首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is carried out to evaluate potentially toxic metal concentrations (As, Cd, Cr, Cu, Hg, Mo, Ni, Pb, and Zn) together with their spatial distribution, degree of pollution, and potential ecological risk in Kor river sediments (southwest Iran) using sediment quality guidelines, geoaccumulation index (I geo), Hakanson potential ecological risk index (RI), and standard methods of statistical analysis. The study area stretches some 140 km from the Drodzan Dam to Bakhtegan Lake, a stretch of river where different industrial and domestic activities (e.g., petrochemical complex, oil refinery, industrial meat processing complex, Marvdasht city sewage) and ecological value overlap with each other. Calculated geoaccumulation index indicate that 50 % of the stations are moderately to very extremely polluted. The potential ecological risk for nine investigated metals in Kor river is Hg (948)?>?Mo (51.9)?>?Ni (37.8)?>?Cd (29.8)?>?As (22)?>?Cu (16.6)?>?Pb (13.3)?>?Zn (3.3)?>?Cr (1). Results show that sediments in parts of Kor river sediments are heavily affected by effluents discharged from industrial plants and other parts are affected by agriculture and urban runoff from nearby lands. These phenomena may cause a risk of secondary water pollution under sediment disturbance and/or changes in the physical–chemical characteristics of the aquatic system.  相似文献   

2.
The Yamuna river is the largest tributary of the Ganges river system. It originates in the Himalayas and flows through a varied geological terrain encompassing a large basin area. Metals Fe, Mn, Pb, Zn, Cu in different chemical fractions of suspended sediments such as exchangeable, carbonates, Fe–Mn oxides, organics and residual fractions were studied. Phosphorus associated with different chemical forms are discussed. The metals are mostly associated with residual fractions in the sediments followed by organics, Fe–Mn oxides, exhangeable and carbonates. Intensive use of chemical fertilizers and pesticides in agriculture in the basin affects the high inorganic phosphorus content in sediments.  相似文献   

3.
A metal fractionation study on bed sediments of River Narmada in Central India has been carried out to examine the enrichment and partitioning of different metal species between five geochemical phases (exchangeable fraction, carbonate fraction, Fe/Mn oxide fraction, organic fraction and residual fraction). The river receives toxic substances through a large number of tributaries and drains flowing in the catchment of the river. The toxic substances of particular interest are heavy metals derived from urban runoff as well as municipal sewage and industrial effluents. Heavy metals entering the river get adsorbed onto the suspended sediments, which in due course of time settle down in the bottom of the river. In this study fractionation of metal ions has been carried out with the objective to determine the eco-toxic potential of metal ions. Although, in most cases (except iron) the average trace/heavy metal concentrations in sediments were higher than the standard shale values, the risk assessment code as applied to the present study reveals that only about 1–3% of manganese, <1% of copper, 16–19% of nickel, 4–20% of chromium, 1–4% of lead, 8–13% of cadmium and 1–3% of zinc exist in exchangeable fraction and therefore falls under low to medium risk category. According to the Geo-accumulation Index (GAI), cadmium shows high accumulation in the river sediments, rest of other metals are under unpolluted to moderately polluted class.  相似文献   

4.
The river Ganges has been one of the major recipients of industrial effluents in India. The present paper deals with the study related to occurrence and bioaccumulation of heavy metals (Cu, Cr, Cd, Pb, Zn) in the riverine water, sediment, and the muscles of two cat fish species, Channa punctatus (C. punctatus) and Aorichthys aor (A. aor) procured from the river Ganges at Allahabad. The data obtained after water analysis reflected the order of occurrence of heavy metals to be Zn > Pb > Cu > Cr > Cd, respectively. The analysis of heavy metals in sediment indicated that among the five heavy metals tested; Zn was maximally accumulated followed by Pb, Cr, Cu and Cd. The trend of heavy metals accumulation in fish muscles was found to be similar to that observed in sediment and water such as Zn > Pb > Cu > Cr > Cd. Data indicated that Zn accumulated maximally in the sediment as well as muscles of both of the fish species in comparison to other metals.  相似文献   

