首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Nanoparticles occurring in the environment originate either from engineered, synthetically produced nanoparticles, or from naturally produced nanoparticles. The latter can be formed in natural media by light-induced reduction of metal ions in presence of natural organic matter, such as humic substances occurring widely in waters, soils and sediments. There is actually few knowledge on the effect of sunlight and of the nature of organic matter on nanoparticle formation. Therefore, we studied here the photoreduction of silver(I) ion to silver nanoparticles with and without ferrous ion under oxic and anoxic conditions, using humic and fulvic acids as proxies of natural organic matter. UV light-induced formation of silver nanoparticles was monitored up to 60 min by measuring surface plasmon resonance in air-saturated mixture and nitrogen-saturated mixture of silver(I) ion–organic matter. Results show that the surface plasmon resonance intensity was about 2.5 times higher in the nitrogen-purged solution mixture than the air-saturated solution. This finding suggests the oxygen-containing species had no major role in forming silver nanoparticles. Therefore, photo-driven formation of silver nanoparticles most likely involved photoactivation of silver(I) ion and natural organic matter complexes. We observed also that both iron(II) and iron(III) ions highly modified the surface plasmon resonance spectra of the particles with broader features. Results also reveal that in the presence of humic acid, the intensity of the surface plasmon resonance peak decreased by at least 50 %, while almost no change in the intensity was seen when fulvic acid was used. Overall, our findings demonstrate that the ligand–metal charge transfer process, affected by the nature of organic matter, i.e., humic acid versus fulvic acid, was influenced by redox iron species.  相似文献   

2.
Silver nanoparticles are actually used in several industrial sectors and end up in the environment, thus inducing a possible toxicity for living organisms. This article reviews the properties, synthesis and toxicology of silver nanoparticles, with focus on the toxicity for insects such as Bombyx mori.  相似文献   

3.
Abstract

Lithium-doped bismuth oxide nanoplates with the thickness of 50–150?nm and tetragonal bismuth oxide, monoclinic lithium bismuthate phases have been synthesized via a simple hydrothermal process using lithium acetate and sodium bismuthate as the raw materials. Cobalt nanoparticles modified lithium-doped bismuth oxide nanoplates hybrids were obtained by an in situ photo-deposition route. The cobalt nanoparticles-modified nanoplates hybrids display significantly enhanced photocatalytic activity toward gentian violet compared with the nanoplates. Gentian violet solution can be totally degraded by the hybrids within 60?min under ultraviolet–visible light irradiation. The superior photocatalytic activity of the cobalt nanoparticles modified nanoplates hybrids originates from the superior charge transfer capacity and the energy band structure of the hybrids. The excellent photocatalytic performance makes the cobalt nanoparticles modified nanoplates hybrids a promising candidate as the photocatalyst for wastewater treatment.  相似文献   

4.
Abstract

In this study, the toxicity of CuO (40?nm), α-Al2O3 (40?nm), and α-Fe2O3 (20–40?nm) nanoparticles was comparatively investigated on Carcinus aestuarii. Crabs were semi-statically exposed to 1?mg/L of each for 14?days and their accumulation and distribution in tissue and hemolymph, potential oxidative stress mechanism, total hemocyte counts and types, and the osmoregulatory and ionoregulatory responses were determined. The tissue distribution of CuO nanoparticles was hepatopancreas?>?hemolymph?≥?gill?> muscle, for α-Fe2O3 gill?>?hepatopancreas?>?muscle?> hemolymph, and for α-Al2O3 gill?>?muscle?≥?hemolymph?> hepatopancreas. While α-Al2O3 and α-Fe2O3 NPs, induced lipid peroxidation and changes in antioxidant enzyme activity in the hepatopancreas tissue, the oxidative damage caused by the CuO nanoparticles was minimal. All three nanoparticles, copper in particular, elicit osmoregulatory and ionoregulatory toxicity at this concentration, due to the inhibition of Na+, K+-ATPase activity in the gill and depletion of hemolymph and carcass ion concentrations.  相似文献   

