首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The distribution of 16 polycyclic aromatic hydrocarbons (PAHs) was determined in water, sediment and pore water of the Jiulong River Estuary and Western Xiamen Sea, China. Total PAH concentrations varied from 6.96 to 26.9 microg/l in water, 59-1177 ng/ g dry weight in surficial sediments, and 158-949 microg/l in pore water. The PAHs were present in higher levels in pore water than in surface water, due possibly to higher concentrations of dissolved organic carbon or colloids with which the hydrophobic pollutants were strongly associated. Such a concentration gradient implies a potential flux of pollutants from sediment pore water to overlying water. The levels of PAHs in water and pore water were significantly higher than those found in 1998, suggesting recent inputs of these compounds into the area and re-working of sediment phase. The composition pattern of PAHs in the three phases was dominated by high molecular weight PAHs, in particular 5-ring PAHs. The salinity profile of dissolved PAHs suggested that they all behaved non-conservatively due to deviation from the theoretical dilution line. No correlation was found between PAH concentrations in sediment and those in pore water, and the correlation between the partition coefficients of PAHs and sediment organic carbon content was not significant, suggesting the complexity of the partition behaviour of PAHs. As a result of high PAH concentrations in water and pore water, it is likely that they may have caused mortality to certain exposed organisms.  相似文献   

2.
In this study, surface water samples from the Wenyu River and the North Canal, effluent from major wastewater treatment plants (WWTPs) in Beijing, and wastewater from open sewers that discharge directly into the river system were collected and analyzed for 16 priority USEPA polycyclic aromatic hydrocarbons (PAHs). Concentrations of these 16 PAHs ranged from 193 to 1790 ng/L in river surface waters, 245 to 404 ng/L in WWTP effluents, and 431 to 2860 ng/L in the wastewater from the small sewers. The WWTP effluent was the main contributor of dissolved PAHs to the river, while wastewater from the small sewers contributed both dissolved and suspended particulate matter-associated PAH to the river as indicated by the high dissolved organic carbon and suspended particulate matter contents in the wastewater. Although the flow from each open sewer was small, a PAH discharge as high as 44 kg/year could occur into the river from these types of sewers. This amount was equivalent to about 22 % of the PAH loads discharged into the North Canal downstream from Beijing, whereas the remainder was mainly released by the major WWTPs in Beijing.  相似文献   

3.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

4.

Seasonal and regional distributions of 17 polycyclic aromatic hydrocarbons (PAHs) in surface waters from four different main water functional regions of the Baiyangdian Lake were analyzed through GC/MS/MS during spring and summer season. The aim was to identify their possible pollution sources and evaluate their health risk for human and ecotoxicological risk for aquatic organisms. Results showed that the range of total PAH concentration is 35.38–88.06 ng/L (average 46.57 ng/L) in spring and 25.64–301.41 ng/L (average 76.23 ng/L) in summer. PAH contamination was observed slightly lower in the summer season from the pollution characteristics of water bodies in most areas of the Baiyangdian Lake, and the levels of PAH pollution in the water body of urban residential regions and rural residential regions were relatively higher than those in tourist regions and low human disturbance regions. Source analysis based on diagnostic ratios confirmed that combustion sources and petroleum sources were two main sources for PAHs entering into the waters of the Baiyangdian Lake. Human health risk assessment showed that PAHs in surface waters from the Baiyangdian Lake will not cause a potential non-carcinogenic risk to local residents and the carcinogenic risk could mostly be accepted, but the potential lifetime carcinogenic risk for infants in rural residential regions should be concerned about. Urban residential regions and rural residential regions were subject to higher cumulative non-carcinogenic and carcinogenic risk when compared to the other functional regions. Ecotoxicological risk assessment found a moderate risk to aquatic organisms presented by individual PAH and a low risk by total PAHs, and PAHs in the water body of urban residential regions and rural residential regions also have relatively higher harm effects to aquatic organisms compared with the other two functional regions. This study revealed the pollution characteristics of PAHs and their possible sources in waters of the Baiyangdian Lake, clarified its correlation to regional anthropogenic activities, and provided corresponding risk management strategies for human and aquatic organisms.