5.
A BCR-sequential extraction procedure for the determination of extractable heavy metals was applied to sediments of various rivers and lakes. There are many rivers basins in Turkey. Sakarya River Basin is one of the most important basins, which consists of three parts: Upper, Middle and Lower Sakarya River Basins. In this study, the Lower Sakarya River was selected as the study area for sediments. The samples were collected monthly from 10 pre-determined stations through the river for 10 months time and analysed for the distribution of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn elements. The determination of extractable heavy metals in sediments was carried out by using Flame Atomic Absorption Spectrometer. The validation of the results was performed by the analysis of a BCR 701 standard reference material.  相似文献   

6.
Ranipet industrial area is about 120 km from Chennai on Chennai-Bangalore highway and is a chronic polluted area identified by Central Pollution Control Board of India. It is one of the biggest exporting centers of tanned leather in India. The total number of industries located in and around Ranipet town are 240 tanneries along with ceramic, refractory, boiler auxiliaries plant, and chromium chemicals. Studies were carried out to find out the contamination of surface water bodies due to industrial effluents. The results reveal that the surface water in the area is highly contaminated showing very high concentrations of some of the heavy/toxic metals like Cadmium ranging from 0.2 to 401.4 μg/l (average of 51.1 μg/l), Chromium 2.4–1,308.6 (average of 247.2 μg/l), Copper 2.1–535.5 μg/l (average of 95.5 μg/l), Nickel 1.6–147.0 μg/l (average of 36.7 μg/l), Lead 6.4–2,034.4 μg/l (average of 467.8 μg/l) and Zinc 20.8–12,718.0 μg/l (average of 3,760.4 μg/l). The concentration levels of these metals are much above the permissible limits in surface water and are health hazards especially for the people working in the tannery industries. It was observed that the people in the area are seriously affected and suffering from occupational diseases such as asthma, chromium ulcers and skin diseases. Distribution of metals, their contents at different locations, and their effects on human health are discussed in this paper.  相似文献   

7.
Concentrations of elements (As, Co, Cu, Ni, Mo, Pb, V, and Zn) are studied in the sediments of two adjacent stretches of Chenar Rahdar river. The first stretch (S1) is influenced by urban and arable land wastewater, and the second (S2) is mainly loaded with industrial effluents. The average abundance order of heavy metals content in S1 sediments is Ni > V > Zn > Cu > Co > As > Pb > Mo and in S2 sediments is Ni > Zn > V > Cu > Mo > Pb > Co > As. The maximum average concentration for these heavy metals (except for As) occurs in the S2 sediments. The contamination factor (CF) base of background in S1 for eight analyzed elements is moderate. The CF for Cu, Zn, and Pb in S2 sediments is considerable. The highest CF in S1 and S2 sediments is observed for Mo (CF = 10.95 and 12.41) and indicates very high contamination. The application of modified degree of contamination values (mCd) indicates low and high degree of contamination (1.89–4.15) in S1 and S2, respectively. Calculated enrichment factors (EF) reveal enrichment of Mo and As in S1 and Zn, Cu, Mo, and Pb in S2 compared to the average abundances of background level. The maximum EF for Mo is 7.61 (significant enrichment), while Pb, Zn, and Cu with maximum EF between 2 and 5 indicate moderate contamination. Principal component analysis (PCA) shows distinctly different elemental associations in S1 and S2 sediments. The strong association of Zn, Co, Ni, Sc, Cu, Al and Fe in S1 suggests a similar source. The results of PCA for Zn, Pb, Mo and Cu in S2 (componente2) indicate that these metals are influenced by anthropogenic activity. Also, high loading heavy metals with OC (0.97) indicate that organic carbon plays a significant role in the distribution and sorption of these heavy metals in the sediments. Factor analysis indicates that As and Mo behave differently in sediment samples.  相似文献   

