首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Study of harmful algal blooms in a eutrophic pond, Bangladesh   总被引:2,自引:0,他引:2  
The purpose of this research was to analyze the underlying mechanisms and contributing factors related to the seasonal dynamic of harmful algal blooms in a shallow eutrophic pond, Bangladesh during September 2005–July 2006. Two conspicuous events were noted simultaneously throughout the study period: high concentration of phosphate–phosphorus (>3.03; SD 1.29 mg l???1) and permanent cyanobacterial blooms {>3,981.88 × 103 cells l???1 (SD 508.73)}. Cyanobacterial blooms were characterized by three abundance phases, each of which was associated with different ecological processes. High nitrate–nitrogen (>2.35; SD 0.83 mg l???1), for example, was associated with high cyanobacterial abundance, while low nitrate–nitrogen (0.36; SD 0.2 mg l???1) was recorded during moderate abundance phase. Extremely low NO3–N/PO4–P ratio (>3.55, SD 2.31) was recorded, and all blooming taxa were negatively correlated with this ratio. Cyanobacterial blooms were positively correlated with temperature (r?=?0.345) and pH (0.833; p?=?0.05) and negatively correlated with transparency (r?=???0.956; p?=?0.01). Although Anabaena showed similar relationship with water quality parameters as cyanobacteria, the co-dominant Microcystis exhibited negative relationship with temperature (r?=???0.386) and nitrate–nitrogen (r?=???0.172). This was attributed to excessive growth of Anabaena that suppressed Microcystis’s growth. Planktothrix was the third most dominant taxa, while Euglena was regarded as opportunistic.  相似文献   

2.
Atmospheric dry deposition is an important nitrogen (N) input to farmland ecosystems. The main nitrogen compounds in the atmosphere include gaseous N (NH3, NO2, HNO3) and aerosol N (NH4 +/NO3 ?). With the knowledge of increasing agricultural effects by dry deposition of nitrogen, researchers have paid great attention to this topic. Based on the big-leaf resistance dry deposition model, dry N deposition velocities (V d) in a typical red soil agro-ecosystem, Yingtan, Jiangxi, Southeastern China, were estimated with the data from an Auto-Meteorological Experiment Station during 2004–2007. The results show that hourly deposition velocities (V dh) were in the range of 0.17–0.34, 0.05–0.24, 0.57–1.27, and 0.05–0.41 cm/s for NH3, NO2, HNO3, and aerosol N, respectively, and the V dh were much higher in daytime than in nighttime and had a peak value around noon. Monthly dry deposition velocities (V dm) were in the range of 0.14–0.36, 0.06–0.18, and 0.07–0.25 cm/s for NH3, NO2, and aerosol N, respectively. Their minimum values appeared from June to August, while their maximum values occurred from February to March each year. The maximum value for HNO3 deposition velocities appeared in July each year, and V dm(HNO3) ranged from 0.58 to 1.31 cm/s during the 4 years. As for seasonal deposition velocities (V ds), V ds(NH3), V ds(NO2), and V ds(aerosol N) in winter or spring were significantly higher than those in summer or autumn, while V ds(HNO3) in summer were higher than that in winter. In addition, there is no significant difference among all the annual means for deposition velocities (V da). The average values for NH3, NO2, HNO3, and aerosol N deposition velocities in the 4 years were 0.26, 0.12, 0.81, and 0.16 cm/s, respectively. The model is convenient and feasible to estimate dry deposition velocity of atmospheric nitrogen in the typical red soil agro-ecosystem.  相似文献   

