首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Measurements of net photosynthesis of benthic estuarine diatoms were made by polarographic registration of oxygen saturation. A measuring cell was constructed in which media with salinities of 2.0 to 100.7 were pumped over the algae between measurements. Diatoms from unialgal cultures and mixed populations from intertidal flats appeared to be highly tolerant of extreme salinities. During short-term exposures (20 min) the net photosynthesis of the algae did not drop below 70% of the initial values, within the salinity range 4.0 to 60.0. Prolonged exposure (up to 6 h) gave essentially the same results. Populations of benthic diatoms, sampled from field stations with mean salinities of about 30, 12, and below 5, showed only gradual differences in their tolerance of salinities between 2.0 and 33.7. Two species, Navicula arenaria and Nitzschia sigma, were cultured in media ranging in salinity from 8.0 to 45.0 and from 2.0 to 45, respectively. The tolerance to changing salinity was only slightly affected by the salinity of the medium in the preculture. The role of salinity in the production and distribution of intertidal diatoms is discussed.  相似文献   

2.
The effect of salinity on embryonic development ofSepia officinalis (cuttlefish) in the Delta Area (South Western part of The Netherlands) was investigated in 1988/1989, and compared with data concerning the distribution ofS. officinalis in the three main parts of this area: Oosterschelde, Westerschelde and Grevelingen. Embryos hatched in water collected at Yerseke (Oosterschelde), Vlissingen (Western part of the Westerschelde) and Bommenede (Grevelingen), i.e., at salinity values above 28.1, but not in water sampled at Hoedekenskerke and Hansweert (Middle and Eastern part of the Westerschelde; salinities below 22.0). Under laboratory conditions, using diluted Oosterschelde water, the highest hatching percentages ofS. officinalis were found at salinities above 29.8. Some embryos hatched at a salinity value of 26.5 but no hatching occurred at salinities below 23.9. In embryos exposed to salinity changes during late embryonic development, the developmental rate decreased at salinity values of 28.7 or less. Below 22.4 embryos with morphological malformations were found. It can be concluded that salinity is an important factor limiting the distribution ofS. officinalis in most parts of the Delta Area, with the exception of the Western part of the Westerschelde and the Grevelingen.Contribution no. 489 of the Library of the Delta Institute for Hydrobiological Research  相似文献   

3.
Prawns (Penaeus monodon) were obtained from ponds in Iloilo, Philippines, in 1984 and 1985 and maintained in salinities from 8 to 44. Total hemolymph calcium was largely affected by molt stage and less so by salinity. A sharp, transient increase in hemolymph calcium occurred 3 to 6 h postmolt, followed by an equally rapid decrease from 6 h postmolt to intermolt. This biphasis response was limited to prawns in 8, 20 and 32S; in 44S, hemolymph calcium remained the same throughout the sampling period. Peak concentrations of total calcium were greater in low (8 and 20S) than in high salinities. Salinity had no effect on the duration of molt cycle nor on time of occurrence of molt. Almost half of molting incidents occurred between 18.01 and 0.00 hrs, and one-third between 0.01 and 06.00 hrs.  相似文献   

4.
Larvae of Rhithropanopeus harrisii (Gould) were reared from hatching to the first or second crab stages in 11 combinations of salinities and cyclic temperatures (5, 20, and 35 S at 20° to 25°C, 25° to 30°C, and 30° to 35°C; 25 S at 20° to 25°C and 30° to 35°C). The larvae survived to the megalops and first crab stages in all salinities and cycles of temperature other than 5 S at 30° to 35°C. The best survival to the megalops (94%) and first crab (90%) stages occurred in 20 S, 20° to 25°C. In all other combinations of salinities and temperatures there was a reduction in survival to the first crab stage. The duration of the larval stages was affected significantly by temperature, whereas the effect of salinity on the mean days from hatching to the first crab stage was not consistent at the different temperature cycles. Development to the first crab stage required the shortest time in 20 S, 30° to 35°C (mean 12.3 days), and the longest time in 5 and 35 S, 20° to 25°C (mean 22.6 days and 21.6 days, respectively). Megalops larvae reared in 35 S at all cycles of temperature, as well as larvae in 20 and 25 S, 30° to 35°C, showed a high percentage of abnormality, with the highest percentage occurring in 35 S, 30° to 35°C. It appears that larval development of R. harrisii is strongly influenced by environmental factors and not solely related to genetic differences.This research was supported by grants from the Nordic Council for Marine Biology and the U.S. Atomic Energy Commission [Grant No. At-(40-1)-4377].Contribution No. 116, Zoological Museum, University of Oslo, Norway.  相似文献   