8.
Surface sediment samples from the Tirumalairajan river estuary were studied for grain size pattern, organic matter, and heavy metals (Fe, Mn, Zn, and Pb) using the sequential and bulk metal extraction methods to evaluate metal behavior. Ten surface sediment samples were collected during the monsoon and summer seasons of the year 2009. The observed orders of concentrations of heavy metals in the sediments were as follows: Fe?>?Mn?>?Zn?>?Pb. The results obtained from sequential extraction showed that, among the metals studied, a larger portion of the metals were associated with the residual phase, although they are available in other fractions. The low concentration of metals available in bioavailable phases indicated that the sediments of Tirumalairajan river estuary were relatively unpolluted. Correlation analysis was also carried out to understand the associations of metals in different phases with sand, silt, clay, and organic matter. To understand the risk of heavy metals to sediment-dwelling organisms, the data were compared with risk assessment code and sediment quality values using the screening quick reference table. The main source of metals to the estuary is from the irrigation field and its associated activities in the study area.  相似文献   

9.
The concentration of heavy metals in the bottom sediment and interstitial water collected from two reservoirs in Singapore was found to be enriched. A distribution coefficient,K d , was used to assess the chemical stability of heavy metals in the sediments. Numerical models were used to assess (1) the redistribution of heavy metals in a changing environment, and (2) long-term self clean-up capabilities of a reservoir.  相似文献   

10.
11.
The aim of this study was risk characterization of a replaced urban industrial land located north of Qingdao, in relation to heavy metals values. Soil concentrations of Cd, Pb, Cu, Ni, Cr, and Zn were analyzed. It was observed that the components of Cd, Pb, Cu, Ni, Cr, and Zn are about 2.22, 8.07, 4.70, 6.81, 2.65, and 3.0-folds, respectively, when compared with the local natural background values in Qingdao. The spatial distribution of heavy metals indicated that these hotspots for Cr and Zn located in the southwestern part, Ni and Cd in the middle of the south area, Pb in the northwest, and Cu in the middle of the east area. The values of pollution index and Nemerow integrated pollution index revealed that 100 % of soil samples were moderately or heavily contaminated by six heavy metals. From these results, human health risk assessment for sensitive population was performed according to two different land uses. For non-carcinogenic risk, the direct oral ingestion appeared to be the main exposure pathway followed by dermal and inhalation absorption. The HI values of Pb and Cr characterized for children were larger than 1, while HI values of each metal for adults in two scenarios were lower than 1. Besides, carcinogenic risk from inhalation exposure to Cr for children and adults in two scenarios all exceeded the safety limit.  相似文献   

12.
A detailed investigation was conducted to evaluate heavy metal sources and their spatial distribution in agricultural fields in the south of Tehran using statistics, geostatistics, and a geographic information system. The content of Cd, Cu, Co, Pb, Zn, Cr, and Ni were determined in 106 samples. The results showed that the primary inputs of Cr, Co, and Ni were due to pedogenic factors, while the inputs of Zn, Pb, and Cu were due to anthropogenic sources. Cd was associated with distinct sources, such as agricultural and industrial pollution. Ordinary kriging was carried out to map the spatial patters of heavy metals, and disjunctive kriging was used to quantify the probability of heavy metal concentrations higher than their recommended threshold values. The results show that Cd, Cu, Ni, and Zn exhibit pollution risk in the study area. The sources of the high pollution levels evaluated were related to the use of urban and industrial wastewater and agricultural practices. These results are useful for the development of proper management strategies for remediation practices in the polluted area.  相似文献   

13.
Heavy metal mobility was studied in overbank sediments of the Grote Beek river in Central Belgium. The geochemical signature of heavy metals in fine-scale sampled overbank sediments was compared with data on heavy metal emission into the river. The influence of acidification, organic and inorganic complexation on heavy metal mobility in overbank sediments was studied by single and sequential extractions and leaching tests. As confirmed by these tests, the elevated CaCl(2) content of the river water significantly enhanced the mobilisation of especially Cd, while Zn was mobilised to a lesser extent. The mobilisation of As on the other hand decreased in the presence of elevated CaCl(2) concentrations. Based on the results of single extractions, two highly contaminated zones with a different Cd mobility were observed in one of the overbank profiles. A detailed investigation of Cd leaching behaviour in the zone of Fe-accumulation during pH(stat) leaching tests, suggested that it was related to the association of Cd with Fe-oxides, while adsorption was the dominant binding form of Cd in the clay-rich part of the overbank sediment profile.  相似文献   

