首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
针对现有污泥固化技术存在的固化养护时间长、低温条件下固化效能低等问题。研究提出污泥快速(3d)固化技术,采用响应曲面分析方法,重点考察了石灰、组分A、硅酸盐水泥、粉煤灰和温度等5因素对固化效能的综合影响,研究结果表明,石灰、组分A、硅酸盐水泥、粉煤灰和养护温度等因素对3d固化体的无侧限抗压强度和含水率的线性效应显著,石灰和组分A、石灰和养护温度对无侧限抗压强度的交互影响显著,石灰和粉煤灰、组分A和养护温度、硅酸盐水泥和粉煤灰对含水率的交互影响显著;得出了5因素对固化体3d无侧限抗压强度和含水率影响的定量模型,可对污泥快速固化进行优化和预测;并利用XRD和SED对污泥固化块的化学成分和微观结构进行了分析。  相似文献   

2.
针对小城镇污泥的处理问题,提出了蚯蚓生物滤池解决方案,为此在实验中设置了无蚯蚓对照组,并对污泥的稳定性、污泥性状、蚯蚓与微生物的协同作用以及污泥含有的各种元素存在状态进行了研究,通过蚯蚓生物滤池处理后污泥有机质含量平均相对减少量为11.1%,溶解性化学需氧量(SCOD)增加,滤液中氨氮(NH3-N)含量由20.6~23.9 mg/L降至1.9~4.6 mg/L、滤液中硝态氮(NO3--N)含量由0.2~9.5 mg/L升高到42.0~50.8 mg/L,因此,实验结果表明,蚯蚓生物滤池能显著提高污泥的稳定性,改善污泥脱水性能,有利于污泥后续处理。  相似文献   

3.
为了研究灭活厌氧污泥和活性厌氧污泥对间二氯苯 (m-DCB)的吸附,考察了吸附平衡时间、吸附动力学、吸附等温线、吸附热力学、污泥投加量和pH对吸附m-DCB的影响。结果表明,2种污泥对m-DCB的吸附在1 h内达到平衡。应用伪一级、伪二级反应动力学对实验数据进行验证,表明厌氧污泥吸附m-DCB更符合伪二级反应动力学模型。2种污泥对m-DCB的吸附都可以用Langmuir和Freundlich吸附模型拟合,但Langmuir吸附模型的拟合结果要好于Freundlich模型,且活性厌氧污泥的吸附性能显著高于灭活厌氧污泥。从吸附热力学上看,该吸附为放热反应,低温有利于吸附反应的进行。pH值对2种污泥吸附m-DCB的影响很小。  相似文献   

4.
从高硫污染的活性污泥中富集培养,分离纯化得到一株可以降解噻吩的菌株S-4,并对该菌株的形态特征进行观察。应用Design-Expert8.0.5b软件进行响应面优化实验,研究了反应时间、噻吩浓度、微生物浓度3个因素的组合对菌株S-4脱硫效果的影响,并拟合得到多元二次回归方程,得出最佳实验条件。拟合结果表明,当反应时间27.46 h,噻吩浓度为1.04%,微生物浓度4.04%时,预测噻吩降解率为14.8%,通过验证得最佳条件下的降解率为14.3%,与预测值相符。  相似文献   

5.
市政污泥深度脱水药剂优化研究   总被引:1,自引:0,他引:1  
污泥含水率高影响污泥后续处置。利用化学药剂对污泥进行深度脱水处理可使污泥减量化、稳定化。为提高深度脱水效果,对添加剂进行了种类和添加量的优化研究(石灰、工业石灰、粉煤灰、硅藻土、十二烷基磺酸钠和飞灰;5%、10%、15%、20%、25%和30%),另外,还进行了复合投加实验。研究结果表明,石灰、工业石灰、粉煤灰的深度脱水效果最好;复合添加中,25%石灰+5%粉煤灰,20%石灰+10%粉煤灰,10%石灰+20%粉煤灰的深度脱水效果最好。5%的石灰或者工业石灰的添加剂量使干化污泥pH值达到12.25,粉煤灰、硅藻土、十二烷基磺酸钠和飞灰的添加对干化污泥pH值影响相对要小。  相似文献   