3.
Coolia monotis is a potentially toxic epiphytic dinoflagellate widespread along the Mediterranean coasts, where it is frequently detected year round at low concentrations. However, it only proliferates recurrently in some localities. The North Lake of Tunis is one of the affected areas in the southwestern part of the Mediterranean Sea. This site is one of the most productive aquatic Tunisian areas (Recreational Fisheries and shellfish collecting). In the south part of this area of study, recurrent C. monotis proliferation (5 ×105 cells per liter) took place in late spring and early summer of 2006. During this proliferation, the spatial distribution of C. monotis species, phytoplankton community, and abiotic factors were studied. The composition of the phytoplankton community exhibited a clear dominance of dinoflagellates over other genera. We suggest that proliferation development of C. monotis was linked to climatic conditions, water temperature (r?=?0.24, p?<?0.05) and high concentrations of nitrogenous nutrients, essentially NH4 ?+? (r?=?0.18, p?<?0.05) and NO3 ??? (r?=?0.21, p?<?0.05).  相似文献   

4.
Microbes play a central role in the decomposition and remineralization of organic matter and recycling of nutrients in aquatic environments. In this study, we examined the influence of physical, chemical, and biological parameters on the rate of bacterial production (BP) and viral production (VP) with respect to primary production over a diurnal period in Cochin estuary. Time series measurements were made every 2 h for 12 h (6 a.m.–6 p.m.) during periods of low and high salinities. The light intensity as photosynthetically active radiation, temperature, salinity, nutrients like NO3–N, SiO4–Si, and PO4–P, and chlorophyll a (Chl a) were measured along with BP, VP, and net primary production (NPP). NPP showed a strong positive correlation with light and Chl a (r 2?=?0.56 and 0.47, respectively), while VP showed a strong positive correlation with light, salinity, and Chl a (r 2?=?0.37, 0.58, and 0.37, respectively) and a negative correlation with BP (r 2?=??0.39) at P?≤?0.05. We observed a diurnal pattern in BP but did not have any significant correlation with light. Similar diurnal pattern was seen in VP, the peak of which was in succession with BP, suggesting that virus-mediated lysis plays an important role in loss processes of bacteria in Cochin estuary. The results of our study highlight the light-dependent and physicochemical-dependent diurnal variation in virioplankton production in a tropical estuarine ecosystem.  相似文献   

5.
Our objective was to evaluate changes in water quality parameters during 1983–2007 in a subtropical drinking water reservoir (area: 7 km2) located in Lake Manatee Watershed (area: 338 km2) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg?l?1 in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg?l?1) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg?l?1), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg?l?1. Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983–2007. Mean concentrations of total N (n?=?215; 1.24 mg?l?1) were lower, and total P (n?=?286; 0.26 mg?l?1) was much higher than the EPA numeric criteria of 1.27 mg total N l?1 and 0.05 mg total P l?1 for Florida’s colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June–September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.  相似文献   

6.
Increased use of nitrogenous fertilizers in the intensively cultivated rice (Oryza sativa)?Cwheat (Triticum aestivum) cropping system (covers a 13.5-ha m area in South Asia) has led to the concentration of nitrates (NO3-N) in the groundwater (GW) in Haryana State of India. Six districts from the freshwater zone were selected to identify factors affecting NO3-N enrichment in GW. Water and soil samples were collected from 1,580 locations and analyzed for their chemical properties. About 3% (26,796, and 10,588 ha) of the area was estimated to be under moderately high (7.5?C10 mg l???1) and high (>10 mg l???1) risk categories, respectively. The results revealed that NO3-N was 10?C50% higher during the pre-monsoon season than in the monsoon season. Nitrate-N decreased with the increase in aquifer depth (r 2?=?0.99). Spatial and proximity analyses using ArcGIS (9.2) revealed that (1) clay material in surface and sub-surface texture restricts N leaching, (2) piedmont and rolling plains act as an N sink, and (3) perennial rivers bring a dilution effect whereas seasonal rivers provide favorable conditions for NO3 ? enrichment. The study concludes that chemical N fertilizers applied in agro-ecosystems are not the sole factor determining the NO3 in groundwater; rather, it is an integrated process governed by several other factors including physical and chemical properties of soils, proximity and type of river, and geomorphologic and geographical aspects. Therefore, future studies should adopt larger area (at least watershed scale) to understand the mechanistic pathways of NO3 enrichment in groundwater and interactive role of the natural drainage system and surrounding physical features. In addition, the study also presents a conceptual framework to describe the process of nitrate formation and leaching in piedmont plains and its transportation to the mid-plain zone.  相似文献   

