首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monitoring studies and thermodynamic modeling were used to reveal the changes of inorganic chemical species of some water pollutants (nutrients and trace metals such as Fe, Mn, Zn, Cu, Cd and Pb) inthe river-estuary-sea water system. The case studies were two rivers, Kamchiya and Ropotamo, representing part of the Bulgarian Black Sea water catchment area, and having different flow characteristics. There were no major differences in inorganic chemical species of the two river systems. NO3(-) and NO2(-) chemical species showed no changes along the river-estuary-sea water system. Concerning phosphates six different species were calculated and differences between the three parts of the systems were established. The HPO4(2-) and H2PO4(-) species were found to be dominant in river waters. The H2PO4(-) species quickly decreased at the expense of HPO4(2-) and Ca, Mg and Na phosphate complexes in estuary and seawater. Trace metals showed a great variety of chemical species. Fe(OH)2(+) species prevailed in river waters, and Fe(OH)3(0) species--in sea waters. Me2+ and MeCO3(0) (Me = Cu, Pb) and PbHCO3(+) were dominant in river waters, while Cu(CO3)2(2-) and PbCl(-) species appear also in sea waters. Cd2+ species prevailed in river and estuary waters, and CdCln(2-n) (n = 1-3) species, in seawater. Free Zn2+ species predominated in all systems but downstream their percentage decreased at the expense of Zn phosphates, carbonates,sulfates and chlorides complexes. Only free Mn2+ species were dominant along the systems.  相似文献   

2.
The variations of Cl???, F???, and Fe?+?+? in the underground water during pre- and post-monsoon periods for 2003 have been examined, for two places in Unnao district, by argentrometric titration method (Sodic Land Reclamation Project Uttar Pradesh 1998) and atomic absorption spectrometry (Sodic Land Reclamation Project Uttar Pradesh 1998). The concentration of these ions falls outside the limits prescribed by the World Health Organization (WHO 1984).  相似文献   

3.
The pollutants that are discharged from roads and traffic have attracted much attention recently. Nonetheless, most studies have mainly focused on highways and seldom on railways. In this study, soil samples were selected at the embankment and perpendicularly at different distances (2, 5, 10, 20, 30, 50, 60, 70, 80, 100, and 150 m) from the embankment bottom of the QinghaiTibet railway. Furthermore, soils were selected at four soil depths (5, 10, 20, and 30 cm) of each sample at the flat. The enrichment of nine heavy metals (V, Cr, Co, Ni, Cu, Zn, Rb, Cd, and Pb) in soils along the DelhiUlan section of the QinghaiTibet railway was studied. The results indicated that the mean concentrations of Cr, Ni, Cu, Zn, Pb, and Cd were highest at the embankment. The Cu concentrations in soils decreased by an S-curve-shaped function with increasing distance from the embankment, while Cd, Pb, and Zn decreased by inverse functions (p?<?0.0001). The concentrations of other studied metal did not show significant changes with increasing distance. After performing a statistical analysis, Pb, Cd, and Zn in soils were considered to be influenced by railway operations. However, the influence was weak and only spanned less than 5 m from the bottom of the embankment horizontally and 10 cm from the surface vertically. The mean concentrations of heavy metals in soils along the DelhiUlan section of the QinghaiTibet railway were considered lower compared with those along other railways.  相似文献   

4.
5.
Quantifying changes in the cover of river-floodplain systems can provide important insights into the processes that structure these landscapes as well as the potential consequences to the ecosystem services they provide. We examined net changes in 13 different aquatic and floodplain land cover classes using photo interpreted maps of the navigable portions of the Upper Mississippi River (UMR, above the confluence with the Ohio River) and Illinois River from 1989 to 2000 and from 2000 to 2010. We detected net decreases in vegetated aquatic area in nearly all river reaches from 1989 to 2000. The only river reaches that experienced a subsequent recovery of vegetated aquatic area from 2000 to 2010 were located in the northern portion of the UMR (above navigation pool 14) and two reaches in the Illinois River. Changes on the floodplain were dominated by urban development, which increased in nearly every river reach studied from 1989 to 2000. Agricultural lands declined in most river reaches from 2000 to 2010. The loss of agricultural land cover in the northern UMR was accompanied by increases in forest cover, whereas in the lower UMR and Illinois River, declines in agriculture were accompanied by increases in forest and shallow marsh communities. The changes in aquatic vegetation occupied between 5 and 20% of the total aquatic area and are likely associated with previously reported regional improvements in water clarity, while smaller (1–15% of the total floodplain area) changes in anthropogenic land cover types on the floodplain are likely driven by broad-scale socio-economic conditions.  相似文献   

