首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Genetic influence on caste in the ant Camponotus consobrinus   总被引:6,自引:0,他引:6  
Genetic influences on polyethism within social insect colonies are well known, suggesting that the determination of caste (soldiers and minor workers) may also be genetically mediated. The Australian sugar ant Camponotus consobrinus is suitable for such a study, having soldiers and minor workers that follow a complex allometry. Further, although most C. consobrinus colonies are monogynous, 13 of 42 surveyed using microsatellites were found to be polygynous. Thus, although a minority of colonies were polygynous, the great majority of queens live in polygynous colonies. From the 29 monogynous colonies studied, we inferred that the queens are monandrous. Ants from four polygynous colonies were assigned to families on the basis of microsatellite genotypes, after measurements had been taken of head width and scape length. These measurements reflect a complex allometry interpretable as soldier and minor worker growth curves with a large changeover zone. Genetic influence on caste determination was examined by testing for differences between families within colonies in the distribution of scape lengths, residuals from the overall colony allometric curve, and proportions of soldiers and minor workers (as determined by head width falling above or below the inflection point of the overall colony allometric curve). Families in all four colonies differed significantly in caste proportions and in head-width distributions, and three of the four colonies showed significant differences between families in residuals from the overall colony growth curve. Nested ANOVAs using head widths and scape-length residuals showed that when the effect of family is removed, intercolony differences in allometry are negligible. This evidence indicates genetic rather than environmental causes for the observed differences between families. We speculate that this variation may reflect some selective advantage to within-colony heterogeneity between families or that selective differences are few between a wide array of family growth patterns. Received: 16 June 1999 / Received after revision: 13 September 1999 / Accepted: 25 September 1999  相似文献   

3.
4.
5.
Queen mating frequency of the facultatively polygynous ant Acromyrmex echinatior was investigated by analysing genetic variation at an (AG)n repeat microsatellite locus in workers and sexuals of 20 colonies from a single Panamanian population. Thirteen colonies were found to be monogynous, 5 colonies contained multiple queens, whereas the queen number of 2 colonies remained unresolved. Microsatellite genotypes indicated that 12 out of 13 queens were inseminated by multiple males (polyandry). The mean queen mating frequency was 2.53 and the mean genetically effective paternity frequency was 2.23. These values range among the highest found in ants, and the results are in keeping with the high mating frequencies reported for other species of leafcutter ants. Consistent skew in the proportional representation of different patrilines within colonies was found, and this remained constant in two consecutive samples of offspring. Dissections showed that all examined queens from multiple-queen colonies were mated egg-layers. The mean relatedness value among nestmate workers in polygynous colonies was lower than that for monogynous colonies. No diploid males were detected in a sample of 70 genotyped males. Worker production of males was detected in one queenless colony. We discuss our findings in relation to known patterns of multiple maternity and paternity in other eusocial Hymenoptera. Received: 2 September 1998 / Received in revised form: 3 February 1999 / Accepted: 7 February 1999  相似文献   

6.
Multiple mating in the ant Acromyrmex versicolor: a case of female control   总被引:3,自引:0,他引:3  
In eusocial insects, polyandrous mating has the potential to reduce genetic relatedness of individuals within a colony, which may have a profound effect on the stability and social structure of the colony. Here we present evidence that multiple mating is common in both males and females of the desert leaf-cutter ant Acromyrmex versicolor. Females seem to have complete control over the number of matings, and mate on average with three males, even though the sperm transferred in a single copulation is sufficient to fill the spermatheca. To determine whether there is a bias in the representation of sperm from different mates in the spermatheca, females were mated to three or four males in controlled mating experiments and were subsequently allowed to found colonies in the laboratory. Paternity analysis of the offspring by random amplified polymorphic DNA analysis showed that all males that have been mated to a female successfully contributed sperm to the production of her offspring. No significant asymmetry in sperm use was detected, suggesting complete sperm mixing. Different hypotheses to explain polyandrous mating are discussed, and it is argued that the best hypothesis to explain polyandrous mating and complete sperm mixing in A. versicolor is that utilizing genetically diverse sperm confers a selective advantage on females. Received: 14 June 1995/Accepted after revision: 26 November 1995  相似文献   

