首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 610 毫秒
1.
Aqueous solutions of azo dyes undergo degradation to form harmless intermediates and colorless products following irradiation by visible light in the presence of titanium dioxide thin films. The dyes that were studied in this work are: Chicago Sky Blue 6B and Benzopurpurin 4B. Results obtained indicated that complete mineralization of the dyes took place under the experimental conditions. There was an increase in conductivity after the complete mineralization experiments possibly indicating the formation of ions such as NO3^- and SO4^2-. Chemical oxygen demand(COD) measurements show a decrease in organic matter for both dyes following complete degradation. The effect of how changing experimental conditions such as pH, temperature and starting concentrations of dyes affected the rate of dye degradation was measured. There was an increase in the rate of disappearance of the dye color at lower pH. High concentrations of dye solutions reauired Iona dearadation time.  相似文献   

2.
The pulsed high-voltage discharge is a new advanced oxidation technology for water treatment. Methyl Orange (MO) dye wastewater was chosen as the target object. Some investigations were conducted on MO decoloration including the discharge characteristics of the multi-needle reactor, parameter optimization, and the degradation mechanism. The following results were obtained. The color group of the azo dye MO was effectively decomposed by water surface plasma. The decoloration rate was promoted with the increase of treatment time, peak voltage, and pulse frequency. When the initial conductivity was 1700 μS/cm, the decoloration rate was the highest. The optimum distance between the needle electrodes and the water surface was 1 mm, the distance between the grounding electrode and the water surface was 28 mm, and the number of needle electrodes and spacing between needles were 24 and 7.5 mm, respectively. The decoloration rate of MO was affected by the gas in the reactor and varied in the order oxygen > air> argon > nitrogen, and the energy yield obtained in this investigation was 0.45 g/kWh.  相似文献   

3.
Simultaneous removals of dye and nitrate by photo-dependent denitrifying sludge(PDDS)have been demonstrated in a continuousflow bench-scale reactor.The best C/N for the degradation of azo dyes by PDDS was 1.5.The specific removal rate of azo dye AB92 decreased with a decrease in hydraulic retention time and increased with a decrease in solids retention time.The degradation rate of TOC decreased with a decrease in hydraulic retention time.AB92,which has nitro and hydroxyl substitutions in non-para positions,was uniquely degraded.During continuous flow treatment experiments using PDDS,complete degradation of azo dyes AB92 and AO20 at influent concentrations of 40mg/L and 30mg/L,respectively,was achieved with an HRT of 16.  相似文献   

4.
The problem of textile dye pollution has been addressed by various methods,mainly physical,chemical,biological,and acoustical.These methods mainly separate and/or remove the dye present in water.Recently,advanced oxidation processes(AOP)have been focused for removal of dye from waste water due to their advantages such as ecofriendly,economic and capable to degrade many dyes or organic pollutant present in water.Photocatalysis is one of the advance oxidation processes,mainly carried out under irradiation of light and suitable photocatalytic materials.The photocatalytic activity of the photocatalytic materials mainly depends on the band gap,surface area,and generation of electron–hole pair for degradation dyes present in water.It has been observed that the surface area plays a major role in photocatalytic degradation of dyes,by providing higher surface area,which leads to the higher adsorption of dye molecule on the surface of photocatalyst and enhances the photocatalytic activity.This present review discusses the synergic effect of adsorption of dyes on the photocatalytic efficiency of various nanostructured high surface area photocatalysts.In addition,it also provides the properties of the water polluting dyes,their mechanism and various photocatalytic materials;and their morphology used for the dye degradation under irradiation of light along with the future prospects of highly adsorptive photocatalytic material and their application in photocatalytic removal of dye from waste water.  相似文献   

5.
A waste paper sludge-derived heterogeneous catalyst(WPS-Fe-350) was synthesized via a facile method and successfully applied for the degradation of Orange Ⅱ in the presence of oxalic acid under the illumination of ultraviolet light emitting diode(UV-LED) Powder X-ray diffraction,Fourier-transform infrared spectroscopy,scanning electronic microscopy and N2 sorption isotherm analysis indicated the formation of α-Fe2O3 in the mesoporous nanocomposite.The degradation test showed that WPS-Fe-350 exhibited rapid Orange Ⅱ(OⅡ) degradation and mineralization in the presence of oxalic acid under the illumination of UV-LED.The effects of p H,oxalic acid concentration and dosage of the catalyst on the degradation of OⅡ were evaluated,respectively.Under the optimal conditions(1 g/L catalyst dosage,2 mmol/L oxalic acid and p H 3.0),the degradation percentage for a solution containing 30 mg/L OⅡ reached 83.4% under illumination by UV-LED for 80 min.Moreover,five cyclic tests for OⅡ degradation suggested that WPS-Fe-350 exhibited excellent stability of catalytic activity.Hence,this study provides an alternative environmentally friendly way to reuse waste paper sludge and an effective and economically viable method for degradation of azo dyes and other refractory organic pollutants in water.  相似文献   