5.
Rainbow trout (Salmo gairdneri Richardson) which had been maintained for 120 days in salinities of fresh water, 7.5, 15.0 and 32.5 at 10°C were fasted for up to 48 days under these same environmental conditions. Live weight loss between Days 7 and 48 of starvation could be described by a straight line, as could the decrease in condition factor . Trout maintained in 32.5% S showed a significantly greater weight loss than those in salinities of 15.0 and below. Muscle water content increased slightly during fasting in fresh water, 7.5 and 15.0 S. In 32.5 S, however, muscle water fell significantly between Days 19 and 37. Liver water content also increased slightly during fasting, except in 32.5 S, where water content again decreased between Days 19 and 37. The volume of the gall bladder contents increased during fasting.  相似文献   

6.
The hemolymph of the blue crab Callinectes sapidus was hyperosmotic during 20-10-20 S and 30-10-30 S diurnal cycles. The hemolymph became isosmotic at 26 S and hyposmotic at 28 S in the 10-30-10 S diurnal cycle. Hemolymph Na+ was hyperionic to seawater throughout all cycles. Hemolymph Cl- was hyperionic below 24 S and either isionic or hypoionic from 24 to 30 S. Hemolymph K+ concentrations were hyperionic below 26 S and either isionic or hypoionic from 26 to 30 S. Hemolymph Mg++ values were hypoionic over the experimental salinity range (10 to 30). Hemolymph ninhydrin-positive substances (NPS) levels were directly related to ambient salinity.  相似文献   

7.
The combined effects of salinity and temperature on survival and growth of larvae of the mussel Mytilus edulis (L.) were studied. The effects of salinity and temperature are significantly related only as the limits of tolerance of either factor are approached. Survival of larvae at salinities from 15 to 40 is uniformly good (70% or better) at temperatures from 5° to 20°C, but is reduced drastically at 25 °C, particularly at high (40) and low (20) salinities. Larval growth is rapid at a temperature of 15 °C in salinities from 25 to 35, at 20 °C in salinities from 20 to 35. Optimum growth occurs at 20 °C in salinities from 25 to 30. Growth decreases both at 25° and 10 °C; the decline is most drastic at high (40) and low (20) salinities.Part of a study completed at the Bureau of Commercial Fisheries, Biological Laboratory, Milford, Connecticut, USA, while on a UNESCO Fellowship.  相似文献   

8.
Acute toxicity bioassays conducted at various salinities demonstrated that mercury (as mercuric chloride) at low concentrations was lethal to Petrolisthes armatus. Ninety-six hour LC50 values varied from 50 to 64 parts per billion (ppb) of mercury, depending on test salinities. Lower salinities. decreased the time to death of mercuryexposed crabs. Differences in survival after 96 h due to salinity were not statistically significant. Blood chloride concentrations were regulated hyperchloride to the medium at low salinities and hypochloride at high salinities by acclimated crabs. The salinity isochloride to blood was 20 S. Transfer of crabs from 15 S to salinities ranging from 7 to 35 S resulted in new steadystate chloride levels within 12 h. Exposure to 50 ppb mercury did not alter chloride ion regulation of either acclimated crabs or crabs adjusting to new salinities.  相似文献   