7.
Ambient air quality data, including atmospheric visibility, of Foshan city, a highly polluted city in the Pearl River Delta (PRD), and data obtained by the On-line Air Pollutant Exhaust Monitoring Network (OAPEMN), recently established by the National Emission Monitoring and Control Network for major industrial enterprises, were analyzed and are reported here for the first time, revealing the change in air pollution patterns and its impact on visibility degradation in the last decade. Reduced visibility of less than 8 km (after elimination of rainy and foggy periods) was found 22% of the time from 1998 to 2008, accompanied by elevated levels of pollutants, especially SO2 and PM10, in comparison with that of other developed cities. However, PM10 showed a steady decreasing trend (0.004 mg m???3 year???1) during 2001?C2008, in contrast to the noticeable increase in ambient NO2 concentrations from ~0.020 mg m???3 before 2005 to above 0.050 mg m???3 afterward. Multiple regression analysis revealed that the percentage of reduced visibility strongly correlated with PM10 concentration, suggesting that visibility degradation was directly proportional to the loading of particles. Moreover, the fairly significant correlation between reduced visibility and NO2 concentration also implied that the impact of primary emissions of NO2 and enhanced secondary pollutants, formed via photochemical processes in the atmosphere, could not be ignored. The decreased PM10 levels were obviously the predominant factor for the improvement in visibility (5.0% per 0.01 mg m???3) and were likely due to the implementation of stricter air pollution control measures for industrial exhaust, which also resulted in reduced SO2 pollution levels in the recent 2 years. In particular, the OAPEMN records showed an overall enhanced SO2 removal by 64% in major industrial sectors. The continuous increase in road traffic and lack of efficient NO x control strategies in the PRD region, however, caused an increase in ambient NO2 concentrations.  相似文献   

8.
Infrared spectrometry is a versatile basis to analyse greenhouse gases in the atmosphere. A multicomponent air pollution software (MAPS) was developed for retrieval of gas concentrations from radiation emission as well as absorption measurements. Concentrations of CO, CH4, N2O, and H2O as well as CO2, NO, NO2, NH3, SO2, HCl, HCHO, and the temperature of warm gases are determined on-line. The analyses of greenhouse gases in gaseous emission sources and in ambient air are performed by a mobile remote sensing system using the double-pendulum interferometer K300 of the Munich company Kayser-Threde. Passive radiation measurements are performed to retrieve CO, N2O, and H2O as well as CO2, NO, SO2, and HCl concentrations in smoke stack effluents of thermal power plants and municipal incinerators and CO and H2O as well as CO2 and NO in exhausts of aircraft engines. Open-path radiation measurements are used to determine greenhouse gas concentrations at different ambient air conditions and greenhouse gas emission rates of diffusive sources as garbage deposits, open coal mining, stock farming together with additional compounds (e.g. NH3), and from road traffic together with HCHO. Some results of measurements are shown. A future task is the verification of emission cadastres by these inspection measurements.  相似文献   