6.
The geochemical behavior of zinc, lead and copper from sulfidic tailings in a mine site with potential to generate acidic drainage (pyrite (55%) and sphalerite (2%)) is reported in this paper. The mining area is divided in two zones, considering the topographic location of sampling points with respect to the tailings pile: (a) outer zone, out of the probable influence of acid mine drainage (AMD) pollution, and (b) inner zone, probably influenced by AMD pollution. Maximum total ions concentrations (mg/L) measured in superficial waters found were, in the outer zone: As (0.2), Cd (0.9), Fe (19), Mn (39), Pb (5.02), SO4(2-) (4650), Zn (107.67), and in the inner zone are As (0.1), Cd (0.2), Fe (88), Mn (13), Pb (6), SO4(2-) (4,880), Zn (46). The presence of these ions that exceeding the permissible maximum limits for human consume, could be associated to tailings mineralogy and acid leachates generated in tailings pile.  相似文献   

7.
This article discusses the generation and migration process of nitrate-N pollution in shallow groundwater caused by agricultural nonpoint source pollution in the catchment area of Shitoukoumen Reservoir in northeast China. By monitoring the shallow groundwater nitrate-N in the low-water period, the normal season, and high-flow period in the study area for a year, it was found that the nitrate-N concentration in the shallow groundwater of this area had a seasonal variation in both spatial and time distribution. In the time distribution, the peak value appeared in July, the high-flow period, and the valley value appeared in April, the low-water period, and showed a significant correlation with the time distribution of fertilization rate and rainfall. In the spatial distribution of nitrate-N pollution, when the distribution in shallow groundwater was analyzed separately in the three different periods (low-water period, the normal season, and high-flow period) and the discipline transference and enrichment of nitrate-N pollution in shallow groundwater was determined, this indicated that the region in the southeast study area where runoff conditions were better was less contaminated, and the region where runoff conditions were poor, as well as the region along the river were seriously polluted. The nitrate-N concentration in shallow groundwater was distributed mainly along the path of groundwater flow and was excreted in the drainage region. This showed that the spatial distribution of nitrate-N concentration in the shallow groundwater of the entire region was mainly controlled by the groundwater flow system. At the same time, in the middle and lower reaches of the study area, the seasonal changes in the recharged–excreted relationship between groundwater and river caused seasonal differences in the spatial distribution of nitrate-N pollution in groundwater. The combined effects of the groundwater mobility and the surface river resulted in a poor correlation between the groundwater nitrate-N concentration and land-use types. Only in the plain area where there was little influence from groundwater runoff and the surface river did the groundwater nitrate-N concentration correlate with land-use types. The spatial and time distribution of nitrate-N concentration in the shallow groundwater of the study area was impacted by agricultural nonpoint source pollution, the groundwater flow system, and the surface river and formed a concentration response system which uses basins as a unit.  相似文献   

8.
Water levels of Lake Sevan (Armenia) were artificially lowered by nearly 20?m between 1949 and 1997. Lowered water levels, combined with increased eutrophication, were associated with seasonally anoxic conditions (lasting 1-4?months) near the bottom of the profundal zone each year during 1976-2004. In addition, the extents of the macrophyte zone and of certain substrate types were severely reduced following drawdown. Maximal depth of occurrence decreased by 2-44?m for at least for 50 species of benthic macroinvertebrates between 1982 and 2004 compared to 1937-1961. Species richness of benthic macroinvertebrates declined from 25 to three species at depths where seasonal anoxia occurred. Total biomass increased by a factor of 10 from the period 1928-1948 to 1976-1979 then declined by a factor of 3 to 4 between 1987 and 2004. Energy flow through detritivores was more than tripled during 1976-2004 compared to 1928-1971, a result of increased plankton primary production. In contrast, energy flow through herbivorous benthic macroinvertebrates decreased by a factor of nearly 5, due to reduced areal coverage of macrophytes. Energy flow through filter feeders did not change over the time period examined, but energy flow through the entire zoobenthos community was nearly tripled. The biomasses of Oligochaeta, Chironomidae, and total zoobenthos showed a delayed response to changes in primary production of 7-9, 2, and 2-4?years, respectively. These patterns may provide a basis to predict results of restoration efforts based on the abundance of the zoobenthos in future years as the level of the lake is restored and water quality improves.  相似文献   