9.
M. Nagaraj 《Marine Biology》1988,99(3):353-358
The calanoid copepodEurytemora velox was collected from rock pools at Castletown, Isle of Man, UK. Its optimum environmental requirements, particularly temperature and salinity, were determined, with a view to its possible future use as living food in intensive fish and shellfish farming. The species was cultured in 21 different temperature and salinity combinations. Investigations covered a period of two years from December 1983 to December 1985. Complete development from hatching to adult stage was followed in 21 temperature and salinity combinations. Nauplii suffered relatively high mortalities, indicating the sensitivity of this development stage to variations in temperature and salinity. Highest nauplii survival was observed in the combinations 15°C with 25 and 20 S and 20°C with 20 S, the highest copepodite survival at 10°C and 20 S. Lower salinities were tolerated better at higher temperatures and higher salinities at lower temperatures. Development time varied with the temperature and salinity combinations. Lower salinities at the lower temperatures of 10° and 15°C and both lower and higher salinities at 20°C prolonged development, particularly of the naupliar stage. Highest Q5 values (i.e., rate of change of development with a 5 C° increase in temperature) were recorded for the naupliar stage. Statistical analysis indicated that salinity influences the survival of both nauplii and copepodites; however, this effect is not linear.  相似文献   

10.
Saccostrea echinata (Quoy and Gaimard) were exposed to 10 g 1-1 of either mercury, cadmium or lead at 30 °C, 36S; 30 °C, 20S; 20°C, 36S and 20°C, 20S for 30 d and were then transferred to clean seawater for a further 30 d to depurate. Specimens were removed at regular intervals during the exposure and depuration periods, dissected into gills, mantle, visceral mass and adductor, and analysed for the appropriate metal by atomic absorption spectroscopy. Mercury was concentrated more than the other metals in all tissues under all conditions. Cadmium uptake was greater than lead in all tissue in the high-temperature experiments, whereas both metals were concentrated to similar extents at low temperature. The gill tissue generally accumulated the greatest amount of all 3 metals, whilst the adductor concentrated the least amount. At both salinities, mercury and cadmium accumulation by all tissues was significantly greater at the higher temperature whereas lead uptake was only marginally increased. The accumulation rates of mercury at high temperature were significantly greater in all tissues at low compared with high salinity, whereas at low temperature, differences were not significant. Accumulation rates of cadmium and lead in the majority of tissues examined were significantly greater in lowsalinity water at both temperatures. In general, lead was lost the most rapidly from oyster tissues, followed by mercury and then cadmium. The residence times for mercury and cadmium differed significantly between tissues, with the gills showing the highest turnover rate. In contrast, residence times for lead were similar between tissues. Losses of all 3 metals from oyster tissues were not obviously influenced by temperature and only mercury losses differed significantly between salinities.  相似文献   

11.
The responses of the post-embryonic stages of Corophium volutator (Pallas) and C. arenarium Crawford to the combined effects of salinity and temperature show that gravid females have a wider tolerance than nongravid adult females which in turn are more tolerant than adult males. C. volutator is more tolerant of low salinity (2 to 10) than C. arenarium, but the latter is more tolerant of salinities above 45. The embryos of C. volutator develop normally and hatch at lower salinities and temperatures than those of C. arenarium, in which successful development was recorded at higher temperatures. Females undergoing a pre-copulatory moult failed to lay eggs below salinities of 3 (C. volutator) and 10 (C. arenarium), but in both species the lowest salinity at which all females moulted and laid eggs was 20. The results are discussed in relation to the distribution of both species.  相似文献   

12.
P. P. Hwang 《Marine Biology》1987,94(4):643-649
The changes of intercellular organization and junctional structures in branchial chloride cells reflect respective functions in different salinities. Under TEM, leaky junctions and intercellular digitations occurred between branchial chloride cells of Oreochromis mossambicus Peters adapted to seawater, but not in those adapted to freshwater. The fish transferred directly to 30 S seawater from freshwater died within 6 h, and their chloride cells developed neither leaky junctions nor interdigitations. The fishes acclimated to 20 S seawater for 12 h did not develop the characteristics of seawater-adapted chloride cells and died after transfer to 30 S seawater. The fish acclimated to 20 S seawater for 24 h started to develop seawater-adapted chloride cells, and were able to survive when transferred to 30 S seawater. Thus, the development of leaky junctions and interdigitations in branchial chloride cells appears to correlate to seawater adaptation in O. mossambicus. These changes of seawater-adapted chloride cells seem to be associated with the increase of ion permeability in the gill of teleosts adapted to seawater rather than those adapted to freshwater.  相似文献   

