首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study was carried out in a part of Palar and Cheyyar river basin to evaluate the current status of iron, manganese, zinc and atrazine concentrations, their origin and distribution in groundwater. Groundwater samples were collected during post-monsoon (March 1998 and February 1999) and pre-monsoon (June 1999) periods from 41 sampling wells distributed throughout the study area. The groundwater samples were analyzed for trace metals using AAS and atrazine using HPLC. The concentration of the trace elements in groundwater is predominant during pre-monsoon period. Distribution pattern indicates that the concentration of these elements increases from west to northeast and towards Palar river. Lower concentrations in the central part may be due to recharge of fresh water from the lakes located here. During most of the months, as there is no flow in Palar river, the concentrations of trace elements in groundwater are high. Drinking water standards indicate that Mn and Zn cross the permissible limit recommended by EPA during the pre-monsoon period. A comparison of groundwater data with trace element chemistry of rock samples shows the abundance of trace elements both in the rock and water in the order of Fe > Mn > Zn and Fe > Zn > Mn. This indicates that iron in groundwater is derived from lithogenic origin. Further, Fe, Mn and Zn have good correlation in rock samples, while it is reverse in the case of water samples, indicating the non-lithogenic origin of Mn and Zn. Atrazine (a herbicide) was not detected in any of the groundwater samples in the study area, perhaps due to low-application rate and adsorption in the soil materials.  相似文献   

2.
The distribution and accumulation of heavy metals (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Ba, Pb) in the water, sediments, plankton of Yeniça?a Lake, and its potential sources (creeks, sewage, artesian well, soil) were investigated during 1-year study period as monthly or seasonally. Element analyses were performed by ICP–MS. Results showed that the trace and toxic elements (Al, As, Mn, Pb, Fe) concentration in lake water and/or its feeding sources were above the recommended water standards (WHO, EC, EPA, TS-266). It was found that the maximum accumulation of the heavy metals iron, aluminum, manganese, zinc, and barium in the sediment of Yeniça?a Lake. The accumulation order of trace metals were Fe > Al > Mn > Zn > Ba > Ni > Cr > As > Cu > Pb > Co > Mo > Sn > Cd in the lake, creeks sediment, and soil samples. The similar results suggest that the accumulation of heavy metals in the sediment is a natural process. Metals accumulated in the lake are naturally mixed from the soil. However, the presence of heavy metals in the analysis of artesian well water and sewage reveals that the transportation occurs also from the groundwater to the lake. The results obtained in plankton in Yeniça?a Lake showed that aluminum, iron, manganese, zinc, and barium were most accumulated elements in the plankton. The lower averages of lead prevalent in the water and sediment during some months were seen to have a significant mean accumulation in the plankton.  相似文献   

3.
The objective of the study is to reveal the seasonal variations in the river water and sediment quality with respect to heavy metal contamination. To get the extent of trace metals contamination, water and sediment samples were collected from five different sites along the course of Sabarmati River and its tributary Kharicut canal in pre-monsoon, monsoon and post-monsoon seasons. The concentration of trace metals such as chromium, copper, lead, nickel and zinc was determined using inductively coupled plasma spectroscopy. The concentrations of heavy metals were found to be higher in the pre-monsoon season than in the monsoon and post-monsoon seasons in water samples. The pollution load index, contamination factor and degree of contamination (C d) in sediments were calculated to know the extent of anthropogenic pressures. The values of C d clearly indicated very high degree of contamination at Kharicut canal (S-4: 32.25 and S-5: 54.52) and considerable degree of contamination at three sites of Sabarmati river viz; S-1, S-2 and S-3 with values 14.30, 14.42 and 17.21, respectively. Lead and nickel could not be traced in any of the river water samples.  相似文献   