7.
Summary Ten species of Pheidole, representing as many species groups from various localities in North and South America, Asia, and Africa, were analyzed to probe for possible relationships between caste ratios and division of labor.Minor workers are behaviorally almost uniform among the species, but major workers vary in repertory from 4 to 19 behavioral acts (Table 1, Fig. 2). The major repertory size increases significantly across the species with the percentage of majors in the worker force (Fig. 3). This trend is consistent with the basic prediction of ergonomic optimization models under an assumption of colony-level selection. There is also a trend toward reduction of behavioral repertory with increase of size in the major relative to the minor, a second relation expected from theory, but the data are not sufficient to reach statistical significance.When the minor:major ratio was lowered to below 1:1 (from the usual 3:1 to 20:1, according to species), in three widely different species (guilelmimuelleri, megacephala, pubiventris), the repertory size increased by 1.4–4.5X and the rate of activity by 15–30X (Table 1, Figs. 4–6). The change occurred within 1 h of the ratio change and was reversed in comparably short time when the original ratio was restored.This abrupt and important shift in behavior permitted the major workers to serve as an emergency stand-by caste, available to be summoned to a nearly full repertory when the minor worker caste was depleted. The majors also restored 75% or more of the missing minor workers' activity rate under laboratory conditions. Their transformation allowed continued oviposition by the queen and the rearing of larvae to the adult stage.In line with these findings, a distinction is made between programmed elasticity in the repertory of individual workers and castes and the resiliency of the colony as a whole, which depends upon the pattern of caste-specific elasticity.  相似文献   

8.
Phenotypic variation in male genitalia may affect copulation behaviour, which can have important fitness consequences for males. Male genitalia commonly possess traits that increase male control over copulation, but in species where females control mating, a poor functional understanding often prevents insight into the processes responsible for such effects. Here, I investigate the effect of male genital length on copulation behaviour in the earwig Euborellia brunneri, where both sexes exhibit extremely elongated genitalia that correspond in shape. This model system is particularly suitable because pairs mate repeatedly and females can limit both the number and duration of copulations. I used both virgin and mated males and females in a double-mating design because longer male genitalia confer benefits in sperm competition. Consistent with a greater predicted male mating effort in mated females, the duration of individual copulations increased, but this traded off against mating frequency as cumulative mating duration remained unchanged. In contrast, male genital length increased both individual and cumulative mating duration, regardless of mating status. This difference suggests that, while males may modify copulation duration in response to mating status, females facultatively adjust mating frequency to prevent mating excessively or express preferences for increased male genital length. Notably, this study demonstrates that male genital phenotypes that are successful in sperm competition also enjoy female-mediated mating benefits.  相似文献   

9.
Multiple mating is likely to be costly for ant queens and yet it is common. Whether multiple mating brings benefits to queens that outweigh the costs has, therefore, received considerable theoretical attention. Empirical tests of hypotheses have been scarce and no clear evidence has been reported. We tested the “multiple-mating-for-more-sperm” hypothesis on individual young queens in a natural population of the leafcutter ant Atta colombica, a monogynous ant characterised by very large colonies and high colony longevity. We found that the number of sperm stored by queens was positively correlated with the number of mates per queen estimated through mother-offspring analysis with microsatellite DNA markers. Queen sperm stores increased on average by 30 million sperm for each additional mate. Life-history information for Atta indicate that the number of stored sperm observed is likely to constrain the reproductive lifespan of queens in nature. Multiple mating, despite costs, may therefore enhance the fitness of Atta queens because it enables them to store more sperm. Received: 19 September 1997 / Accepted after revision: 7 December 1997  相似文献   

10.
W. Okera 《Marine Biology》1976,38(3):217-229
The West African cockle Senilia senilis (L.) (=Arca senilis L., 1758) from some estuaries and muddy shores of Sierra Leone was studied from September, 1973 to February, 1975. Quantitative samples were obtained along transects using quadrats and sieves; some random hand-picked collections were also made. The length, number of rings and the maximum width of the inter-ring bands along the outer convex surface of the right valve were recorded from samples of 25 specimens. All the cockle beds examined were exploited and had stocks with a mean density of 9 large (>10 mm) cockles/m2, and at River No. 2 estuary at peak spatfall, of 130 seed cockles/m2. Spat settlement began in November-December after the rainy season, reached a peak in January-February and continued to the early part of the following rainy season (May-June). Seed cockles were absent from August to October. In the length-frequency distributions, modes were clear and associated with certain shell-ring numbers. Rings on shells were formed once a year, during July to September, the period of maximum rainfall, and they were successfully used in ageing the cockles. The first ring was formed at a mean age of 7 months and the subsequent ones annually. The growth period of the inter-ring bands, considered to extend from August to the following July (s. senilis growth year), may actually be of only 10 months duration. Sublittoral cockles from No. 2 estuary showed a higher growth rate than those from the levels exposed at low tide and subjected to greater exploitation. Cockles from the Sierra Leone River Estuary showed even greater growth. s. senilis grows slowly and lives long (up to 8 to 9 years), and its von Bertalanffy parameters are: River No. 2 estuary cockles k=0.27 to 0.31 and L =99 mm; Sierra Leone River Estuary cockles k=0.22 and L =145 mm. At No. 2 estuary, cockles enter the fishery at 22 to 25 mm (14 to 15 months old) and exploitation is heavy, resulting in the stocks being dominated by a few young year-classes.  相似文献   