9.
This study reports the results from the analyses of a 30-year (1974–2004) river water quality monitoring dataset for NO x –N (NO3–N?+?NO2–N), NH4–N, PO4–P and SiO2–Si at the tidal limit of the River Tamar (SW England), an agriculturally dominated and sparsely populated catchment. Annual mean concentrations of NH4–N, PO4–P and SiO2–Si were similar to other rural UK rivers, while annual mean concentrations of NO x –N were clearly lower. Estimated values for the 1940s were much lower than for those of post-1974, at least for NO3–N and PO4–P. Flow-weighted mean concentrations of PO4–P decreased by approximately 60 % between 1974 and 2004, although this change cannot be unequivocally ascribed to either PO4–P stripping from sewage treatment work effluents or reductions in phosphate fertiliser applications. Lower-resolution sampling (to once per month) in the late 1990s may also have led to the apparent decline; a similar trend was also seen for NH4–N. There were no temporal trends in the mean concentrations of NO x –N, emphasising the continuing difficulty in controlling diffuse pollution from agriculture. Concentrations of SiO2–Si and NO x –N were significantly and positively correlated with river flows ≤15 m3?s?1, showing that diffuse inputs from the catchment were important, particularly during the wet winter periods. In contrast, concentrations of PO4–P and NH4–N did not correlate across any flow window, despite the apparent importance of diffuse inputs for these constituents. This observation, coupled with the absence of a seasonal (monthly) cycle for these nutrients, indicates that, for PO4–P and NH4–N, there were no dominant sources and/or both undergo extensive within-catchment processing. Analyses of nutrient fluxes reveal net losses for NO3–N and SiO2–Si during the non-winter months; for NO3–N, this may be due to denitrification. Areal fluxes of NO x –N from the catchment were towards the higher end of the range for the UK, while NH4–N and PO4–P were closer to the lower end of the ranges for these nutrients. These data, taken together with information on sestonic chlorophyll a, suggest that water quality in the lower River Tamar is satisfactory with respect to nutrients. Analyses of these monitoring data, which were collected at considerable logistical and monetary cost, have revealed unique insights into the environmental behaviour of key nutrients within the Tamar catchment over a 30-year period.  相似文献   

10.
The presence of inorganic nitrogen species in water can be unsuitable for drinking and detrimental to the environment. In this study, a surface-enhanced Raman spectroscopy (SERS) method coupled with a commercially available gold nanosubstrate (a gold-coated silicon material) was evaluated for the detection of nitrate and nitrite in water and wastewater. Applications of SERS coupled with gold nanosubstrates resulted in an enhancement of Raman signals by a factor of ~104 compared to that from Raman spectroscopy. The new method was able to detect nitrate with linear ranges of 1–10,000 mg NO3 ?/L (R 2?=?0.978) and 1–100 mg NO3 ?/L (R 2?=?0.919) for water and wastewater samples, respectively. Among the common anions, phosphate appeared to be the major interfering anion affecting nitrate measurement. Nevertheless, the percentage error of nitrate measurement in wastewater by the proposed SERS method was comparable to that by ion chromatography. The nitrate detection limits in water and wastewater samples were about 0.5 mg/L. The SERS method could simultaneously detect sulfate, which may serve as a reference standard in water. These results suggested that the SERS coupled with nanosubstrates is a promising method to determine nitrate concentrations in water and wastewater.  相似文献   

11.
Precipitation is the best scavenger for the particulates and dissolved gaseous pollutants present in the atmosphere. The chemical composition of precipitation is dominated by a number of in-cloud and below-cloud scavenging processes. The present study is aimed at analyzing the chemical composition of rainwater in the relatively less industrialized part of Mumbai. The pH of rainwater in this region ranges from 4.8 to 6.4. The percentage contributions of ions were calculated and the major contributing ions were calcium (28%), chloride (23%), sodium (18%), sulfate (14%), magnesium (11%), ammonium (4%), potassium (1%), and nitrate (1%). The correlation coefficient is highest for Na and Cl (r 2?=?0.99), giving a clear indication of contribution from sea salt. Sulfate and nitrate ions also show a very good correlation (r 2?=?0.90), which may be due to their coemission from fossil fuel combustion. Acidification caused by these ions is neutralized by Ca, Mg, and NH4 ions. The neutralization effect due to these ions is validated by calculating the neutralization factor (NF). The NF values are in the order Ca > Mg > NH4. The major source contributors for the ions in precipitation are sea salt (Na, Cl, and K) and fossil fuel combustion (SO4 and NO3). These assumptions are supported by the values of wet-only ratio, enrichment factor, and percent sea salt fraction.  相似文献   