  相似文献   

5.
The presence of polycyclic aromatic hydrocarbons (PAHs) in an urban region (Heraklion, Greece) and processes that govern their atmospheric fate were studied from November 2000 until February 2002. Sixteen samples were collected, by using an artifact-free sampling device, on a monthly basis and the concentration of PAHs in gas and particulate phase was determined. The most abundant members (gas + particles) were phenanthrene (20.0+/-7.0 ng m(-3)), fluoranthene (6.5+/-1.7 ng m(-3)), pyrene (6.6+/-2.4 ng m(-3)), and chrysene (3.1+/-1.5 ng m(-3)). Total concentration (gas+particulate) of PAH ranged from 44.3 to 129.2 ng m(-3), with a mean concentration of 79.3 ng m(-3). Total concentration of PAHs in gas phase ranged from 31.4 to 84.7 ng m(-3) with non-observable seasonal variation. Conversely, maximum PAH concentrations in the particulate phase occurred during winter months. Particulate concentration varied from 11.4 to 44.9 ng m(-3), with an average of 25.2 ng m(-3). PAH distribution between gas and particulate phase was in agreement with the sub-cooled vapor pressure. Shift in gas/particle distribution due to difference in ambient temperature elucidated to some extent the seasonal variation of the concentration of PAHs in particles.  相似文献   

6.
Ko FC  Baker J  Fang MD  Lee CL 《Chemosphere》2007,66(2):277-285
Polycyclic aromatic hydrocarbon (PAH) concentrations in 34 surface sediments along the Susquehanna River were investigated in 2000. The total concentrations of PAHs in the surface sediments of Lake Clarke, Lake Aldred, the upper Conowingo Reservoir, and the lower Conowingo Reservoir were 3.3+/-1.5 microg g-1 (n=9), 1.6+/-1.3 microg g-1 (n=4), 9.8+/-5.5 microg g-1 (n=7), and 4.0+/-1.2 microg g-1 (n=14), respectively. These represent the first comprehensive measurement of PAHs in Susquehanna River surface sediments. Overall, total PAH concentrations were relatively lower in Lake Aldred, which is more shallow and sloped, and significantly higher in the upper Conowingo Reservoir. The sediment PAH levels were related to river flow rates, which are indirectly correlated with the particle size of the surface sediments. Total PAH levels in all the studied sites were below the effects range median (ERM) of 44.8 microg g-1 with 38% (13 of the 34 sampling sites) exceeding the effects range low (ERL) of 4.02 microg g-1. Principal component analysis indicated that variations in the PAH compound patterns of each reservoir decreased from upstream to downstream, indicating that the surface sediments were mixed along the Susquehanna River. The PAH patterns in the lower Conowingo Reservoir sediments were a combination of those upstream sources. Source analysis using isomer ratios as indicators suggested that PAHs in the Susquehanna River surface sediment are derived from the combustion of fossil fuels such as coal and gasoline with coal as the major source of contaminants.  相似文献   

7.
Bulk (wet and dry) precipitation and surface water sampling was undertaken in the main plain of central Macedonia in Northern Greece. Fourteen polycyclic aromatic hydrocarbons (PAHs) included in the US EPA's priority pollutant list were analysed. The concentrations determined in bulk precipitation were in general within the range of values worldwide reported. Concentrations were highest in the cold months. Deposition fluxes of PAHs were of the same order of magnitude as reported data. The greatest values were found when high concentrations of PAHs in precipitation coincided with large precipitation amounts. The concentrations of PAHs in surface waters (main rivers, tributaries, ditches, etc) were in general lower than those in bulk precipitation, and among the lowest reported for European rivers, excepting Np and Ph. Bulk deposition and domestic effluents are suggested as being the main PAH sources into surface waters.  相似文献   

8.
In this paper a new electronically controlled year-round wet-only sampler for wet deposition of trace organic compounds (e.g. airborne PAHs) is described. The sampler provides in situ filtration of the precipitation as well as preconcentration of nonpolar organic compounds by means of a C18-PAH modified silica gel cartridge. The whole assembly is insulated and equipped with heating elements which permit collection of wet deposition as ice or snow and insure correct function of the sampling system even during cold weather. Concurrent chemical analysis of both the particulate and the dissolved phases is performed by high resolution gas chromatography with flame ionization detection or HPLC with fluorescence detection. The reliability of the method was proved by analyzing PAH spiked water (simulated rain) and using NIST SRM 1649 ('urban dust') as certified material for particle-bound PAHs in precipitation. This study proved satisfactorily recoveries of as both particle-bound and unbound aqueous PAH, with only small losses to collector surfaces. It was proved that this new wet-only precipitation sampler can successfully be used for long-time monitoring of PAH in wet depositions in urban areas.  相似文献   