13.
The 30-d survival limit of Eupentacta quinquesemita and Strongylocentrotus droebachiensis is 12–13 S. The activity coefficient (1 000/righting time in seconds) of stepwise acclimated sea urchins declined from 16.3 at 30 S to 3.5 at 15 S. Oxygen consumption rates (QO2) of both species held at 30 S and 13°C were highest in June and lowest in December. During the summer, when environmental salinity is most variable in southeastern Alaska, the QO2 of both species held at 30, 20 and 15 S varied directly with salinity. Perivisceral fluid PO2 varied directly with acclimation salinity in sea urchins, but not in sea cucumbers. Perivisceral fluid oxygen content of acclimated sea urchins was significantly lower at 15 and 20 S than at 30 S due to reduced PO2 and extracellular fluid volume at the lower salinities. The QO2 of both species varied directly with ambient salinity during a 30-10-30. semidiurnal pattern of fluctuating salinity. No change occurred in the average QO2 of either species over a 15-30-15. semidiurnal pattern of fluctuating salinity. Sea urchin perivisceral fluid PO2 declined as ambient salinity fluctuated away from the acclimation salinity in both cycles and increased as ambient salinity returned to the acclimation salinity. Total nitrogen excretion of stepwise acclimated sea cucumbers declined significantly from 30 to 15 S, but there was no salinity effect on total nitrogen excretion in sea urchins. Ammonia excretion varied directly with salinity in stepwise acclimated sea cucumbers (67–96% of total nitrogen excreted), but there was no salinity effect on ammonia excretion (89–95% of total nitrogen excreted) of sea urchins. Urea excretion did not vary with salinity in sea cucumbers (2–4% of total nitrogen excreted) or sea urchins (2–9% of total nitrogen excreted). Primary amines varied inversely with salinity in sea cucumbers (2–30% of total nitrogen excreted), but did not vary with salinity in sea urchins (2–4% of total nitrogen excreted). The oxygen: nitrogen ratio of both species indicated that carbohydrate and/or lipid form the primary catabolic substrate. The O:N ratio did not vary as a function of salinity. Both species are more tolerant to reduced salinity than previously reported, however, rates of oxygen consumption and/or nitrogen excretion are modified by salinity as well as season.  相似文献   

14.
Grass shrimp, Palaemonetes pugio, were capable of hypo- and hyper-osmotic regulation of body fluids. Hemolymph chloride and osmotic concentrations were maintained at relatively stable levels over a wide salinity range. Following an abrupt transfer from intermediate (14 and 17) to high (31 and 35) or low (1 and 2) salinities, hemolymph chloride levels exhibited initial overshoot and undershoot, respectively, of new steady-state levels. Osmotic concentrations exhibited an initial undershoot at low, but not overshoot at high salinity. Chloride space in salinity-acclimated shrimp was relatively stable at salinities from 1 to 35. Changes in chloride space following salinity transfer paralleled those of hemolymph chloride levels, and are discussed in the light of alterations in intracellular sodium concentrations reported earlier. Rate constants for chloride turnover indicated independent exchanges of sodium and chloride ions. Water-turnover measurements showed that permeability of P. pugio was greatest at the isosmotic salinity (17) and reduced at salinities which were associated with active osmoregulation. Exposure to sublethal and 96-h LC50 levels of Aroclor® 1254 did not seriously alter hemolymph chloride and osmotic concentrations, chloride space or chloride-exchange kinetics in adult shrimp. Disruption of hemolymph chloride regulation in juvenile shrimp was associated with large mortalities not observed in adults. Shrimp exposed to Aroclor 1254 at 17 S exhibited reduced water permeability similar to levels previously observed in controls at high and low salinities in response to osmotic or ionic gradients. Exposure to PCBs did not result in further reduction in permeability at the latter salinities.  相似文献   