9.
The Lead–Zinc Company region, Kardjali city, Bulgaria, is known to be highly polluted with heavy metals from its pyrometallurgical activities. The polluted levels and the chemical speciation in surface natural waters in the region as well as in the wastewaters of the factory were investigated in January 2008 by application of monitoring studies, thermodynamic modeling, and interpretation in terms of the “softness–hardness” factor. It was found that the levels of trace metals pollution of surface waters were lower than the legislation limits for the regions with Pb and Zn production. The wastewater treatment facilities of the company were found to operate properly, and the quality of the cleaned waters in station Kar4 was comparable to the other surface waters studied (e.g., station Kar5). The trace metals were divided into three groups: (1) Fe3?+? and Al3?+?, being “hard” acids, existed in all the studied waters as hydroxy species Fe(OH) $_{2}^{+}$ , AlOH2?+?, and Al(OH) $_{2}^{+}$ , followed by the phosphate species AlPO $_{4}^{0}$ and Al2(OH)2PO $_{4}^{+}$ ; (2) Mn2?+?, Zn2?+?, and Cd2?+? being “soft” acids with crystal field stabilization energy (CFSE) = 0 were present in natural waters mainly as free Me2?+? ions. Small concentrations of their MeSO $_{4}^{0}$ , MeCO $_{3}^{0}$ species, and of MeCl $_{2}^{0}$ (Me = Zn, Cd) species were also calculated. In the wastewaters, two more species [Me(SO $_{4})_{2}^{2-}$ and Me(SO $_{4})_{3}^{4-}$ ] of the softer Zn and Cd metals were also calculated; (3) Cu2?+? and Pb2?+?, as “soft” acids with CFSE $\ne $ 0 preferentially coordinated with softer CO $_{3}^{2-}$ ions and in natural waters existed mainly as MeCO $_{3}^{0}$ and PbHCO $_{3}^{+}$ , followed by free Me2?+?ions and MeOH?+?. In the wastewaters, MeSO $_{4}^{0}$ and Pb(SO $_{4})_{2}^{2-}$ species increased at the expense of the free Me2?+? ions. The highest self-cleaning capability of natural waters was found with respect to Al and Fe, followed by Mn and Cd. The lowest corresponded to Pb, Cu, and Zn.  相似文献   

10.
The levels of mercury, cadmium, lead, copper, nickel, zinc and iron were determined in samples of liver, kidney, skeletal muscle, heart, lungs and hair of moose (N = 67), reindeer (N = 45), brown bear (N = 18), wild boar (N = 10) and squirrel (N = 18) shot in Karelia from 1989 to 1991 during regular hunting. The highest heavy-metal concentrations were found in livers, kidney, lungs and hair samples. The samples of muscle contained lowest levels of these elements. The tissues of moose, reindeer and brown bear were contaminated with heavy metals to a greatest extent. Lowest levels of toxicants were recorded in wild boar. Results indicate a widespread presence of heavy metal in the environment and in wildlife, which may be linked to acid precipitation. There was no evidence of these elements accumulated to toxic levels, but Karelian public have been informed that the eating of moose liver and kidney would probably result in their exceeding WHO standard weekly intake limit for cadmium.  相似文献   

11.
Recent assessments of water quality in New Zealand have indicated declining trends, particularly in the 40 % of the country’s area under pasture. The most comprehensive long-term and consistent water quality dataset is the National Rivers Water Quality Network (NRWQN). Since 1989, monthly samples have been collected at 77 NRWQN sites on 35 major river systems that, together, drain about 50 % of New Zealand’s land area. Trend analysis of the NRWQN data shows increasing nutrient concentrations, particularly nitrogen (total nitrogen and nitrate), over 21 years (1989–2009). Total nitrogen and nitrate concentrations were increasing significantly over the first 11 years (1989–2000), but for the more recent 10-year period, only nitrate concentrations continued to increase sharply. Also, the increasing phosphorus trends over the first 11 years (1989–2000) levelled off over the later 10-year period (2000–2009). Conductivity has also increased over the 21 years (1989–2009). Visual clarity has increased over the full time period which may be the positive result of soil conservation measures and riparian fencing. NRWQN data shows that concentrations of nutrients increase, and visual clarity decreases (i.e. water quality declines), with increasing proportions of pastoral land in catchments. As such, the increasing nutrient trends may reflect increasing intensification of pastoral agriculture.  相似文献   

12.
From 1977–1978 to 1990, concentrations of polychlorinated biphenyls (PCBs) and most organochlorine pesticides declined in eggs of red-breasted mergansers (Mergus serrator) nesting on islands in northwestern Lake Michigan. Total PCBs decreased 60% (from 21 ppm in 1977–1978 to 8.5 ppm in 1990) and p,p-DDE decreased 66% (from 6.5 to 2.2 ppm). Dieldrin decreased only 16% (from 0.82 to 0.69 ppm). In 1990, 79.1% of incubated eggs hatched, which was not significantly different from the 83.5% that hatched in 1977–1978.The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