9.
Marine culture is thriving in China and represents a major component of the regional economy in coastal zones, yet the environmental quality of many of those areas has never been studied. This paper attempts to investigate the quality status of Daya Bay, a key aquaculture area in China. The levels of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in water and sediment samples of the bay. The total concentrations of 16 PAHs varied from 4228 to 29325 ng l(-1) in water, and from 115 to 1134 ng g(-1) dry weight in sediments. In comparison to many other marine systems studied, the PAH levels in Daya Bay waters were relatively high, and at six sites they were sufficiently high (> 10 microg l (-1)) to cause acute toxicity. The PAH composition pattern in sediments suggest dominance by medium to high molecular weight compounds, and the ratio of certain related PAHs indicate important pyrolytic and petrogenic sources. Further analysis showed that the distribution coefficient (KD) increased with the particular organic carbon content of sediments, consistent with the PAH partition theory. The organic carbon normalised distribution coefficient (K(oc)) also increased with the compounds' octanol/water partition coefficient (K(ow)), confirming the potential applicability of the linear free energy relationships in the modelling and prediction of PAH behaviour in marine environments.  相似文献   

10.
Multivariate statistical techniques were used to investigate source apportionment and source/sink relationships for polycyclic aromatic hydrocarbons (PAHs) in the urban and adjacent coastal atmosphere of Chicago/Lake Michigan in 1994–1995. The PAH signatures for the atmospheric particle phase, surface water particle phase and sediments indicate that atmospheric deposition is the major source of PAHs to the sediments and water column particulate phase of Lake Michigan. The PAH signature for the atmospheric gas phase and water dissolved phase indicate an intimate linkage between the lake and its overlying atmosphere. A modified factor analysis-multiple regression model was successfully applied to the source apportionment of atmospheric PAHs (gas+particle). Coal combustion accounted for 48±5% of the ΣPAH concentration in both the urban and adjacent coastal atmosphere, natural gas combustion accounted for 26±2%, coke ovens accounted for 14±3%, and vehicle emissions (gas+diesel) accounted for 9±4%. Each is an identified source category for the region. These results are consistent with the mix of fossil fuel combustion sources and ratios of indicator PAHs.  相似文献   