4.
Groundwater contamination and its effect on health in Turkey   总被引:1,自引:0,他引:1  
The sources of groundwater pollution in Turkey are identified, and pathways of contaminants to groundwater are first described. Then, the effects of groundwater quality on health in Turkey are evaluated. In general, sources of groundwater contamination fall into two main categories: natural and anthropogenic sources. Important sources of natural groundwater pollution in Turkey include geological formations, seawater intrusion, and geothermal fluid(s). The major sources of anthropogenic groundwater contamination are agricultural activities, mining waste, industrial waste, on-site septic tank systems, and pollution from imperfect well constructions. The analysis results revealed that natural contamination due to salt and gypsum are mostly found in Central and Mediterranean regions and arsenic in Aegean region. Geothermal fluids which contain fluoride poses a danger for skeleton, dental, and bone problems, especially in the areas of Denizli, Isparta, and Ayd?n. Discharges from surface water bodies contaminate groundwater by infiltration. Evidence of such contamination is found in Upper K?z?l?rmak basin, Gediz basin, and Büyük Melen river basin and some drinking water reservoirs in ?stanbul. Additionally, seawater intrusion causes groundwater quality problems in coastal regions, especially in the Aegean coast. Industrial wastes are also polluting surface and groundwater in industrialized regions of Turkey. Deterioration of water quality as a result of fertilizers and pesticides is another major problem especially in the regions of Mediterranean, Aegean, Central Anatolia, and Marmara. Abandoned mercury mines in the western regions of Turkey, especially in ?anakkale, ?zmir, Mu?la, Kütahya, and Bal?kesir, cause serious groundwater quality problems.  相似文献   

5.
The present study was conducted to investigate drinking water quality (groundwater) from water samples taken from Qasim Abad, a locality of approximately 5,000 population, situated between twin cities Rawalpindi and Islamabad in Pakistan. The main sources of drinking water in this area are water bores which are dug upto the depth of 250–280 ft in almost every house. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 6.75 to 8.70, electrical conductivity 540 to 855 μS/cm, total dissolved solids 325.46 to 515.23 ppm and dissolved oxygen 1.50 to 5.64 mg/L which are within the WHO guidelines for drinking water quality. The water samples were analysed for 30 elements (aluminium, iron, magnesium, manganese, silicon, zinc, molybdenum, titanium, chromium, nickel, tungsten, silver, arsenic, boron, barium, beryllium, cadmium, cobalt, copper, gallium, mercury, lanthanum, niobium, neodymium, lead, selenium, samarium, tin, vanadium and zirconium) by using inductively coupled plasma atomic emission spectroscopy. The organic contamination was detected in terms of most probable number (MPN) of faecal coliforms. Overall, elemental levels were lower than the recommended values but three water bores (B-1, B-6, B-7) had higher values of iron (1.6, 2.206, 0.65 ppm), two water bores (B-1, B-6) had higher values of aluminium (0.95, 1.92 ppm), respectively, and molybdenum was higher by 0.01 ppm only in one water bore (B-11). The total number of coliforms present in water samples was found to be within the prescribed limit of the WHO except for 5 out of 11 bore water samples (B-2, B-3, B-4, B-8, B-11), which were found in the range 5–35 MPN/100 mL, a consequence of infiltration of contaminated water (sewage) through cross connection, leakage points and back siphoning.  相似文献   

6.
For the first time the concentration of trace metals (Fe, Pb, Cu, Zn, Cd and total Hg) of sediments from the coastal zone of the Beagle Channel (Tierra del Fuego, in Southern Argentina) were measured. Atomic absorption spectrophotometry was utilized in order to determine the metal contents. The level of metals as observed in the sediments was recognized as the natural background, even though the use of normalization of lead, copper, and zinc to iron allowed the identification of the main sources of metal pollution for this environment. In order to develop future environmental monitoring programmes for the area of Ushuaia city and the Beagle Channel, the present results need to be considered.  相似文献   

7.
In this study, nutrients, trace metals and priority pesticide compounds were investigated for the first time in water and sediment samples in streams of the Evrotas River basin (S.E. Greece) from 2006 to 2008. The most important sources of contamination were from the entry of pesticides and nutrients into surface waters and sediments as a result of the intensive agricultural activity as well as from the uncontrolled disposal of olive mill and citrus processing wastewaters. Aquatic risk assessment revealed that all insecticides detected showed high risk, suggesting adverse effects on the stream biota. Among the metals analyzed, Cr, Ni and Ba presented the highest concentrations in sediments, however, due to natural geological processes. Multivariate statistical techniques applied for data compression, exploration and interpretation proved to be useful tools for identifying the most critical pollutants affecting the surface water quality. The findings of this study suggest that the inclusion of streams with small catchment areas into WFD monitoring and assessment programs is essential, especially those of the Mediterranean region.  相似文献   