13.
Lake Tahoe is undergoing the initial stages of culturaleutrophication due to human alteration of the airshed andwatershed. The lake's switch from nitrogen (N) to phosphorus (P)limitation has been attributed primarily to atmospheric Nloading. This places an increased importance on controllingwatershed movement of P to the lake. A stream water qualitymonitoring data set consisting of nine streams in the Lake Tahoebasin has been analyzed to characterize the spatiotemporalvariation of P delivery to the lake. This data is from the LakeTahoe Interagency Monitoring Program (LTIMP), which providesscientific data for planning and regulatory agencies to addressenvironmental problems in the Lake Tahoe basin. Results indicatethat P delivery (concentrations, loads) varies greatly atinterannual, seasonal, and spatial scales. Annual and seasonaltotal P (TP) concentrations can vary up to three orders ofmagnitude in a given stream and are strongly associated withsuspended sediment. Particulate P is the major form of Ptransported by Tahoe streams and was strongly correlated withpercent surficial geologic deposits, which are primarily locatednear streams. Tahoe streams with the highest annualP concentrations often had the lowest annual P loads, and visaversa. P loading is greatest during the spring snowmelt (75% ofannual average). Potential watershed parameters influencing Pdelivery to Lake Tahoe have been identified as precipitation,basin area, basin steepness, and road and human developmentcoverage. Results also suggest that human development impacts onstream P loads are most prevalent during high precipitationyears. Identification and quantification of stream sediment andP sources such as streambanks and impervious surface isnecessary to aid in watershed restoration efforts.  相似文献   

14.
Long-term sustainability and a declining trend in productivity of rice–wheat rotation in the Indo-Gangetic plain, often direct towards the changes in soil quality parameters. Soil quality is decided through few sensitive soil physical, chemical and biological indicators as it cannot be measured directly. The present investigation was carried out to develop a valid soil quality index through some chosen indicators under long-term influences of tillage, water and nutrient-management practices in a rice–wheat cropping system. The experiment consisted of two tillage treatments, three irrigation treatments, and nine nutrient management treatments for both rice and wheat, was continued for 8 years. The index was developed using expert-opinion based conceptual framework model. After harvest of rice, the CFSQI-P (productivity) was higher under puddled situation, whereas CFSQI-EP (environmental protection) was more under non-puddled condition and 3-days of drainage was found promising for all the indices. No-tillage practice always showed higher soil quality index. The treatments either receiving full organics (100 % N) or 25 % substitution of fertilizer N with organics showed higher soil quality indices. Puddling, irrigation after 3 days of drainage and substitution of 25 % recommended fertilizer N dose with FYM in rice could be practiced for maintaining or enhancing soil quality. No-tillage, two irrigations, and domestic sewage sludge in wheat can safely be recommended for achieving higher soil quality.  相似文献   

15.
Results of systematic, long-term measurements of 137Cs activities in wheat for the period 1965–2003 are summarized. Radiocaesum fallout activities affect wheat activity concentrations, the coefficient of correlation being 0.91. In the observed period, the highest activity of 137Cs deposited by fallout, 6321 Bq m−2, was recorded in 1986, i.e., in the year of Chernobyl accident, causing peak 137Cs activity concentration in wheat of 38.0 ± 13.0 Bq kg−1. After the Chernobyl nuclear accident the 134Cs:137Cs activity ratio in wheat was ≈0.5, and did not differ from the value found in other environmental samples. The transfer coefficient from 137Cs fallout deposition to wheat was calculated to be 8.6 × 10−3 Bq y kg−1 per Bq m−2, indicating the low transfer of radiocaesium from fallout to wheat. The upper limit for the collective effective dose for the Croatian population due to 137Cs and 134Cs ingestion by wheat and wheat products consumption for period 1965–2003 was estimated to be 665 person-Sv, the upper limit for the annual collective effective dose in 2003 being only about 0.061 person-Sv.  相似文献   

16.
The analytical method of S-metolachlor residue and its degradation in cotton and soil in trial field were investigated. S-metolachlor EC (96% w/w) was applied as pre-emergence at dosages of 1,500 and 2,250 ml ha(-1) 3 days after sowing of the cottonseeds in the field. The soil and the plant samples were collected at different intervals and the residues of S-metolachlor were analyzed by GC-ECD. The results showed that the degradation of S-metolachlor in cotton leaves in Beijing and Nanjing coincides with C = 0.1113e(-0.1050t) and C = 0.1177e(-0.1580t), respectively; the half-lives were about 6.6 and 4.4 days. The degradation of S-metolachlor in soil in Beijing and Nanjing coincides with C = 1.0621e(-0.0475) (t), and C = 0.9212e(-0.0548) (t), respectively; the half-lives were about 14.6 and 12.6 days,. At harvest time, the S-metolachlor in cotton seeds and soil samples were detected by GC-ECD and confirmed by GC/MS. The results showed that the residues in cottonseeds were lower than the USA EPA's maximum residue limit of 0.1 mg kg(-1) in cottonseed. It could be considered as safe to human beings and environment.  相似文献   