6.
对市政污泥与生活垃圾混烧进行了验证研究。结果表明,与生活垃圾单独焚烧相比,污泥与生活垃圾混烧后烟气中NOx、CO和HCl的浓度没有出现明显变化,而SO2浓度出现了下降(从82~93 mg/m3下降至41~70 mg/m3);Hg、Pb、Sn、Cr和Zn的浓度均表现为不同程度的上升,但仍然符合GB18485;二恶英从0.0087 ng TEQ/m3降至0.0047 ng TEQ/m3。掺烧半干污泥比例为10%、12%和15%时,吨物质的发电量分别为311.8 kWh/t、306.7 kWh/t和296.1 kWh/t。混烧污泥在一定程度上降低了系统的发电量,因此建议混烧污泥的比例不应大于15%。测算的污泥混烧成本约209元/t(80%含水率)。  相似文献   

7.
酶法降解偶氮染料刚果红是一个复杂的过程,受温度、pH、酶量、刚果红浓度和双氧水浓度显著影响。为研究各因素及因素间交互作用对刚果红降解影响,提高刚果红的降解率,分别使用单因素法和响应面分析法对刚果红降解条件进行了优化。单因素实验结果显示灰盖鬼伞过氧化物酶降解刚果红的最适条件为:pH 5.0、32℃、酶量4.98 U、双氧水0.1 mmol/L、刚果红20 mg/L,此时刚果红最高降解率为34.84%。然后选双氧水浓度、刚果红浓度和灰盖鬼伞过氧化物酶量作为3个因素,通过中心组合设计实验,用响应面法对刚果红降解进行优化分析,最后得到一个拟合度良好的二次多项方程模型(R2=0.9900)。方差分析结果显示,刚果红浓度和酶量是影响最显著的因素,双氧水与酶以及染料与酶之间的交互作用极显著。响应面分析优化后的反应体系为:双氧水浓度0.15 mmol/L,刚果红浓度为27.21 mg/L,酶为2.0 7 U,在此条件下,刚果红降解率达58.13%。  相似文献   

8.
采用耐酸驯化的厌氧消化污泥处理餐厨垃圾,在酸性条件下(pH=4.5),对实验装置容积负荷从1.0 kg VS/(m3·d)分9次逐级增加到5.0 kg VS/(m3·d)的过程进行了跟踪监测,并较深入地研究了驯化污泥代谢活性和处理效果。实验结果表明,pH 4.5的耐酸厌氧消化污泥,最佳投加负荷约为4.5 kg VS/(m3·d),此负荷下容积产气率,CH4含量平均值均达最大,分别为1.68 m3/(m3·d),75.0%。耐酸厌氧消化装置持续增料运行46 d,产甲烷菌仍能保持较高的活性,其COD去除率范围为40.4%~75.0%,仍能保持pH 7.2时处理效果的65.0%~91.8%,表明在低pH、低碱度下实现稳定的产甲烷过程是可行的。  相似文献   

9.
不同生物营养物处理工艺剩余污泥中温水解特性   总被引:1,自引:0,他引:1  
为了解不同生物营养物处理(BNR)工艺剩余污泥性质差异及其中温水解特性,采用序批式实验研究了来源于Orbal氧化沟(OD)和倒置A2/O工艺剩余污泥在中温水解过程中污泥浓度、营养物释放、污泥粒径、污泥絮凝性、污泥比阻及污泥胞外聚合物(EPS)的历时变化。结果表明,相同泥龄(约18 d)条件下,Orbal OD剩余污泥氮含量较高,倒置A2/O剩余污泥磷含量较高,两者VSS/SS均低于0.6,导致中温水解过程污泥减量空间有限、氮磷释放速率不同。此外,尽管倒置A2/O工艺剩余污泥絮体尺寸及絮凝能力明显大于Orbal OD工艺剩余污泥的对应值,但两污泥比阻相近。中温水解过程中,两污泥絮体的尺寸均变小、絮凝能力均降低、比阻均增高;两者的胞外聚合物均呈现增高再降低趋势,且蛋白质均占EPS质量的75%以上,为主要的胞外物质。  相似文献   