12.
为研究北京地区冬季PM_(2.5)载带的水溶性无机离子组分污染特征,2013年1月在中国环境科学研究院内采用在线离子色谱(URG-9000B,AIM-IC)对PM_(2.5)中水溶性无机离子(SO_4~(2-)、NO_3~-、Cl~-、NH_4~+、Na~+、K~+、Mg~(2+)、Ca~(2+))进行监测与分析。结果表明,采样期间总水溶性无机离子(TWSI)浓度为61.0μg/m~3,其中二次无机离子SO_4~(2-)、NO_3~-、NH_4~+(SNA)占比达72.3%,在PM_(2.5)中占比为40.29%,表明北京市PM_(2.5)二次污染严重。重污染天[NO_3~-]/[SO_4~(2-)]表明,固定源污染较移动源更为显著。三元相图表明,在空气质量为优的情况下,NH_4~+(在SNA中占比为30.3%~65.5%,下同)主要以NH_4NO_3的形式存在,较少比例以(NH_4)_2SO_4存在;严重污染时,NH_4~+(47.3%~77.9%)主要以(NH_4)_2SO_4形式存在,其次以NH_4NO_3的形式存在,其余的NH_4~+以NH_4Cl的形式存在。[NO_3~-]/[SO_4~(2-)]日变化表明,早、晚机动车高峰影响北京重污染发生。  相似文献   

13.
The odour emission characteristics of 22 recreational rivers in Nanjing were investigated and analysed. Eight odorous compounds (ammonia (NH3), hydrogen sulphide (H2S), sulphur dioxide (SO2), carbon disulphide (CS2), nitrobenzene (C6H5NO2), aniline (C6H5NH2), dimethylamine (C2H7N), and formaldehyde (HCHO)) were measured in odour emission samples collected using a custom-made emission flux hood chamber. The results showed that all odorants were detected in all monitoring rivers. NH3 was the main odorant, with emission rates ranging from 4.86 to 15.13 μg/min m2. The total odour emission rate of the Nan River, at 1 427.07 OU/s, was the highest of the all investigated rivers. H2S, NH3 and nitrobenzene were three key odour emission contributors according to their contributions to the total odour emission. A correlation analysis of the pollutants showed there was a significant positive correlation between the emission rate of NH3 and the concentration of ammonia nitrogen (NH4 +-N) and total nitrogen (TN). The H2S and SO2 emission rates had a significant positive correlation with sulphides (S2?) and available sulphur (AS) in the water and sediment. The content of TN, NH4 +-N, S2? and AS in the water and sediment affected the concentration of H2S, SO2 and NH3 in the emission gases. NH4 +-N, S2? and AS are suggested as the key odour control indexes for reducing odours emitted from these recreational rivers. The study provides useful information for effective pollution control, especially for odour emission control for the recreational rivers of the city. It also provides a demonstrate example to show how to monitor and assess a contaminated river when odour emission and its control need to be focused on.  相似文献   

14.
Integrated pipe manufacturing industry is operation intensive and has significant air pollution potential especially when it is equipped with a captive power production facility. Emissions of SO2, NO x , and particulate matter (PM) were estimated from the stationary sources in a state-of-the-art pipe manufacturing plant in India. Major air polluting units like blast furnace, ductile iron spun pipe facility, and captive power production facility were selected for stack gas monitoring. Subsequently, ambient air quality modeling was undertaken to predict ground-level concentrations of the selected air pollutants using Industrial Source Complex (ISC 3) model. Emissions of SO2, NO x , and particulate matter from the stationary sources in selected facilities ranged from 0.02 to 16.5, 0.03 to 93.3, and 0.09 to 48.3 kg h???1, respectively. Concentration of SO2 and NO x in stack gas of 1,180-kVA (1 KW = 1.25 kVA) diesel generator exceeded the upper safe limits prescribed by the State Pollution Control Board, while concentrations of the same from all other units were within the prescribed limits. Particulate emission was highest from the barrel grinding operation, where grinding of the manufactured pipes is undertaken for giving the final shape. Particulate emission was also high from dedusting operation where coal dust is handled. Air quality modeling indicated that maximum possible ground-level concentration of PM, SO2, and NO x were to the tune of 13, 3, and 18 μg/m3, respectively, which are within the prescribed limits for ambient air given by the Central Pollution Control Board.  相似文献   