14.
The concentration of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn metals in water and sediments of Yamuna river were determined by atomic absorption spectrophotometry in the year 1981. The data showed that there was considerable variation in the concentration of elements from one sampling station to the other which may be due to the variation in the quality of industrial and sewage wasters being added to the river at different sampling stations. The sediment samples collected from different sampling stations were also analysed for calcium carbonate, organic matter, potassium, and phosphorus.  相似文献   

15.
Heavy metal (Fe, Mn, Zn, Cu, Ni, Pb, and Cd) concentrations and their chemical speciations were investigated for the first time in bed sediments of Bharali River, a major tributary of the Brahmaputra River of the Eastern Himalayas. Levels of Fe, Mn, Pb, and Cd in the bed sediments were much below the average Indian rivers; however, Cu and Zn exhibit levels on the higher side. Enrichment factors (EF) of all metals was greater than 1 and a higher trend of EF was seen in the abandoned channel for most metals. Pb showed maximum EF of 32 at site near an urban center. The geoaccumulation indices indicate that Bharali river is moderately polluted. The metals speciations, done by a sequential extraction regime, show that Cd, Cu, and Pb exhibit considerable presence in the exchangeable and carbonate fraction, thereby showing higher mobility and bioavailability. On the other hand, Ni, Mn, and Fe exhibit greater presence in the residual fraction and Zn was dominant in the Fe?CMn oxide phase. Inter-species correlations at three sites did not show similar trends for metal pairs indicating potential variations in the contributing sources.  相似文献   

16.
Determination of only total element in sediments does not give an accurate estimate of the likely environmental impacts. Speciation study of metals in sediment provides information on the potential availability of metals (toxic) to biota under various environmental conditions. In water, the toxic metal specie is the free hydrated metal ion. The toxicity of metals depends especially on their chemical forms rather than their total metal content. The present study focuses on Qaraaoun Reservoir, Lebanon. Earlier studies focused only on total metal concentrations in sediment and water. The objective of this study was to determine metal speciation (Fe, Cr, Ni, Zn, Cu, Pb, Cd) in the (operationally defined) sediment chemical fractions and metal speciation in reservoir water. This would reflect on metal bioavailability and toxicity. Water samples and bed sediments were collected from nine sites during the dry season and a sequential chemical fraction scheme was applied to the <75-??m sieve sediment fraction. Metal content in each fraction was determined by the FAAS technique. The data showed that the highest percentages of total metal content in sediment fractions were for: Fe in residual followed by reducible, Cr and Ni in residual and in reducible, Cu in organic followed by exchangeable, Zn in residual and in organic, Pb in organic and carbonate, Cd was mainly in carbonate. Total metal content in water was determined by ICP-MS technique and aqueous metal speciation was predicted using AQUACHEM software interfaced to PHREEQC geochemical computer model. The water speciation data predicted that a high percentage of Pb and Ni were present as carbonate complex species and low percentages as free hydrated ions, highest percentage of Zn as carbonate complex species followed by free hydrated ion, highest percentage of Cd as free hydrated ion followed by carbonate complex species. The sensitivity attempt of free hydrated ion of Ni, Zn, Pb, and Cd in reservoir water revealed dependence of Zn and Cd on pH and alkalinity, while Ni and Pb were only dependent on pH.  相似文献   