10.
利用索氏提取-减量法、减量法和自行开发的高效抽提法,对一系列已知组成的含油污泥进行了油、水含量的测定。测定结果表明,高效抽提法在油、水含量的测定精度方面优于其他2种方法,对于不同组成的含油污泥,由其测定的油含量与含油污泥样品实际油含量的相对偏差均小于5%,由其测定的水含量与含油污泥样品实际水含量的相对偏差均小于7%。在测定效率方面,高效抽提法也优于其他2种方法,40 min即可完成10 g油-水-固质量比为3:2:5含油污泥中油、水含量的测定。  相似文献   

11.
污泥和茶渣都是典型的固体废弃物。将污泥和茶渣制备成生物炭,采用响应面分析(RSM)的方法优化生物炭的制备过程,主要考察温度、茶渣污泥配比和停留时间的影响,以得率和碘值作为评价生物炭的指标。结果表明:影响污泥-茶渣生物炭得率和吸附碘值的因素次序是:制备温度 > 配比 > 停留时间,温度和时间的交互影响较为明显。生物炭制备优化的条件是:制备温度为300℃,配比为0.7,停留时间为1.8 h,模型预测的得率和碘值分别是54.47%和624.07 mg·g-1,而实际测定的得率和碘值分别(53.50±0.50)%和(605.72±8.62)mg·g-1,生物炭有作为吸附剂的潜力。可见,RSM方法用于优化污泥-茶渣生物炭的制备是可行和合适的。  相似文献   

12.
CCD响应曲面法优化印染污泥木屑基活性炭制备   总被引:1,自引:0,他引:1  
以印染污泥和木屑为混合原料,以NaOH为活化剂,通过化学活化法制备活性炭.对活化温度、活化时间和活化剂与基质混合比3个因素进行了研究,并采用中心组合设计(central composite design,CCD),建立了相应的二次方程.从响应曲面的方差分析中确立了对响应值影响最显著的因素依次为:活化温度、NaOH基质比和升温速率.其最佳工艺参数分别为:活化温度739℃,升温速率6.59℃/min, NaOH基质比为2.51.在最佳条件下制得碘吸附值为1 518.89 mg/g,BET比表面积为1 617.70 m2/g的活性炭.  相似文献   

13.
以给水污泥为吸附材料,对模拟含磷废水进行了吸附研究。在单因素实验基础上,选取投加量、pH和粒径3种因素为影响因子,以磷的去除率为响应值,采用Box-Behnken响应面分析法(BBD)研究了3种因素对磷去除率的影响以及各因素间的交互作用。建立了二次多项式回归方程预测模型,成功预测出最佳除磷工艺条件为污泥投加量3.88 g/L,pH=3.00,粒径1.00 mm,该条件下磷的去除率可达95.13%.因此,响应面分析法是优化给水污泥吸附除磷工艺的可行方法。  相似文献   

14.
污泥焚烧灰固化处理技术研究   总被引:1,自引:0,他引:1  
研究了硅酸盐水泥、高铝水泥、高岭土和β-萘系减水剂在污泥焚烧灰固化技术中的应用效果。考察了污泥焚烧灰固化块(以下简称固化块)的抗压强度,测定了固化块的重金属浸出毒性,并采用X射线衍射(XRD)和扫描电镜(SEM)分析固化块组成和微观结构。结果表明,4种物质对提高固化块的抗压强度均具有较好的效果,硅酸盐水泥、高铝水泥、高岭土和β-萘系减水剂的适宜掺量分别为10、30、20、1.0g(以100g污泥焚烧灰中掺加的质量计)。XRD和SEM分析结果显示,经固化处理后制得的固化块结构密实,存在石英(SiO2)、水化硅铝酸钙(CaAl2Si2O8)和水化硅酸铝钙(Ca2Al2SiO7)等物质,其中水化硅铝酸钙等凝胶物质有利于提高固化块的抗压强度。  相似文献   