5.
Zhang  Wanqin  Cao  Jianjin  Luo  Xiaoen  Qiu  Junwei  Qi  Yonghao 《Environmental Chemistry Letters》2023,21(2):655-661
Environmental Chemistry Letters - The presence of engineered and natural nanoparticles in the atmosphere is of concern for health and climate. Actually there are few studies on the release of...  相似文献   

6.
Copper nanoparticles have improved properties compared to the bulk copper material. Copper nanoparticles indeed find applications in gas sensors, heat transfer fluids, catalysis, solar energy and batteries. Antibacterial and antifungal activities of copper nanoparticles find applications in the agriculture and healthcare sectors. Nonetheless, careless use of copper nanoparticles may cause environmental pollution and health effects. Here we review the biosynthesis of copper nanoparticles using plant materials, named phytosynthesis, and micro-organisms. We also discuss the effect of copper nanoparticles on crops and pathogenic micro-organisms. Copper nanoparticles varying in sizes from 5 to 295 nm have been synthesized using leaf extracts and latex from plants, and using bacteria and fungi. Biosynthesized copper nanoparticles show good antimicrobial activity inhibiting the growth of pathogenic bacteria and pathogenic fungi. Copper nanoparticles enhance the germination and growth of some plants at lower concentrations, whereas high concentrations result in retarded growth.  相似文献   

7.
Environmental Chemistry Letters - Zinc oxide (ZnO) nanoparticles are widely used in cosmetics, food packaging, drug delivery and biosensors. There is therefore a risk of toxicity for organisms,...  相似文献   

8.
Abstract

Metallic nanoparticles have emerged as an important class of nanomaterials for a wide range of industrial and medical applications. Because of the intensive commercial applications, risk assessment of these nanoparticles is of great importance. In the present study, the human hepatoma and leukemia cells were used to characterize the apoptotic effects of silver nanoparticles (4.7 and 42?nm) and gold nanoparticles (30?nm). Apoptotic cells were identified by chromatin condensation and flow cytometry analysis, using Annexin V/PI, TUNEL and caspase activation assays. Flow cytometry analysis showed that the three metallic nanoparticles induced apoptotic cell death in a concentration and time dependent-manner. Moreover, the three nanoparticles induced activation of caspase-3 and -7 in hepatoma and leukemia cells. Apoptotic effects were stronger after exposure of both cell lines with 4.7?nm silver nanoparticles than those obtained with 42?nm silver and 30?nm gold nanoparticles. In conclusion, silver (4.7 and 42?nm) and gold (30?nm) nanoparticles induced apoptosis in hepatoma and leukemia cells via the caspase dependent pathway. The smaller silver nanoparticles (4.7?nm) had a greater ability to induce apoptosis in both cell lines.  相似文献   

9.
Zinc oxide nanoparticles (ZnO NPs) are being widely investigated in a bioassay due to potential negative effects to biological receptor. The dissolution of metal nanoparticles such as ZnO NPs is crucial to interpret nanotoxicity results because ZnO NPs can release toxic-free ions in exposure media. In the present study, dissolution of ZnO NPs was evaluated in three selected synthetic media for aquatic toxicological testing: Elendt M4 daphnia medium, OECD algal medium, and fish embryo rearing solution. Both media are currently recommended for OECD testing for daphnia and algae. Time-dependent dissolution of ZnO NPs has been investigated in terms of sonication time to be used for the preparation of aqueous NPs suspension, and dissolution time corresponding to exposure period in toxicity testing. Since sonication is widely applied for NPs dispersion in the most of nanotoxicological testing, the emphasis of this study was on the dissolution of NPs as a function of sonication time. We also investigated the concentration-dependent dissolution of ZnO NPs. Our results demonstrated that dissolution of ZnO NPs was significantly affected by sonication and dissolution time, as well as NPs concentration. This study showed that parameters affecting dissolution of ZnO NPs should be considered in nanotoxicological testing.  相似文献   

10.