15.
At 33 salinity a tissue stump formed 2 to 3 d after autotomy and developing ossicles were present by the fourth day inOphiothrix angulata (Say). Regeneration proceeded rapidly from the sixth day until the thirteenth day, when the rate decreased greatly. The length of the regenerated arm and the number of ossicles formed did not vary over a salinity range of 28 to 38 S, but were significantly less at 23 S. The number of ossicles regenerated increased linearly (y=1.9 x-7.7;r=0.9089) with the calcium concentrations ranging from 3.8 to 9.5 mM. No ossicle formation occurred at 3.8 mM calcium concentration. Rate of net uptake of calcium-45 into the ossicles of intact individuals in salinities of 28 and 33 was significantly greater than that in 23 and 38 S. However, net uptake rate of calcium into the soft tissues of the arms was significantly higher at 18S than at the lower two salinities.  相似文献   

16.
The effects of fluctuating salinities on the survival and activity of Urosalpinx cinerea (Say) from the James River, Virginia, USA, were observed and compared to results of similar studies at constant salinities. All experiments were conducted at summer temperatures. The lower extremes of salinity fluctuations, especially values below 9, had the greatest effect on mortality; the upper extremes may have delayed, but did not reduce, mortality. There was a characteristic 10-day mortality-free period at the start of the fluctuating salinity experiments. Mortality patterns were much different in constant salinities, where the first 2 weeks of exposure were characterized by highest mortalities. In both types of experiments, drill activity, measured by attachment, feeding, and oviposition, increased as salinities increased above lethal levels (greater than a minimum of 9). Fluctuating salinities, which approximated field conditions, affected drills differently from constant salinities and were, therefore, more realistic for study of these estuarine organisms.Contribution No. 543, Virginia Institute of Marine Science, submitted by the senior author to the School of Marine Science of the College of Williams and Mary, in partial fulfillment of the requirements for the Master of Arts degree.  相似文献   

17.
Mussels, Mytilus edulis L., were subjected to high temperatures, low salinities and dissolved zinc in order to investigate possible environmental hazards of a discharge of heated effluent near Newport on the Yarra River estuary, Victoria, Australia. Exposure to zinc at 0.8 mg l-1 for 14 d in otherwise favourable conditions significantly increased mortality resulting from subsequent exposure to temperatures between 29° to 31°C for 24 h without added zinc. Mussels collected from water of temporarily lowered salinity (8–16 S) showed significantly lower thermal resistance than controls collected from marine salinities (35 S). Mussels taken from a marine environment and exposed to 10 S died at a rate which increased with temperature. Mussels acclimated for 14 d to combinations of 10°, 16° and 22°C and 22 and 35 S, and subsequently exposed to increased zinc concentrations accumulated zinc to levels which were independent of temperature and salinity. The zinc was lethal more quickly at 22°C and 35 S than at the lower temperatures and salinities. The modes of toxic action of the salinity, zinc and temperature factors are discussed and it is argued that zinc which has been found accumulated in mussels near Newport could be reducing their resistance to raised temperatures and perhaps other stresses, probably as a result of effects on lysosomal functioning. The evidence suggests that the heated effluent will accelerate any toxic effects of zinc or low salinities which occur near Newport and so poses a hazard in winter as well as in summer.  相似文献   

18.
Larvae of Lithodes antarcticus Jacquinot were reared in October, 1981 from hatching to the glaucothoe stage at 16 temperature/salinity combinations (5.5°; 7.5°; 9.5° and 13.5°C; 26, 29, 32 and 35 S) to determine optimal environmental conditions for larval development. The highest survival percentage was obtained in the culture at 7.5°C and diminished according to temperature increase or decrease. High temperature cultures significantly shorten the larval life duration, but produce large mortalities. At 5.5°C mortality occurred almost exclusively during the moult to glaucothoe stage. Higher survival percentages were obtained as salinity was increased. In the lowest salinity culture (26 S) no zoea reached the post-larvae stage at culture temperatures. The best T/S combination was obtained at 7.5°C and 35 S, with a survival percentage of 29%. The shortest zoeal developments were obtained at 32 S in all culture temperatures. Salinity also affects larvae coloration: there is a pigment concentration on erythrophores, which causes a color decrease.  相似文献   