15.
响应面法优化污泥电渗透脱水工艺参数   总被引:2,自引:0,他引:2  
以泥饼含固率作为衡量污泥脱水效果的指标,采用响应面法进行污泥电渗透脱水工艺参数的优化研究。结果表明,最佳反应条件为初始污泥含固率为8.58%,初始电压梯度为20.88 V/cm,初始污泥厚度为2.25 cm,此条件下得到的污泥含固率为48.82%(预测值为48.45%)。方差分析结果表明,回归模型达到显著水平,在研究区域(初始污泥含固率:5%~10%、初始电压梯度12~30 V/cm、初始污泥厚度:1~2.5 cm)内拟合较好,与实验结果吻合度较高。  相似文献   

16.
响应曲面法优化固相反硝化的工艺条件   总被引:2,自引:0,他引:2  
以一种新型可降解材料PLA/PHBV共混物为碳源和生物膜载体,对硝酸盐污染水进行反硝化脱氮。在温度为(29±1)℃,pH为(7.5±0.2)条件下,利用响应曲面法考察了进水硝态氮浓度、水力停留时间(HRT)和出水硝态氮浓度之间的关系,建立了以出水硝态氮浓度为响应值的二次多项式回归模型,模型预测值与实验值能很好吻合。方差分析结果表明,进水硝态氮浓度和HRT及其交互作用对响应值均具有显著性影响(P<0.01)。  相似文献   

17.
Box-Behnken响应曲面法优化高聚复配絮凝剂制备条件   总被引:2,自引:0,他引:2  
利用活性硅酸和聚合硫酸铁制备聚合硅酸硫酸铁,再采用二甲基二烯丙基氯化铵对其进行复配改性制备高聚复配絮凝剂。在单因素实验的基础上,以絮凝剂脱As性能为评价指标,采用Box-Behnken响应曲面法考察了Fe∶Si、改性剂量、改性温度对高聚复配絮凝剂制备的单独作用及交互影响作用,并建立了剩余c(As)的数学模型。结果显示,自变量对响应值的影响次序为:Fe∶Si改性温度改性剂量,改性剂量与改性温度及改性剂量与Fe∶Si交互影响显著;数学模型拟合度程度良好,模型显著,模型预测处理后最佳剩余c(As)=18.82μg/L,最佳工艺条件为Fe∶Si=2.1∶1,改性温度=79℃,改性剂量=0.56%(PFSS溶液质量),验证实验结果为剩余c(As)=19.21μg/L,预测值与测定值偏差率为2.07%。  相似文献   

18.
在间歇式超临界水氧化系统中对草甘膦农药废水进行降解实验。选取温度、反应时间、过氧量3个量为因素量,总有机碳(TOC)去除率为响应量进行中心组合设计(CCD)。在实验的基础上,利用响应面分析法(RSM)对实验结果进行分析及参数优化:建立了TOC去除率与各个因素关系的二次多项式数学模型;分析了各个因素单独的及相互作用对TOC去除率的影响;优化结果表明,在温度483℃、反应时间29.2 min、过氧量148.4%的条件下,达到了最佳效果,此时TOC的去除率为100%。  相似文献   

19.
从延长油田石油污染土壤中筛选出4株能以原油为唯一碳源生长的细菌单菌株,鉴定其优势菌株YC-2为枯草芽孢杆菌;利用响应面法进行实验设计,选定培养温度、pH值、氮磷比以及盐度为影响因素,对原油含量为0.5%的培养基进行YC-2菌株降解工艺优化,得到了原油降解率与4种因素之间的非线性回归方程,确定了降解原油的最优工艺条件:培养温度28℃;pH值6.5,氮磷比5.2:1,盐度0.45%。在最优条件下,预测降解率为53.9%,实验验证值为52.5%,结果显示,建立的模型具有较高的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号