11.
- DOI: http://dx.doi.org/10.1065/espr2006.01.010 Background, Aims and Scope Although pp'DDT usage was strongly limited or banned in most parts of the world during the last three or four decades, the parent compound, its homologues and their metabolites still occur at levels which might pose a risk for many ecosystem components. A case of DDT pollution of industrial origin was discovered in 1996 in Lake Maggiore, the second largest (212 km2) and deepest (370 m) lake in Italy, causing concern for wildlife and human health. The extensive monitoring of many biotic and abiotic compartments which followed from 1998 in order to assess the pollution level and its trend in time, provided a great availability of data referring to DDT contamination of the different fish species of the lake. In this study, the recent contamination levels in selected fish species were compared to those measured in 1998 to evaluate the temporal pollution trend of the lake and its natural recovery, given that no remediation measures were carried out on the contaminated soils and sediments in this time span. Moreover, a modelling approach to test the equilibrium condition between water and pelagic fish species was used. Analytical results of pp'DDT and pp'DDE concentrations in lake water were used as input data in the bioenergetic model by Connolly & Pedersen (1988) to calculate concentrations in two fish species and to compare the predicted and the measured contamination. Methods Sampling and analytical determination of DDT homologues in lake water: Five water sampling campaigns were carried out from May 2002 to February 2004 in three sampling sites of Lake Maggiore. Suspended and dissolved pollutants were determined separately. Quantitative DDT homologue analyses were performed by HRGC coupled with ECD detection by the external standard method. Single water extracts were put together in correspondence with the stratification zones of the water column inferred on the basis of the temperature profile to improve analytical sensitivity. Selection of fish data: Concentrations of DDT and DDE in fishes were selected from recent literature (CIPAIS 2003, 2004). Bioaccumulation model: The bioenergetic model proposed by Connolly & Pedersen (1988) was used to assess the bioaccumulation of pp'DDT and pp'DDE of Alosa fallax (landlocked shad) and Coregonus spp. (whitefish), selected among the different species as representative of a secondary consumer level. Results and Discussion The average concentrations of pp'DDT and pp'DDE in water to be used as input data in the bioenergetic model were obtained considering all the concentrations measured at the three sampling stations in the epylimnion where the fish species considered in this study spend most of their life. The resulting values were 0.05 and 0.16 ng/L for pp'DDT and pp'DDE, respectively. Average measured pp'DDT and pp'DDE concentrations in landlocked shad were 0.81 +/- 0.39 and 1.69 +/- 0.71 mg/kg lipids, respectively, and were 0.29 +/- 0.12 and 1.06 +/- 0.41 mg/kg lipids for the whitefish. Calculated and measured values turned out to be in quite good agreement for pp'DDT, while measured pp'DDE concentrations were higher than expected on the basis of the bioenergetic model in both species. Probably metabolic transformations of pp'DDT accumulated in fish tissues in the past are responsible for the observed differences between calculated and expected pp'DDE concentrations in fish. Conclusions Pelagic fishes of Lake Maggiore seem to maintain the DDT accumulated during their life time and the most efficient mechanism responsible for the fish population recoveries is probably their generation changes; for this reason, equilibrium models cannot be used until negligible pp'DDT concentrations are reached in fish tissues. Recommendations and Outlook The limit proposed for pp'DDT in water by the EU Directive 2000/60, which will come in force in 2008, is 0.2 ng/L, four times higher than the average concentration measured in Lake Maggiore waters. Nevertheless, concentrations measured in Lake Maggiore fish were very close and sometimes exceeded the Maximum residue limits (MRLs) settled by the Italian legislation for foods (0.1 mg/kg w.w. for fish containing 5–20% lipid). It seems, therefore, that the 'environmental quality standard' of 0.2 ng/L cannot guarantee the suitability of fish for human consumption.  相似文献   

12.
Guo W  He M  Yang Z  Lin C  Quan X  Wang H 《Chemosphere》2007,68(1):93-104
This study investigated the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in surface water, suspended particulate matter (SPM) and sediment of Daliao River watershed composed of the Hun River, Taizi River, and Daliao River. The sources of PAHs were evaluated employing ratios of specific PAHs compounds and principal component analysis (PCA). The total concentrations of PAHs ranged from 946.1 to 13448.5 ng l(-1) in surface water, from 317.5 to 238518.7 ng g(-1) dry weight in SPM, and from 61.9 to 840.5 ng g(-1) dry weight in sediments. The levels of PAHs are relatively higher in water and SPM, and lower in sediments, in comparison with those reported for other rivers and marine systems around the world. The composition of PAHs in these mediums was mainly 4-6 rings PAHs. The higher contents of low molecular weight PAHs in the water and SPM suggest a relatively recent local source of PAHs, entered into the river via wastewater discharge and atmospheric way. On the other hand, the heavy pollution of PAHs in sediment and water near heavy industrial area suggests that PAHs have been released from industrial wastewater.  相似文献   

13.
Zhu L  Chen B  Wang J  Shen H 《Chemosphere》2004,56(11):99-1095
The concentrations of 10 polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured for five times (July and November 1999–2002) in four water bodies of Hangzhou, China. To investigate possible sources of PAH contamination, sediments, soils, runoff water and atmospheric particles of the region were also analyzed for their PAH contents. The maximum levels of PAHs in the water bodies (34.4–67.7 μg/l) were found in July, while significantly lower PAH concentrations (4.7–15.3 μg/l) were measured in November. The contamination is substantial and it may have resulted in acute toxic effects on aquatic organisms. The measured PAH concentrations in sediments and soils (224–4222 ng/g), runoff water (8.3 μg/l) and air particles (2.3 μg/m3) are discussed in relation to concentrations and patterns found in the surface water bodies. Comparison of PAH levels in sediments and soils led to the conclusion that the erosion of soil material does not contribute significantly to the contamination of sediments. The atmospheric PAH deposition to water bodies in the city area of Hangzhou was estimated to be 530 tons/a, while the contribution of surface runoff water was estimated to be 30.7 tons/a. The ratios of selected PAH were then used to illuminate the possible origin of PAHs in the examined samples (petrogenic, pyrogenic).  相似文献   