15.
Large-scale exposure of acid sulfate soils during a hydrological drought in the Lower Lakes of South Australia resulted in acidification of surface water in several locations. Our aim was to describe the techniques used to monitor, assess and manage these acidification events using a field and laboratory dataset (n?=?1,208) of acidic to circum-neutral pH water samples. The median pH of the acidified (pH?<?6.5) samples was 3.8. Significant (p?<?0.05) increases in soluble metals (Al, Co, Mn, Ni and Zn above guidelines for ecosystem protection), SO4 (from pyrite oxidation), Si (from aluminosilicate dissolution) and Ca (from carbonate dissolution and limestone addition), were observed under the acidic conditions. The log of the soluble metal concentrations, acidity and SO4/Cl ratio increased linearly with pH. The pH, alkalinity and acidity measurements were used to inform aerial limestone dosing events to neutralise acidic water. Field measurements correlated strongly with laboratory measurements for pH, alkalinity and conductivity (r 2?≥?0.97) but only moderately with acidity (r 2?=?0.54), which could be due to difficulties in determining the indicator-based field titration endpoint. Laboratory measured acidity correlated well with calculated acidity (r 2?=?0.87, acidity present as AlIII?>>?H+?≈?MnII?>?FeII/III) but was about 20 % higher on average. Geochemical speciation calculations and XRD measurements indicated that solid phase minerals (schwertmannite and jarosite for Fe and jurbanite for Al) were likely controlling dissolved metal concentrations and influencing measured acidity between pH 2 and 5.  相似文献   

16.
This paper presents a procedure for estimating the distribution of ionic material in the NH3-HNO3-H2SO4-NaCl system and applies this procedure in a particular case. The data used were measurements of HNO3, NH3, NO 3 , SO 4 , NH 4 + Cl and Na+ performed during February 1989 – February 1990 in a central Athens street with high traffic density. According to the procedure, ions combine in the following manner: Na+ combines preferentially with SO 4 , then with NO 3 , followed by NH 4 + with the remaining SO 4 and then with the remaining NO 3 to form bisulphates, sulphates and nitrates. The combination procedure showed that the main constituents of the NH3-HNO3-H2SO4-NaCl system are primarily (NH4)2SO4 and, to a lesser extent, NH4NO3 and NH4HSO4, with mean and maximum concentrations, during morning hours, (NH4)2SO4: 14.5 (max 46.8), NH4NO3: 2.97 (max 23) and NH4HSO4: 1.78 (max 40.6) µg m–3. Lower concentations of Na2SO4, NaHSO4, NaNO3 and NH4Cl and very low concentrations of H2SO4 are also present, depending on the availability of NaCl. It became apparent from the ionic distribution that there is sufficient NH3 to neutralize the H2SO4 and HNO3. It was also shown that a significant fraction of the HNO3, especially on days with high pollution, occurs as aqueous NO 3 . A number of empirical equations have been proposed, which enable the approximate estimation of the constituents of the NH3-HNO3-H2SO4-NaCl system from air pollution monitoring data and meteorological parameters.  相似文献   

17.
The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter ≤10 μm (PM10), SO2, and NO2] for pre-Diwali, Diwali festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM10, SO2, and NO2 increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM10, NO2, and SO2 concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM10 in all the years from 2002 to 2007 and for NO2 in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM10 in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM10, SO2, and NO2.  相似文献   