Human exposure to engineered nanoparticles has become inevitable in today’s extensive commercial use and large-scale production of engineered nanoparticles. Even though several studies have characterised the exposure to nanomaterials during wakeful state (related to occupational exposures and exposures from commercially available particles), very few studies on human exposure during sleep exist. As the study of exposure to all possible nanomaterials during sleep is extensive, this study focuses on exposure to specifically silver nanoparticles which are present in beddings and mattresses. The reasoning behind the use of silver nanoparticles in bedding and related materials, possible routes of entry to various population groups in several sleep positions, exposure characterisation and toxicity potential of such silver nanoparticles are reviewed in this study. The toxicity potential of silver nanoparticles in vivo tests with relation to mammals and in vitro tests on human cells has been tabulated to understand the risks associated during oral, dermal and inhalation exposure to silver nanoparticles. The exposure to humans with regard to dermal absorption and oral intake has been summarised. Although potential inhalation exposure to silver nanoparticles is increasing, only a few studies address the possible toxic effect of inhaled silver particles. Determination of exposure to silver nanoparticles in beddings is a topic that has been less researched, and this review aims to provide background information for future research and help establish a comprehensive risk assessment during sleep in the times of increasing usage of nanoparticles in our daily activities. Despite the current limitations of our understanding, risk assessments must utilise the available data and apply extrapolation procedures in the face of uncertainty, in order to address the needs of regulatory programs. This would enable safe use of the antimicrobial properties of silver nanoparticles without negatively impacting human health. Until then, it would be better to adopt a conservative approach on the usage of silver nanoparticles in daily used commercial items.

  相似文献   

11.
辛琦  章强  程金平 《生态毒理学报》2014,9(6):1014-1026
纳米银作为一种新兴的纳米材料,由于其独特的抗菌性能而被广泛应用于各种商业化产品中。广泛的应用增加了它进入环境尤其是水环境的机率,从而对鱼类等水生生物产生潜在毒性效应。因此,近年来陆续开展了关于纳米银对鱼类的毒理学研究。本文根据国内外文献查阅及分析,综述了纳米银的制备、特性、应用、释放情况以及近几年来纳米银对鱼类的毒理学研究进展,对今后进一步开展相关研究工作提供参考。  相似文献   

12.
Cadmium (Cd) is a carcinogenic metal contaminating the environment and ending up in wastewaters. There is therefore a need for improved methods to remove Cd by adsorption. Biogenic elemental selenium nanoparticles have been shown to adsorb Zn, Cu and Hg, but these nanoparticles have not been tested for Cd removal. Here we studied the time-dependency and adsorption isotherm of Cd onto biogenic elemental selenium nanoparticles using batch adsorption experiments. We measured ζ-potential values to assess the stability of nanoparticles loaded with Cd. Results show that the maximum Cd adsorption capacity amounts to 176.8 mg of Cd adsorbed per g of biogenic elemental selenium nanoparticles. The ζ-potential of Cd-loaded nanoparticles became less negative from ?32.7 to ?11.7 mV when exposing nanoparticles to an initial Cd concentration of 92.7 mg L?1. This is the first study that demonstrates the high Cd uptake capacity of biogenic elemental selenium nanoparticles, of 176.8 mg g?1, when compared to that of traditional adsorbents such as carboxyl-functionalized activated carbon, of 13.5 mg g?1. An additional benefit is the easy solid–liquid separation by gravity settling due to coagulation of Cd-loaded biogenic elemental selenium nanoparticles.  相似文献   