14.
Ross JR  Oros DR 《Chemosphere》2004,57(8):909-920
The composition of PAH in surface waters was examined over a range of spatial and temporal scales to determine distributions, trends, and possible sources. Water samples were collected from 1993 to 2001. PAH in organic extracts were analyzed by gas chromatography-mass spectrometry (GC-MS) and 25 individual target PAH summed to get the total PAH concentration in each water sample. The distribution of median total PAH concentration by estuary segments was Extreme South Bay (120 ng l(-1)) > South Bay (49 ng l(-1)) > North Estuary (29 ng l(-1)) > Central Bay (12 ng l(-1)) > Delta (7 ng l(-1)). Overall, total PAH concentrations were significantly higher in the Extreme South Bay compared to all other segments, and the Central Bay and Delta were significantly lower than all other segments (Kruskal-Wallis, H = 157.27, df = 4, p < 0.0005). This distribution reflects the large urbanized and industrialized areas that border the southern portions of the estuary and the less populated and rural areas that surround the Delta. Temporal trend analysis showed a statistically significant temporal trend in total PAH concentration at only one of the 18 sampling stations situated throughout the estuary (San Jose, significant decrease, p = 0.031, r(2) = 0.386, n = 12). PAH isomer pair ratio analysis showed that PAH in estuary waters were derived primarily from combustion of fossil fuels/petroleum (possible PAH source contributors include coal, gasoline, kerosene, diesel, No. 2 fuel oil, and crude oil) and biomass (possible contributors include wood and grasses), with lesser amounts of PAH contributed from direct petroleum input.  相似文献   

15.
Sharma H  Jain VK  Khan ZH 《Chemosphere》2007,66(2):302-310
This paper reports on polycyclic aromatic hydrocarbons (PAHs) in the atmospheric particulate matter of Jawaharlal Nehru University campus, an urbanized site of New Delhi, India. Suspended particulate matter samples of 24h duration were collected on glass-fiber filter paper for four representative days in each month during January 2002 to December 2003. PAHs were extracted from filter papers using toluene with ultrasonication method and analysed. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the gas chromatography technique. The annual average concentration of total PAHs were found to be 668+/-399 and 672+/-388 ng/m3 in the years 2002 and 2003, respectively. The seasonal average concentrations were found to be maximum in winter and minimum during in the monsoon. The results of principal component analysis (PCA) indicate that diesel and gasoline driven vehicles are the principal sources of PAHs in all the seasons. In winter coal and wood combustion also significantly contribute to the PAH levels.  相似文献   

16.
Air samples were collected in an urban and industrialised area of Prato (Italy) during 2002, as part of a study to identify and measure aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs). Total concentrations of aliphatic hydrocarbons ranged between 170 and 282ngm(-3) in the gas phase and from 48.9 to 276ngm(-3) in the particulate phase. The average total PAH concentrations (gas+particulate) were 59.4+/-26.5ngm(-3), and both gas and particulate phase PAH concentrations decreased with increasing temperature. Source identification using diagnostic ratios and principal component analysis identified automobile traffic, in particular, the strong influence of diesel fuel burning, as the major PAH source. Gas-particle partition coefficients (K(p)'s) of n-alkane and PAHs were well correlated with the sub-cooled liquid vapour pressure (P(L)(0)) and indicate stronger sorption of PAHs to aerosol particles compared with n-alkanes.  相似文献   

17.
The Lake Maggiore (Northern Italy) has been recognized as an aquatic environment heavily contaminated by persistent organic pollutants, mainly organochlorine compounds, but to date limited information is available regarding another class of widespread and hazardous pollutants, such as the polycyclic aromatic hydrocarbons (PAHs). The aim of this study was to investigate seasonal and temporal trends of 18 PAHs accumulated in native Dreissena polymorpha specimens during a 5-year biomonitoring program, as well as to identify the possible PAH emission sources by using isomeric diagnostic ratios. Zebra mussels were sampled both in their pre- (May) and post-reproductive (September) stage over the 2008–2012 period in eight sampling stations covering the whole lake shoreline. PAH concentrations were measured through gas chromatography coupled to mass spectrometry. A notable PAH contamination following an increasing temporal trend was noticed in bivalves from all the sampling stations, with the benzo(α)anthracene as the predominant compound. An overall increase in PAH levels was found in the post-reproductive surveys, indicating a marked seasonality of this contamination probably due to the increase in touristic activity during spring–summer months.  相似文献   