8.
India's Unnao region is home to many leather-treatment facilities and related industries. Industrial and agricultural waste leads to heavy metal contamination that infiltrates groundwater and leads to human health hazards. This work measured the amount of heavy metal in groundwater at specific sites near the industrial facilities in Unnao and identified potential sources of contamination as anthropogenic or lithogenic. Groundwater samples were taken from 10 bore well sites chosen for depth and proximity to industry. Data obtained from sample sites was interpreted using a multivariate statistical analytical approach, i.e., principal component analysis, clustering analysis, and correlation analysis. The results of the multivariate analysis showed that cadmium, copper, manganese, nickel, lead, and zinc were correlated with anthropogenic sources, while iron and chromium were associated with lithogenic sources. These findings provide information on the possible sources of heavy metal contamination and could be a model for assessing and monitoring heavy metal pollution in groundwater in other locales. This study analyzed a selection of heavy metals chosen on the basis of industries located in the study area, which might not provide a complete range of information about the sources and availability of all heavy metals. Therefore, an extended investigation on heavy metal fractions will be developed in further studies.  相似文献   

9.
The Lower Ponnaiyar River Basin forms an important groundwater province in South India constituted by Tertiary formations dominated by sandstones and overlain by alluvium. The region enjoyed artesian conditions 50 years back but at present frequent failure of monsoon and over exploitation is threatening the aquifer. Further, extensive agricultural and industrial activities and urbanization has resulted in the increase in demand and contamination of the aquifer. To identify the sources and quality of groundwater, water samples from 47 bore wells were collected in an area of 154 km2 and were analysed for major ions and trace metals. The results reveal that the groundwater in many places is contaminated by higher concentrations of NO3, Cl, PO4 and Fe. Four major hydrochemical facies Ca–Mg–Cl, Na–Cl, Ca–HCO3 and Na–HCO3 were identified using Piper trilinear diagram. Salinity, sodium adsorption ratio, and sodium percentage indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standards. The most serious pollution threat to groundwater is from nitrate ions, which are associated with sewage and fertilizers application. The present state of the quality of the lower part of Ponnaiyar River Basin is of great concern and the higher concentration of toxic metals (Fe and Ni) may entail various health hazards.  相似文献   

10.
A study was conducted to evaluate the heavy metal contamination status of groundwater in Brahmaputra flood plain Barpeta District, Assam, India. The Brahmaputra River flows from the southern part of the district and its many tributaries flow from north to south. Cd, Fe, Mn, Pb, and Zn are estimated by using atomic absorption spectrometer, Perkin Elmer AA 200. The quantity of heavy metals in drinking water should be checked time to time; as heavy metal accumulation will cause numerous problems to living being. Forty groundwater samples were collected mainly from tube wells from the flood plain area. As there is very little information available about the heavy metal contamination status in the heavily populated study area, the present work will help to be acquainted with the suitability of groundwater for drinking applications as well as it will enhance the database. The concentration of iron exceeds the WHO recommended levels of 0.3 mg/L in about 80% of the samples, manganese values exceed 0.4 mg/L in about 22.5% of the samples, and lead values also exceed limit in 22.5% of the samples. Cd is reported in only four sampling locations and three of them exceed the WHO permissible limit (0.003 mg/L). Zinc concentrations were found to be within the prescribed WHO limits. Therefore, pressing awareness is needed for the betterment of water quality; for the sake of safe drinking water. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).  相似文献   

11.
This study was undertaken to assess the heavy metal concentration of the drinking water with respect to zinc, copper, cadmium, manganese, lead and arsenic in Kamrup district of Assam, India. Ground water samples were collected from tube wells, deep tube wells and ring wells covering all the major hydrogeological environs. Heavy metals in groundwater are estimated by using Atomic Absorption Spectrometer, Perkin Elmer Analyst 200. Data were assessed statistically to find the distribution pattern and other related information for each metal. The study revealed that a good number of the drinking water sources were contaminated with cadmium, manganese and lead. Arsenic concentrations although did not exceeded WHO limits but was found to be slightly elevated. Copper and zinc concentrations were found to be within the prescribed WHO limits. An attempt has also been made to ascertain the possible source of origin of the metals. Positive and significant correlation existing between manganese with zinc and copper indicates towards their similar source of origin and mobility. In view of the present study and the level of heavy metal contamination, it could be suggested to test the potability of the water sources before using it for drinking purpose.  相似文献   