6.
Understanding the degradation behavior of azo dyes in photocatalytic wastewater treatment is of fundamental and practical importance for their application in textile-processing and other coloration industries. In this study, quantum chemistry, as density functional theory, was used to elucidate different degradation pathways of azo pyridone dyes in a hydroxyl radical(HO ·)-initiated photocatalytic system. A series of substituted azo pyridone dyes were synthesized by changing the substituent grou...  相似文献   

7.
In this study, a baffled photocatalytic reactor was used for the treatment of colored wastewater containing the azo dye of Acid Orange 52(AO52). A study on the active species of the photocatalytic process using TiO_2 nanoparticles indicated that hydroxyl radical and superoxide have the greatest contribution to the dye degradation process respectively.Given that a level of biological oxygen demand/chemical oxygen demand(BOD5/COD) equal to 0.4 was achieved after about 5 hr from the beginning of the experiment, the reactor seems to be capable of purifying the wastewater containing AO52 dye after this time in order to discharge into a biological treatment system to continue the treatment process.The results of the liquid chromatography-mass spectrometry(LC-MS) test showed that during the first 4 hr of the experiment, with the breakdown of the azo bond, the contaminant was decomposed into the benzene annular compounds with less toxicity indicating a reduction in the toxicity of wastewater after removing the dye agent. The study on the kinetics of these reactions followed the pseudo-first-order kinetic model in all conditions and corresponded well to Langmuir–Hinshelwood model. According to the kinetic model for the simultaneous occurrence of possible pathways, the kinetic constant of production and degradation of intermediate products in optimal conditions was estimated to be between 0.0029 and 0.0391 min~(-1).  相似文献   

8.
We investigated the efficiency and kinetics of the degradation of soluble dyes over the p H range 5.0–9.0 using a method employing microwave radiation in combination with nanoscale zero-valent iron(MW–n ZVI). The n ZVI particles(40–70 nm in diameter) were prepared by a liquid-phase chemical reduction method employing starch as a dispersant.Compared to the removal of Solvent Blue 36 and Reactive Yellow K-RN using only n ZVI,more rapid and efficient dye removal and total organic carbon removal were achieved using MW–n ZVI. The dye removal efficiency increased significantly with decreasing p H, but was negligibly affected by variation in the microwave power. The kinetics of dye removal by MW–n ZVI followed both an empirical equation and the pseudo first-order model, while the kinetics of dye removal using n ZVI could only be described by an empirical equation. It was also concluded that microwave heating of the dye solutions as well as acceleration of corrosion of n ZVI and consumption of Fe(II) were possible reasons behind the enhanced dye degradation.  相似文献   

9.
The photocatalytic degradation of reactive dyes with solar-irradiated TiO2 was investigated in these experiments which showed that: (1)the decolourization efficiency are determined by pH value, catalyst amount and light intensity; (2) the reactive dyes decolourized rapidly (cleavageld be biologically degradated more easily, the toxicity decreased considerably after photodegradation.The results demonstrated that the photocatalytic process would become an efficient and safe method for colour wastewater treatment and would be very useful for explaining the reaction mechanism and decolourising structure-reactivity relationship. of the azo linkage), but the intermediates needed more time to transform to further degradation products, and finally to produce CO2; (3) the main products were identified to be alkanes and alkyl amines which cou  相似文献   

10.
A azoreductase gene with 537 bp was obtained by PCR amplification from Rhodobacter sphaeroides ASI. 1737. The enzyme,with a molecular weight of 18.7 kD, was efficiently expressed in Escherichia coli and its biodegradation characteristics for azo dyes were investigated. Furthermore, the reaction kinetics and mechanism of azo dyes catalyzed by the genetically engineered azoreductase were studied in detail. The presence of a hydrazo-intermediate was identified, which provided a convincing evidence for the assumption that azo dyes were degraded via an incomplete reduction stage.  相似文献   

11.
以Fe2O3/γ-Al2O3为催化剂的非均相催化氧化体系处理活性艳蓝KN-R。考察了反应时间、反应温度、pH和Fe2O3/γ-Al2O3投加量等因素对降解效果的影响。结果表明,染料初始浓度为200mg/L时,在温度150℃、压力0.5MPa、H2O233mg/L、pH=6,反应时间1h,Fe2O3/γ-Al2O3投加量为8g/L的最佳条件下,活性艳蓝KN-R色度几乎完全去除,TOC和COD去除率分别为95.6%和82.5%。  相似文献   