17.
Surface ozone and some meteorological parameters were continuously measured from June 2003 to May 2004 at urban Jinan, China. The levels and variations of surface ozone were studied and the influences of meteorological parameters on ozone were analyzed. Annual and diurnal ozone variation patterns in Jinan both show a typical pattern for polluted urban areas. Daytime ozone concentrations in summer were the highest in the four seasons. However, during nighttime from 2100 to 0600 hours ozone concentrations in spring was higher than that in summer. Daily averaged ozone showed negative correlation with pressure and relative humidity and positive correlation with temperature, total solar radiation, sunshine duration and wind speed during the study period. Further studies show that, solar radiation is a primary influence factor for the daytime variations of ozone concentrations at this site; transport of pollutants by wind could enhance the pollution at this site; precipitation has a significant influence on decreasing surface ozone. A multi-day ozone episode from 16 to 21 June 2003 was observed at this site. Surface meteorological data analysis and backward trajectory computation show that the episode is associated with the influence of typhoon Soudelor, attributing to both local photochemical processes and transport of air pollutants from southeastern coastal region, especially Yangtze River Delta region.  相似文献   

18.
The geochemistry of coastal sediments of southern India was altered after the tsunami in 2004. A five-step sequential extraction procedure was applied to assess the effects of tsunami on mobility and redistribution of selected elements (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). Ten surface sediments and three cores were analyzed for different metal fractions (exchangeable, carbonate, reduced, oxidized, and residual). Total metal concentrations increased in mangrove sediments after the tsunami, but their spatial distribution did not show significant variation (except Mn). The sediments were mixed by the tsunami, and there was lack of variation in metal concentrations in different fractions with depth (except Pb and Mn). High concentrations of Pb and Zn occurred in the oxide fractions, whereas Cu, Cr, Cd, and Ni were high in the organic and sulfide-rich fractions. Metals in the residual fraction (lattice bound) had the highest concentration suggesting their non-availability and limited biological uptake in the system. Most of the metals (except Mn) do not constitute a risk based on the different geochemical indices.  相似文献   

19.
Songnen Plain in Northeast China is one of the most significantly altered biological hotspots on Earth. Based on the information from integrated topographic maps, Landsat MSS, TM/ETM images and geographic information systems, grassland cover change, grassland fragmentation, agricultural reclamation, and saline–alkaline wasteland expansion in the region were investigated for the period of 1954 to 2000. The results showed that the native grassland decreased by 44.6 × 104 ha and moderate density grassland decreased from 78.3 × 104 to 20.3 × 104 ha. Calculated from change dynamic model, the annual decrease rate of grassland was 1.1%.The distribution center of the grasslands illustrated a trend of shifting southeastward. The distance between centroids of grassland was 10.1 km. The numbers of grassland patch increased by 1,378, while the patch size of grasslands declined. Grassland experienced substantial clearing and fragmentation. The decreased grassland was converted into cropland, wetland, and saline–alkaline wasteland. The loss and degradation of grasslands was closely related to regional climate during the past 47 years. Population and livestock number increased significantly as grassland quality decreased. Intensive human activities including irrational reclamation and overgrazing may have accelerated the degradation of grasslands.  相似文献   

20.
Changing the concepts of economic development and introducing new amendments can hardly decrease the accumulation in the soil of such pollutants as metals, remaining there for a long time. The predictive models for describing the balance of metals in the soil, which are based on the ‘atmosphere–plant–soil’ system and reflect the complicated physical–chemical nature of the metals’ migration, expressed by coefficients obtained in long-term observations in natural conditions, allow for evaluating long-term concentration of metals in the soil. The model BALANS evaluates self-purification of soil, taking into account the uptake of metals of aerogenic origin by the soil together with amendments, their physical–chemical migration and the type of microrelief determining its intensity as well as the absorbed biomass of plants and the removal of metals with crops. In this model, the half-period of metals’ washing out from the soil, found for the microrelief characteristic of low places, exceeds 200 years for Ni, Cr and Pb and makes 90 and 150 years for Zn and Cu, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号