18.
Ellis SG  Booij K  Kaputa M 《Chemosphere》2008,72(8):1112-1117
Semipermeable membrane devices (SPMDs) spiked with the performance reference compound PCB29 were deployed 6.1 m above the sediments of Lake Chelan, Washington, for a period of 27 d, to estimate the dissolved concentrations of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD. Water concentrations were estimated using methods proposed in 2002 and newer equations published in 2006 to determine how the application of the newer equations affects historical SPMD data that used the older method. The estimated concentrations of DDD, DDE, and DDD calculated using the older method were 1.5-2.9 times higher than the newer method. SPMD estimates from both methods were also compared to dissolved and particulate DDT concentrations measured directly by processing large volumes of water through a large-volume solid-phase extraction device (Infiltrex 300). SPMD estimates of DDD+DDE+DDT (SigmaDDT) using the older and newer methods were lower than Infiltrex concentrations by factors of 1.1 and 2.3, respectively. All measurements of DDT were below the Washington State water quality standards for the protection of human health (0.59 ng l(-1)) and aquatic life (1.0 ng l(-1)).  相似文献   

19.
Li Z  Li D  Oh JR  Je JG 《Chemosphere》2004,56(6):611-618
Alkylphenols (APs) have been known as endocrine disruptors and consequently received much environmental concern. This study focused on seasonal variation and spatial distribution of nonylphenol (NP) in various matrixes including dissolved water, particulates, surface sediment, sediment trap and sediment core taken from Shihwa Lake and its adjacent areas. A total of 11 phenolic compounds including nonylphenol, t-octylphenol (t-OP) and bisphenol A (BPA) were measured in February, June and October 2002. NP is the most abundant chemical among the phenolic compounds and its concentrations in dissolved water, particulates and surface sediments from Shihwa Lake were measured as 17.4-1533.1 ng/l, 4.3-831.2 ng/l and 10.4-5054.1 ng/g dw, respectively. NP concentration in dissolved water varied with seasons and generally showed a decreasing order of June > October > February, while the seasonal trend was hardly found in sediment. High levels of NP were measured in surrounding industrial complexes, the concentrations was decreased gradually with distance from the industrial areas. NP in core samples showed an increasing trend toward the core depth. There exists a reasonable correlation between NP in dissolved water and in particulates, whereas the correlation between NP in dissolved water and in sediments is not significant. APs concentrations in Shihwa Lake were comparable to other highly polluted areas of the world and their possible effects on various organisms in the lake are discussed.  相似文献   

20.
Martins M  Ferreira AM  Vale C 《Chemosphere》2008,71(8):1599-1606
Depth concentration profiles of PAHs, organic carbon and dissolved oxygen in non-colonised sediments and sediments colonised by Sarcocornia fruticosa from Mitrena salt marsh (Sado, Portugal) were determined in November 2004 and April 2005. Belowground biomass and PAH levels in below and aboveground material were also determined. In both periods, colonised sediments were oxygenated until 15-cm, rich in organic carbon (max 4.4%) and presented much higher PAH concentrations (max. 7.1 microg g(-1)) than non-colonised sediments (max. 0.55 microg g(-1)). Rooting sediments contained the highest PAH concentrations. The five- and six-ring compounds accounted to 50-75% of the total PAHs in colonised sediments, while only to 30% in non-colonised sediments. The elevated concentrations of PAHs in colonised sediments may be attributed to the transfer of dissolved PAH compounds towards the roots as plant uptake water and subsequent sequestration onto organically rich particles. A phase-partitioning mechanism probably explains the higher retention of the heavier PAHs. In addition oxygenated conditions of the rooting sediments favour the degradation of the lighter PAHs and explain the elevated proportion of the heavier compounds. Below and aboveground materials presented lower PAH concentrations (0.18-0.38 microg g(-1)) than colonised sediments. Only 3- and 4-PAHs were quantified in aboveground material, reflecting either preferential translocation of lighter compounds from roots or atmospheric deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号