12.
复极填充床电解槽对活性艳红X-3B溶液电解脱色的研究   总被引:1,自引:0,他引:1  
本研究以偶氮染料活性艳红X 3B为模型物 ,分别在不同填料层数、槽电压、流量、染料浓度、pH值及不同无机盐种类和浓度下进行电解实验 ,考察各种因素对复极填充床电解槽脱色率和电耗等性能参数的影响。通过分析原水和出水水样的紫外 可见吸收光谱 ,验证染料溶液电解脱色的机制  相似文献   

13.
陈卫刚  武海霞  樊佳炜 《环境工程》2020,38(8):113-118,57
研究了颗粒活性炭非均相活化过二硫酸盐和过一硫酸盐对水中偶氮染料酸性橙Ⅱ的降解效果。考察了过硫酸盐投加量、活性炭投加量、溶液初始pH值和无机阴离子对酸性橙Ⅱ降解率的影响,探究了不同过硫酸盐对染料降解效果差别的原因。结果表明:投加过二硫酸盐比过一硫酸盐的效果更好,偶氮染料浓度为20 mg/L,溶液中过n(PS)∶n(AOⅡ)为200∶1时降解率最高;颗粒活性炭投加量的增加有利于染料的去除,溶液处于酸性条件下染料降解率高于碱性条件,无机阴离子对酸性橙Ⅱ降解有抑制作用,产生于活性炭表面的自由基对染料的降解具有重要作用。  相似文献   

14.
利用污泥细菌生物降解矿化偶氮染料,已成功用于偶氮染料废水处理,并将成为该领域研究开发的热点和发展趋势。综述了好氧、厌氧细菌的两种偶氮呼吸机制,并总结了偶氮呼吸直接产物芳香胺类在好氧、厌氧条件下进一步降解与矿化机理的异同,同时提出在偶氮染料废水处理中厌氧-好氧串联式生物反应器能有效用于偶氮化合物的降解矿化。  相似文献   

15.
改性PAN非织造布铁配合物可见光降解甲醛气体   总被引:1,自引:0,他引:1  
使用盐酸羟胺对聚丙烯腈非织造布(nPAN)进行了化学改性,并将所得改性聚丙烯腈非织造布(AO-nPAN)与Fe(III)配位制得改性聚丙烯腈非织造布铁配合物(Fe-nPAN),分别使用扫描电镜(SEM)、傅立叶红外光谱(FTIR)、X射线衍射(XRD)和UV-Vis吸收光谱对Fe-nPAN进行了表征,然后将其作为光催化剂应用于甲醛气体的氧化降解反应中.结果表明:提高Fe(III)初始浓度、反应温度和AO-nPAN的增重率都能够增加Fe-nPAN的Fe(III)配合量.Fe-nPAN中偕胺肟基团与Fe(III)发生了配位反应,使其在可见光区有明显的吸收带.增加Fe(III)配合量和可见光强度都能够促进甲醛的降解反应,而且与PAN纱线制备的铁配合物催化剂相比,Fe-nPAN明显具有更高的催化活性.  相似文献   

16.
有机/无机复合絮凝剂对印染废水的脱色   总被引:2,自引:2,他引:0  
聚合氯化铝与阴离子型聚丙烯酰胺复合,用于多种模拟染料废水絮凝脱色,考察影响PAM/PAC对染料的絮凝脱色的因素,采用可视化技术分析絮凝出现时间及絮凝过程特点。PAM/PAC复合絮凝剂的脱色率普遍高于单纯的PAC对染料的脱色效率;絮凝过程均在酸性环境中脱色效率较高;复合絮凝剂能使絮凝体的尺寸显著增加;对偶氮染料,复合絮凝剂能使絮凝体出现时间缩短约50.0%,而对蒽醌染料絮凝体出现时间则仅缩短18.2%。  相似文献   

17.
以黄曲霉菌株A5p1为生物材料,研究其脱色染料的广谱性,并选择偶氮染料直接蓝71(DB71)为模型底物,探讨脱色特性及降解产物.该菌株对15种染料的脱色测试结果表明,染料浓度为100mg/L时脱色效率为61.7%~100%.该菌对偶氮染料DB71具有生物吸附和生物降解的双重作用,在pH值7.0,温度30℃,染料浓度300mg/L,蔗糖为碳源时对DB71 脱色率为100%.酶分析显示葡萄糖氧化酶和锰过氧化物酶参与染料的降解.FTIR、GC-MS和LC-MS分析确定代谢终产物为萘胺、叠氮萘、2-羟基-6-草酰-苯甲酸和1-萘酚.  相似文献   

18.
采用模板蚀刻法合成单原子Co-C-N催化剂并催化过一硫酸盐(PMS)降解偶氮染料金橙Ⅱ(AO7).考察了催化剂投加量、PMS浓度、pH值和染料废水中常见的Cl-对Co-C-N/PMS体系去除AO7的影响,探讨了体系的反应机理,分析了矿化能力和催化剂重复利用性能.结果表明,在Co-C-N/PMS体系中,反应随着催化剂投加...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号