12.
Thane district is one of the most industrialized districts in Maharashtra. The heavy industrialization and the increasing urbanization are responsible for the rapidly increasing stress on the water and soil environment of the area. Therefore, an attempt has been made through comprehensive study on the groundwater contamination and soil contamination due to heavy metals in Thane region of Maharashtra. The area undertaken for the study was Thane and its suburbans Kalwa, Divajunction, Dombivali, Kalyan, and Ulhasnagar. Industrialization and urbanization lead to generation of large volumes of wastewater from domestic, commercial, industrial, and other sources, which discharged in to natural water bodies like river and creek in this region. Groundwater samples and soil samples were collected from residential, commercial, agriculture, and industrial areas. Groundwater samples were analyzed for various water quality parameters. The analytical data shows very high concentration of total dissolved solids, total hardness, total alkalinity, chemical oxygen demand, chloride etc. Groundwater and soil samples were analyzed for ten heavy metals by inductively coupled plasma (ICPE-9000) atomic emission spectroscopy. The analytical data reveal that, very high concentration level of arsenic, cadmium, mercury, and nickel throughout the industrial area. The random dumping of hazardous waste in the industrial area could be the main cause of the groundwater and soil contamination spreading by rainwater and wind. In the residential areas the local dumping is expected to be the main source for heavy metals. A comparison of the results of groundwater with WHO guidelines show that most of the groundwater sampling station are heavily contaminated with organic matter and heavy metals. Groundwater samples are heavily contaminated by arsenic, cadmium, mercury, and nickel. Similarly, the results of heavy metals in soil compared with Swedish soil guideline values for polluted soil show that soil samples collected from residential, commercial and industrial areas are heavily contaminated by arsenic, cadmium, mercury, and nickel.  相似文献   

13.
There is a growing concern over the potential accumulation of trace element concentration in groundwater of coastal aquifer owing seawater encroachment in the last several decades. A total of 29 groundwater samples collected from Pesarlanka Island, Krishna delta, Andhra Pradesh, India were analyzed for 13 trace elements (B, V, Mn, Fe, Ni, Co, Cu, Zn, As, Sr, Cd, Ba, and Pb) using inductively coupled plasma mass spectrometry. The results reveal that B, Fe, Ni, As, Sr, and Pb vary from 11.22 to 710.2, 1.25 to 684.6, 0.02 to 37.33, 27.8 to 282.3, 164.1 to 7,009, and 1.97 to 164.4 μg/l, respectively. Ba, Cd, Co, Cu, Ni, V, and Zn are almost within permissible limits for drinking water, but As, Fe, Mn, Pb, B, and Sr are above the permissible limit. The toxic element Pb is 1.64 times more than the maximum permissible limits of drinking water. The minimum value of As is also 2.78 times more, whereas the maximum is 28.2 times the permissible limit. The spatial distributions of alkaline earths (Sr, Ba), transition metals (V, Co, Ni, Fe), metallic elements (Cu, Pb), and (As) were found in considerable variation in the entire Island. Good cross-correlations were found between As, B, Co, and Sr with total dissolved solids and among other trace elements such as B, As, Co, and Sr. The variability observed within the groundwater samples is closely connected to the sea spray input; hence, it is primarily a consequence of geographical and meteorological factors, such as distance from the ocean and time of year. The trace element levels, in particular those of heavy metals, are very low, suggesting an origin from natural sources rather than from anthropogenic contamination. A few trace elements (Sr and B) are found as sensitive parameters responding to changes in fresh to saline groundwater environment. The highly elevated trace elements in this area which may be attributed to marine sediments or death and decay of plants are presented in this paper.  相似文献   

14.
Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km2 have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m3). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10 % to 15 %.  相似文献   