18.
This study was performed in order to improve the estimation accuracy of atmospheric ammonia (NH3) concentration levels in the Greater Houston area during extended sampling periods. The approach is based on selecting the appropriate penalty coefficient C and kernel parameter σ 2. These parameters directly influence the regression accuracy of the support vector machine (SVM) model. In this paper, two artificial intelligence techniques, particle swarm optimization (PSO) and a genetic algorithm (GA), were used to optimize the SVM model parameters. Data regarding meteorological variables (e.g., ambient temperature and wind direction) and the NH3 concentration levels were employed to develop our two models. The simulation results indicate that both PSO-SVM and GA-SVM methods are effective tools to model the NH3 concentration levels and can yield good prediction performance based on statistical evaluation criteria. PSO-SVM provides higher retrieval accuracy and faster running speed than GA-SVM. In addition, we used the PSO-SVM technique to estimate 17 drop-off NH3 concentration values. We obtained forecasting results with good fitting characteristics to a measured curve. This proved that PSO-SVM is an effective method for estimating unavailable NH3 concentration data at 3, 4, 5, and 6 parts per billion (ppb), respectively. A 4-ppb NH3 concentration had the optimum prediction performance of the simulation results. These results showed that the selection of the set-point values is a significant factor in compensating for the atmospheric NH3 dropout data with the PSO-SVM method. This modeling approach will be useful in the continuous assessment of NH3 sensor discrete data sources.  相似文献   

19.
Measurement of nitrogen dioxide using passivediffusion tube over 22 months in Cambridge, U.K. areanalysed as a function of sampler exposure time, andcompared with NO2 concentrations obtained from aco-located chemiluminescence analyser. The averageratios of passive sampler to analyser NO2 at acity centre site (mean NO2 concentration 22 ppb)are 1.27 (n = 22), 1.16 (n = 34) and 1.11 (n = 7) forexposures of 1, 2 and 4-weeks, respectively. Modellingthe generation of extra NO2 arising from chemicalreaction between co-diffusing NO and O3 in thetube gave a ratio (modelled/measured) of 1.31 for1-week exposures. Such overestimation is greatest whenNO2 constitutes, on average, about half of totalNOx (= NO + NO2) at the monitoring locality.Although 4-week exposures gave concentrations whichwere not significantly different from analyserNO2, there was no correlation between thedatasets. At both the city-centre site and anothersemi-rural site (mean NO2 concentration 11 ppb)the average of the aggregate of four consecutive1-week sampler exposures or of two consecutive 2-weeksampler exposures was systematically greater than fora single 4-week exposure.The results indicate two independent and opposingsystematic biases in measurement of NO2 bypassive diffusion sampler: an exposure-timeindependent chemical overestimation with magnitudedetermined by local relative concentrations of NO andO3 to NO2, and an exposure-time dependentreduction in sampling efficiency. The impact of theseand other potential sources of systematic bias on theapplication of passive diffusion tubes for assessingambient concentrations of NO2 in short (1-week)or long (4-week) exposures are discussed in detail.  相似文献   

20.
Aquatic organisms’ tolerance to water pollution is widely used to monitor and assess freshwater ecosystem health. Tolerance values (TVs) estimated based on statistical analyses of species-environment relationships are more objective than those assigned by expert opinion. Region-specific TVs are the basis for developing accurate bioassessment metrics particularly in developing countries, where both aquatic biota and their responses to human disturbances have been poorly documented. We used principal component analysis to derive a synthetic gradient for four stressor variables (total nitrogen, total phosphorus, dissolved oxygen, and % silt) based on 286 sampling sites in the Taihu Lake and Qiantang River basins (Yangtze River Delta), China. We used the scores of taxa on the first principal component (PC1), which explained 49.8 % of the variance, to estimate the tolerance values (TVr) of 163 macroinvertebrates taxa that were collected from at least 20 sites, 81 of which were not included in the Hilsenhoff TV lists (TVh) of 1987. All estimates were scaled into the range of 1–10 as in TVh. Of all the taxa with different TVs, 46.3 % of TVr were lower and 52.4 % were higher than TVh. TVr were significantly (p?<?0.01, Fig. 2), but weakly (r 2?=?0.34), correlated with TVh. Seven biotic metrics based on TVr were more strongly correlated with the main stressors and were more effective at discriminating references sites from impacted sites than those based on TVh. Our results highlight the importance of developing region-specific TVs for macroinvertebrate-based bioassessment and to facilitate assessment of streams in China, particularly in the Yangtze River Delta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号