13.
This article reports a novel, eco-friendly herbal method to synthesize Cu nanoparticles in large scales. Cu nanoparticles are an alternative to Ag and Au nanoparticles and have potential applications in many industrial areas. Many synthetic routes have been documented for the preparation of copper nanoparticles, but very few routes are eco-friendly and large-scale. We report here the preparation of Cu nanoparticles from aqueous CuSO4 using non-toxic and inexpensive materials like curd, milk, and herbal extracts such as tamarind and lemon juice as capping agents. X-ray diffraction and transmission electron microscopy show that produced particles are nanocrystalline copper 20–50 nm in size with a face-centered cubic structure. Fourier-transformed infrared spectroscopy evidences the role of organic acids in the capping process. The novelty of this work is the synthesis of Cu nanoparticles from CuSO4 without electricity and using non-toxic, cheap capping agents.  相似文献   

14.
Biological effects of nanoparticles have attracted widespread attention. However, the interaction between plants and nanoparticles remains unclear. The purpose of this study was to investigate characteristics of nano-sized metal particles in two representative plant species, Erigeron canadensis and Boehmeria nivea, in the Guangdong Province, China. The stems of the plants were sliced and placed on Ni–C grids for field-emission transmission electron microscopy (TEM). The metal-bearing nanoparticles were further analysed for their size, shape, composition, content and other characteristics using X-ray energy spectrum analysis, scanning TEM and selected-area electron diffraction pattern. The results revealed that the plants contain nano-sized Au-bearing particles with a diameter of 5–50 nm, ellipsoid, spherical and bone-rod shapes or irregular morphology with smooth edges. These nanoparticles primarily consisted of Au, Cu, O and Cl. The discovery of Au-bearing nanoparticles in natural plant tissues is of great significance for biological nanoscience. Here, we discuss the function and absorption mechanism of Au-bearing nanoparticles in plants and present the influence of the discovery of Au-bearing nanoparticles in natural plants.  相似文献   

15.
N-doped carbon nanotubes have unique structures and strong interactions with metal nanoparticles due to the presence of nitrogen. There is actually a need for nanoparticles to treat water, without leaching of toxic metals. Here, we synthesized nanocomposites by deposition of Ag and Fe nanoparticles on N-doped carbon nanotubes with a surface area of 52 m2/g and 2 % N content to form nanocomposites. Transmission electron microscopy (TEM) of the nanocomposites revealed that the best dispersion of the deposited nanoparticles was achieved by the microwave-assisted polyol method. The Ag and Fe nanoparticles were indeed monodispersed and uniformly distributed on the surface of the N-doped carbon nanotubes. Deposition could be achieved in 5 min. The wet impregnation and deposition–precipitation methods gave composites with agglomerated nanoparticles. We observed that leaching of Fe and Ag into water was also influenced by the preparation method. No leaching of nanoparticles was observed when the composites were prepared by the microwave polyol method. This synthesis is therefore efficient with less energy and time. The strong metal/N-doped carbon nanotube interactions render these composites suitable for use in water purification.  相似文献   

16.
▪ Overviewed evolution and environmental applications of stabilized nanoparticles. ▪ Reviewed theories on particle stabilization for enhanced reactivity/deliverability. ▪ Examined various in situ remediation technologies based on stabilized nanoparticles. ▪ Summarized knowledge on transport of stabilized nanoparticles in porous media. ▪ Identified key knowledge gaps and future research needs on stabilized nanoparticles. Due to improved soil deliverability and high reactivity, stabilized nanoparticles have been studied for nearly two decades for in situ remediation of soil and groundwater contaminated with organic pollutants. While large amounts of bench- and field-scale experimental data have demonstrated the potential of the innovative technology, extensive research results have also unveiled various merits and constraints associated different soil characteristics, types of nanoparticles and particle stabilization techniques. Overall, this work aims to critically overview the fundamental principles on particle stabilization, and the evolution and some recent developments of stabilized nanoparticles for degradation of organic contaminants in soil and groundwater. The specific objectives are to: 1) overview fundamental mechanisms in nanoparticle stabilization; 2) summarize key applications of stabilized nanoparticles for in situ remediation of soil and groundwater contaminated by legacy and emerging organic chemicals; 3) update the latest knowledge on the transport and fate of stabilized nanoparticles; 4) examine the merits and constraints of stabilized nanoparticles in environmental remediation applications; and 5) identify the knowledge gaps and future research needs pertaining to stabilized nanoparticles for remediation of contaminated soil and groundwater. Per instructions of this invited special issue, this review is focused on contributions from our group (one of the pioneers in the subject field), which, however, is supplemented by important relevant works by others. The knowledge gained is expected to further advance the science and technology in the environmental applications of stabilized nanoparticles.  相似文献   