15.
Studies on quantitative soil contamination due to heavy metals were carried out in Katedan Industrial Development Area (KIDA), south of Hyderabad, Andhra Pradesh, India under the Indo-Norwegian Institutional Cooperation Programme. The study area falls under a semi-arid type of climate and consists of granites and pegmatite of igneous origin belonging to the Archaean age. There are about 300 industries dealing with dyeing, edible oil production, battery manufacturing, metal plating, chemicals, etc. Most of the industries discharge their untreated effluents either on open land or into ditches. Solid waste from industries is randomly dumped along roads and open grounds. Soil samples were collected throughout the industrial area and from downstream residential areas and were analysed by X-ray Fluorescence Spectrometer for fourteen trace metals and ten major oxides. The analytical data shows very high concentrations of lead, chromium, nickel, zinc, arsenic and cadmium through out the industrial area. The random dumping of hazardous waste in the industrial area could be the main cause of the soil contamination spreading by rainwater and wind. In the residential areas the local dumping is expected to be the main source as it is difficult to foresee that rain and wind can transport the contaminants from the industrial area. If emission to air by the smokestacks is significant, this may contribute to considerable spreading of contaminants like As, Cd and Pb throughout the area. A comparison of the results with the Canadian Soil Quality Guidelines (SQGL) show that most of the industrial area is heavily contaminated by As, Pb and Zn and local areas by Cr, Cu and Ni. The residential area is also contaminated by As and some small areas by Cr, Cu, Pb and Zn. The Cd contamination is detected over large area but it is not exceeding the SQGL value. Natural background values of As and Cr exceed the SQGL values and contribute significantly to the contamination in the residential area. However, the availability is considerably less than anthropogenic contaminants and must therefore be assessed differently. The pre- and post-monsoon sampling over two hydrological cycles in 2002 and 2003 indicate that the As, Cd and Pb contaminants are more mobile and may expect to reach the groundwater. The other contaminants seem to be much more stable. The contamination is especially serious in the industrial area as it is housing a large permanent residing population. The study not only aims at determining the natural background levels of trace elements as a guide for future pollution monitoring but also focuses on the pollution vulnerability of the watershed. A plan of action for remediation is recommended.  相似文献   

16.
In this study, heavy metal contents of groundwater from the Mersin aquifer were determined with photometric methods and used to determine the main factors controlling the pollution of groundwater in the area. Using MapInfo GIS software, spatial analysis and integration were carried out for mapping drinking water quality in the basin. From the photometric heavy metal analysis, it is inferred that the excess concentration of Fe, Ni, Mn, Mo and Cu at some locations is the cause of undesirable quality for drinking purposes. Similarly, the EC thematic map shows that considerable areas in the basin are having high salinity hazards. The reason for excess concentration of various heavy metals is the industrial activities and petroleum pipelines and salinity levels show the sea water intrusion.  相似文献   

17.
Recent efforts have been made to determine the environmental impact of mining over the past 11 years in the Jequetepeque River basin, in northern Peru. We have now analyzed data from two studies to elucidate the spatial and temporal trace metal distributions and to assess the sources of contamination. These two studies were carried out from 2003 to 2008 by a Peruvian government administration and from 2008 to 2010 by us. We analyzed 249 samples by principal component analysis, measuring: pH, electrical conductivity, total dissolved solids, total suspended solids, chloride, weak-acid-dissociable cyanide, total cyanide, nitrite and nitrate, ammonium, sulfate, and trace metals and metalloids (Al, As, Ca, Cd, Cu, Cr, Fe, Mg, Mn, Ni, Pb, and Zn). Within the spatial distribution of the basin, the highest Al, As, Cu, Fe, Ni, and Pb concentrations were found at the closest point to the mine sites for both periods of time, with the higher peaks measured during the first years of the sampling data. Temporal trends showed higher concentrations of Cu and Fe in samples taken before 2005, at which point the two mines were closed. Risk assessment was quantified by the hazard quotient as related to water ingestion. The risk for human health posed by the concentrations of several trace metals and metalloids was found to be highly adverse (As and Cr), significant (Al, Cd, Cu, Fe, and Pb), or minimal (Ni and Zn).  相似文献   