17.
Multivariate analysis of heavy metals concentrations in river estuary   总被引:1,自引:0,他引:1  
Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data obtained from two rivers in the Penang State of Malaysia for the concentration of heavy metal ions (As, Cr, Cd, Zn, Cu, Pb, and Hg) using a flame atomic absorption spectrometry (F-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometry (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). MANOVA showed a strong significant difference between the two rivers in terms of heavy metal concentrations in water samples. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used four parameters (Zn, Pb, Cd and Cr) affording 100% correct assignations. Results indicated that the two rivers were different in terms of heavy metals concentrations in water, and the major difference was due to the contribution of Zn. A negative correlation was found between discriminate functions (DF) and Cr and As, whereas positive correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metal concentrations. Correlation matrix between the parameters exhibited a strong evidence of mutual dependence of these metals.  相似文献   

18.
Aqaba Gulf is an economically important marine environment in Egypt. Its coastal area was subjected to anthropogenic impact of urbanization and economic development during the last decades. The study was oriented to investigate the distribution as well as assess the heavy metal pollution status (Fe, Mn, Zn, Ni, Co, Cr, Cu, and Cd) in its surface sediment. Large heavy metals fluctuations were detected along the studied area. The results pointed out to the highly significant correlations among Fe, Cu, Ni, and Co heavy metals and their similar lithogenic origin beside their input sources. The sediment quality was performed by using the geo-accumulation index (I (geo)) and different sediment criteria guidelines; China State Bureau of Quality and Technical Supervision (CSBTS), and Canadian guidelines. Among the studied heavy metals, Cd was the only metal that showed moderate pollution for I (geo) as well as it exceeded the primary and the secondary criteria of CSBTS and the threshold effect level of the Canadian guidelines (TEL). On the other hand, the other heavy metals were within the natural background levels.  相似文献   

19.
Characterization of heavy metals in water and sediments in Taihu Lake, China   总被引:11,自引:0,他引:11  
To explore a comprehensive status of heavy metals in the Taihu Lake, which is one of the most important waters in China, water and sediment samples were taken throughout the lake during April to May of 2010, and metal elements (Cu, Cd, Cr, Ni, Pb, Sn, Sb, Zn, Mn) were analyzed in the water column, interstitial water and sediment. Relevant standards were used to assess the sediment and water quality. Results show that, in the lake water column, the average concentration of all metals ranged from 0.047 μg/l (Cd) to 8.778 μg/l (Zn). The concentration in the river water was usually higher than in the lake water for many metals. In the interstitial water Mn was significantly higher than that in water column, and other metals had no significant difference between the two media. In the surface sediment, average metal content ranged from 1.325 mg/kg (Cd) to 798.2 mg/kg (Mn). Spatially, contents of many metals were higher in Zhushan Bay than in other lake areas, and there existed a clear content gradient from the river to the lake for both water and sediment. On the sediment profiles, many metals presented an increasing trend from the depth of 15-20 cm to the top, which is indicative of the impact of increasingly intensive human activities from that period. Quality assessment indicates that metals in water phase are generally safe compared with USEPA "National Recommended Water Quality Criteria," with the exception of Mn in the interstitial water and Sb in the river water. Whereas the sediment is widely contaminated with metals to some extent compared with the "Consensus-Based Sediment Quality Guidelines," and Cu, Cr, and Ni are more likely to raise ecological risks. This work could be a basis for the ongoing China's criteria strategy.  相似文献   

20.
The Juru River flows through largely urbanized areas and is grossly polluted by domestic wastes and discharges from pig farms. Other than carrying highly polluting organic materials, these wastes are also contaminated with heavy metals. To ascertain the extent of heavy metal pollution in the river, total and non-residual concentrations of Cu, Pb, Zn, Mn and Fe in sediment samples collected along the river were determined. The results indicate that both the total and non-residual metal concentrations in sediments can successfully be used to identify heavy metal pollution sources. The speciation of Zn, Mn and Fe in the sediment samples were investigated using a sequential leaching technique which identifies the elements among six operationally defined host fractions: (1) exchangeable, (2) carbonate and surface-associated, (3) easily reducible, (4) moderately reducible, (5) bound to organic matter and sulphides and (6) residual. The results indicate that Zn is mainly associated with the reducible fractions. Zn and Fe found in the moderately reducible fraction are significantly correlated, indicating that iron oxides is the preferred host phase by Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号