectively) were ~15 and ~4 times, respectively, higher than reference levels. Significant spatial and seasonal variations were observed for PAHs. Toxicity potentials of industrial and flood-plain soils were ~88 and ~8 times higher than reference levels. Trace metal concentrations in soils also showed marked dependencies on nearness to sources and seasonal effects. Correlation analysis, PAH diagnostic ratios and principal component analysis (PCA) led to the identification of sources such as coal and wood combustion, vehicular and industrial emissions, and atmospheric transport. Metal enrichment in soil and the degree of soil contamination were investigated using enrichment factors and index of geoaccumulation, respectively. Health risk assessment (incremental lifetime cancer risk and hazard index) showed that floodplain soils have potential high risk due to PAHs while industrial soils have potential risks due to both PAHs and Cr.  相似文献   

18.
Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n?=?191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg?1, and the background concentration was 0.5 mg kg?1. After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg?1 of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg?1) was higher than in Ultisols (0.3 mg kg?1). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R 2?=?0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.  相似文献   

19.
This work aims to assess the spatial distribution and concentration of sulfur in the topsoil layer and to determine the relationships between sulfur concentration, soil pH, soil electrical conductivity, and plant cover at the reforested site of the former sulfur mine (Southern Poland). Soil samples were collected from 0 to 20 cm (topsoil) from a total of 86 sampling points in a regular square grid with sides of 150 m. Plant cover was assayed in circular plots with an area of 100 m2, divided into a woody plant layer and herbaceous plant layer. Soil properties such as particle size distribution, pH in KCl and H2O, soil electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (NT), and total sulfur (ST) were determined. The degree of soil contamination with sulfur was assessed based on the guidelines of the Institute of Soil Science and Plant Cultivation (IUNG), Poland. The results indicate that remediation and application of lime were not fully effective in spatial variation, because 33 points with sulfur contamination above 500 mg kg?1 were observed. These spots occurred irregularly in the topsoil horizons. This high sulfur concentration in the soil did not result in severe acidification (below 4.5) in all cases, most likely due to neutralization from the application of high doses of flotation lime. High vegetative cover occurred at some points with high soil sulfur concentrations, with two points having S concentration above 40,000 mg kg?1 and tree cover about 60%. Numerous points with high soil EC above 1500 μS cm?1 as well as limited vegetation and high soil sulfur concentrations, however, indicate that the reclamation to forest is still not completely successful.  相似文献   

20.
Pesticides are shown to have a great effect on soil organisms, but the effect varies with pesticide group and concentration, and is modified by soil organic carbon content and soil texture. In the humid tropical islands of Andaman, India, no systematic study was carried out on pesticide residues in soils of different land uses. The present study used the modified QuEChERS method for multiresidue extraction from soils and detection with a gas chromatograph. DDT and its various metabolites, α-endosulfan, β-endosulfan, endosulfan sulfate, aldrin, and fenvalerate, were detected from the study area. Among the different pesticide groups detected, endosulfan and DDT accounted for 41.7 % each followed by aldrin (16.7 %) and synthetic pyrethroid (8.3 %). A significantly higher concentration of pesticide residues was detected in rice–vegetable grown in the valley followed by rice–fallow and vegetable–fallow in the coastal plains. Soil microbial biomass carbon is negatively correlated with the total pesticide residues in soils, and it varied from 181.2 to 350.6 mg?kg?1. Pesticide residues have adversely affected the soil microbial populations, more significantly the bacterial population. The Azotobacter population has decreased to the extent of 51.8 % while actinomycetes were the least affected though accounted for 32 % when compared to the soils with no residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号