19.
Adult silversides, Menidia menidia menidia (Linnaeus), were collected in early March, 1974 and maintained in 3 recirculating seawater tanks in the laboratory. Respective groups were fed Moore-Clark Fry Fine at 3, 7 and 10% of their body weight per day. The photoperiod (light intensity approximately 2000 lux) was increased in increments of 10 min/day from 12 h light to 14 h light. The water temperature was increased by 1C°/day from the ambient collection temperature, 14°C, to 22°C. Twenty-four days after beginning laboratory conditioning, fish in each tank were stripped. There was a significant increase (2, =0.05) in the number of ripe males at all three feeding levels, compared to an initial field-collected group that was checked at the beginning of the conditioning period. Females also showed significant increases in ripeness at the 7 and 10% but not at the 3% feeding level. The gonadal indices (gonad weight expressed as percentage of body weight) of both sexes were significantly greater than those measured for the initial field-collected group, but did not differ from those of adults collected from the field at the time laboratory conditioning was terminated. Techniques for maintaining eggs from field-ripened adults in the laboratory have been developed, and the effect of salinity on the percentage emergence of larvae determined. The highest emergence rate of larvae was 61% when eggs were maintained at 30 S. Emergence was 56% at 20 S and 47% at 10 S. The effect of delayed feeding on survival and growth of larvae was determined at 20 and 30 S and 25°C. Survival and growth was best for larvae fed Artemia sp. nauplii immediately after emergence at 30 S.Contribution No. 252, Gulf Breeze Environmental Research Laboratory.Associate Laboratory of the National Environmental Research Center, Corvallis, Oregon, USA.  相似文献   

20.
We studied Na+/K+ ATPase activity and ultrastructure in gills of the hyper-hypo-regulating crab Chasmagnathus granulatus Dana, 1851 acclimated to different salinities: 10, 30 and 45, known to be hypo-, iso-, and hyper-osmotic to the hemolymph, respectively. After centrifugation of homogenates at 11,000 g, Na+/K+–ATPase activity was almost entirely found in the pellets from the posterior (6–8) and anterior (3–5) gills, whereas very little was detected in the supernatant liquid. Specific activity of gill 6 was 41.3, 30.2, and 28.2 µmol Pi h–1 mg prot–1 for crabs acclimated to 10, 30, and 45, respectively, the result for 10 being significantly higher than those at 30 and 45. Although the concentration of sodium at which the reaction rate is half-maximal (K M) was similar in the three acclimation salinities, only the enzyme from crabs acclimated to 10 was inhibited by high sodium concentration. Specific activity of gill 5 increased with the increment in external salinity (10.1, 15, and 18.1 µmol Pi h–1 mg prot–1 for 10, 30, and 45, respectively), the only significant difference being that between the extreme salinities. The epithelium thickness of the dorsal portion of gill 6 showed a variation among salinities: 21.7, 15.8 and 17.2 µm for 10, 30 and 45, respectively. There were significant differences in epithelium thickness between the 10 and the other salinities. In all three salinities, the ultrastructure of gill 6 epithelium showed a high density of mitochondria, estimated by their volume fraction (Vv m=0.307–0.355). These mitochondria were packed between extensive basolateral membrane interdigitations in ionocytes and pillar cells. Gill 5 showed three cell types: pillars which possess mitochondria packed between membrane folds only in their interdigitations with neighbouring cells; type-I cells 8.0 µm thick with low density of mitochondria (Vv m=0.088), and type-II cells, 9.9 µm thick and rich in mitochondria (Vv m=0.423), but lacking basolateral interdigitations. Vv m of type-I cells of gill 5 was significantly lower than those of type-II cells of the same gill and the ionocytes of gill 6. No significant difference in Vv m was detected between the latter cell types.Communicated by P.W. Sammarco, Chauvin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号