18.
Cu, Cd, Zn, Pb and Se concentrations were measured in the bivalve mollusc Saccostrea glomerata(Iredale and Roughly) from two uncontaminated locations, Clyde River Estuary, Batemans Bay and Moona Moona Creek, Jervis Bay, to determine natural variability of metals associated with mass, gender, age, tissue type and site within location. Trace metals were also measured in the Clyde River Estuary over an 11 year period and in five other NSW estuaries (Hastings River, Hunter River, Georges River, Tillgerry Creek and Lake Pambula) over a 13-month period to determine temporal variability and if diploid and triploid oysters accumulate trace metals differently. There were few significant relationships between trace metal concentrations and mass and no significant differences in trace metal concentrations between female and male oysters. Younger oysters (1.3 years) had significantly higher copper concentrations and higher trace metal variability than mature oysters (3 years). Different tissues have different trace metal concentrations with muscle tissues having lower concentrations. Considerable inherent variability occurs in oyster cohorts. Analysing specific tissues did not reduce variability of trace metal concentrations. Comparison of trace metal concentrations at two sites within the Clyde Estuary showed a significant difference in zinc concentrations. Cu, Cd, Zn and Se concentrations were generally higher and less variable in triploids than diploids. Pb had a variable pattern of accumulation with no consistent elevation in diploids or triploids. Inter annual variability of trace metal concentrations was considerable and trace metal concentrations also fluctuated throughout an annual cycle with no clear seasonal trends. Measurement of trace metals at known contaminated locations showed that Saccostrea glomerata accumulates metals in response to contamination. Saccostrea glomerata meet most of the requirements to be a biomonitor of trace metal contamination as they are abundant, sessile/sedentary, easy to identify, provide sufficient tissue for analysis, and accumulate trace metals in response to contamination. However, as trace metal concentrations can vary with mass, age, estuary position, ploidy type and temporally, care must be taken to collect individual organisms of similar mass, age and ploidy type to minimise variability, and from similar consistent positions and times to allow for seasonal changes in environmental conditions. Trace metal concentration variability is higher in young animals, thus to reduce variability, older mature animals could be selected. However, with immature oysters there are no complications because of the effects of spawning i.e. sudden loss of trace metals or body mass.  相似文献   

19.
《地下水管理条例》自2021年12月1日起施行,但是由于《地下水质量标准》(GB/T 14848—2017)未明确其中的金属指标是检测可溶态含量还是总量,导致各检测机构在检测过程中的采样和前处理环节存在较多不确定之处。梳理了国内外地下水监测相关标准和规范,并进行了实验比对,经分析得出以下结论:铜、铅、锌、铁、锰的可溶态含量和总量检测结果存在明显差异,其中,铁和铅检测结果的差异最明显,铁和锰检测结果的差异会影响地下水质量类别判定。《地下水质量标准》中的金属指标应检测可溶态,包括汞、砷和硒。充分洗井后采集的地下水样品存在一定的浑浊度是合理的。完成采集的地下水金属指标检测样品中不应包含沉淀相。测定地下水可溶态汞、砷和硒时,如采用原子荧光法,则需对样品进行消解;如采用电感耦合等离子体质谱法,则无需对样品进行消解。在此基础上,对地下水采样及前处理关键环节和地下水检测管理工作提出了相关建议。  相似文献   

20.
In order to investigate the metal distribution, speciation, correlation and origin, risk assessment, 86 surface soil samples from the catchment area around the Miyun Reservoir, Beijing, including samples from gold and iron mine areas, were monitored for fractions of heavy metal and total contents. Most of the metal concentrations in the gold and iron mine soil samples exceeded the metal background levels in Beijing. The contents of most elements in the gold mine tailings were noticeably higher than those in the iron mine tailings. Geochemical speciation data of the metals showed that the residual fraction dominated most of the heavy metals in both mines. In both mine areas, Mn had the greatest the acid-soluble fraction (F1) per portion. The high secondary-phase fraction portion of Cd in gold mine samples indicated that there was a direct potential hazard to organisms in the tested areas. Multivariate analysis coupled with the contents of selected metals, showed that Hg, Pb, Cr, and Ni in gold mine areas represented anthropogenic sources; Cd, Pb, and Cr in iron mine areas represented industrial sources. There was moderate to high contamination of a few metals in the gold and iron soil samples, the contamination levels were relatively higher in gold mine than in iron mine soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号