17.
Abstract

The purpose of this study was to investigate the protective effects of zinc nanoparticles against cisplatin-induced testicular toxicity in mice. Zinc nanoparticles were produced by microwave-assisted synthesis using Lavandula vera extract as reducing agent. Single doses of cisplatin (7?mg/kg, intraperitoneally) and ZnSO4 (10?mg/kg, orally), and various doses of zinc nanoparticles (10???50?mg/kg, orally) and vitamin E (100?mg/kg, interaperitoneally) were administered. The protective role of zinc nanoparticles was determined biochemically and histologically. Gradual reduction in malondialdehyde levels and elevation in glutathione levels and in the activities of superoxide dismutase and catalase upon administration of zinc nanoparticles were observed. The pathology of mice treated with cisplatin/vitamin E and cisplatin/zinc nanoparticles were apparently equal, but vitamin E treatment was more effective in lowering oxidative stress markers than zinc nanoparticles. These findings suggest that co-administration of zinc nanoparticles with cisplatin could prevent adverse effects on the male reproductive system via their potential antioxidant properties.  相似文献   

18.
Nanotechnology is expected to have a beneficial influence on agriculture, food and environment, due to the unique properties of nanomaterials. However, little is known about their safety and potential toxicity. Here we review metal nanoparticles, nanometal oxides, carbon nanotubes, liposomes and dendrimers. We present the application of these nanomaterials in agriculture, food and environment for plant protection; disease treatment; packing materials; development of new tastes, textures and sensations; pathogen detection; and delivery systems. We discuss risk assessment of nanomaterials and toxicological impacts of nanomaterials on agriculture, food and environment. We then provide regulatory guidelines for the safer use of nanomaterials.  相似文献   

19.
There is a demand for environmentally friendly processes to synthesize nanoparticles. Here, we synthesized silver nanoparticles using encapsulated biomass beads of Phoma exigua var. exigua. Nanoparticles were characterized by nanoparticle tracking and analysis (NTA), Fourier-transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and zeta potential. Results of NTA show that nanoparticle size was homogenous. Concerning nanoparticle stability, zeta potential decreased with batch number. Silver nanoparticles exhibited an antibacterial activity against Escherichia coli and Staphylococcus aureus. Overall, the encapsulation of fungal biomass by calcium alginate for the batch synthesis of silver nanoparticles was easy, cost-effective, eco-friendly and suitable for the large-scale synthesis of silver nanoparticles. We have also demonstrated the reusability of the fungal biomass during biosynthesis of silver nanoparticles using the sodium alginate encapsulation method.  相似文献   

20.
This report shows that furfuryl alcohol can be selectively produced from the hydrogenation of furfural using supported Pd nanoparticles. Furfuryl alcohol is widely used as solvent and chemical intermediate for the synthesis of fine chemicals. Here, various Pd nanoparticles supported on mesoporous SiO2 (Pd/SiO2) were simply fabricated by a wet impregnation using palladium nitrate. Physical properties of Pd/SiO2 nanoparticles were studied by X-ray diffraction, energy-dispersive, X-ray analysis, N2 adsorption and desorption isotherms and transmission electron microscopy. Results show a high dispersion of Pd nanoparticles with small size. Pd nanoparticles catalyzed very efficiently the hydrogenation of furfural to furfuryl alcohol with 76 % selectivity under mild conditions. Overall, the catalyst developed could find applications for the production of chemicals from biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号