11.
In social insects, the decision to exploit a food source is made both at the individual (e.g., a worker collecting a food item) and colony level (e.g., several workers communicating the existence of a food patch). In group recruitment, the recruiter lays a temporary chemical trail while returning from the food source to the nest and returns to the food guiding a small group of nestmates. We studied how food characteristics influence the decision-making process of workers changing from individual retrieving to group recruitment in the gypsy ant Aphaenogaster senilis. We offered field colonies three types of prey: crickets (cooperatively transportable), shrimps (non-transportable), and different quantities of sesame seeds (individually transportable). Colonies used group recruitment to collect crickets and shrimps, as well as seeds when they were available in large piles, while small seed piles rarely led to recruitment. Foragers were able to “measure” food characteristics (quality, quantity, transportability), deciding whether or not to recruit, accordingly. Social integration of individual information about food emerged as a colony decision to initiate or to continue recruitment when the food patch was rich. In addition, group recruitment allowed a fast colony response over a wide thermal range (up to 45°C ground temperature). Therefore, by combining both advantages of social foraging (group recruitment) and thermal tolerance, A. senilis accurately exploited different types of food sources which procured an advantage against mass-recruiting and behaviorally dominant species such as Tapinoma nigerrimum and Lasius niger.  相似文献   

12.
The evolution of polyandry is a central problem in the study of insect mating systems, and both material and genetic benefits have been proposed to offset the presumed costs of multiple mating. Although most eusocial Hymenoptera queens mate with just one or occasionally two males, high levels of polyandry are exhibited by several taxa, including seed-harvester ants of the genus Pogonomyrmex. Previous studies of queen mating frequency in Pogonomyrmex have focused on monogynous (one queen per colony) species in the subgenus Pogonomyrmex. We performed a genetic mother–offspring analysis of mating frequency in Pogonomyrmex (Ephebomyrmex) pima, a queen-dimorphic species with dealate and intermorph queens that differ in colony structure (intermorph colonies contain multiple queens). Our results demonstrate that both dealate and intermorph queens of P. (E.) pima are typically single maters, unlike their congeners analyzed thus far. Polyandry appears to be a derived trait in Pogonomyrmex, but comparative tests between P. (E.) pima queen morphs and across the genus provide no evidence that it evolved as an adaptation to increase genetic diversity within colonies or to obtain more sperm, respectively.  相似文献   

13.
The West African blood clamAnadara senilis (L.) is one of a small number of bivalve species which have haemoglobin in their haemolymph. In the investigation reported here, in which the musselMytilus edulis (L.) was also studied for comparative purposes, it was shown thatA. senilis was an oxygen regulator between oxygen tensions corresponding to 50 and 100% air saturation. Oxygen uptake increased by about 128% after 24 h at zero pO2; although the haemoglobins ofA. senilis were found to be responsible for about 34% of oxygen uptake at 25°C (a proportion unaffected by pO2), there was clearly insufficient haemoglobin present in the haemolymph to act as an effective oxygen store during prolonged exposure to anoxic conditions.  相似文献   

14.
In haplodiploid insects, males develop from unfertilized eggs; consequently, unmated females can reproduce. In a patchy, highly structured population, where brothers compete for mates and the reproductive return through sons is lower, females should minimize the number of male offspring. Consequently, unmated females are likely to have a reduced fitness compared to mated females. Here, we tested the oviposition behaviour of the haplodiploid beetle Coccotrypes dactyliperda. In this species, the unmated female can mate with her son to produce daughters. We predicted that unmated females could increase their fitness by (1) producing only few and small sons sufficient for mother–son mating and (2) dispersing to a patch occupied by conspecific females in order to increase their or their sons’ chance of mating. We demonstrate that (1) unmated females are common (23 % of all females), (2) they oviposit more frequently than mated females in occupied patches, (3) unmated females oviposit more eggs than mated females—this is in spite of the trade-offs, evident in this study, between the number of sons and the number of the mother’s future offspring after mating, (4) unmated females have a higher proportion of dispersing sons, and (5) sons of unmated females are smaller than sons of mated females. We conclude that the incidence of unmated females in the structured populations of C. dactyliperda is explained by plasticity in their oviposition behaviour. We discuss conditions where a high incidence of unmated females can persist as a successful strategy in structured populations.  相似文献   

15.
Summary The addition of frequency dependence to the marginal value theorem (MVT) model of the dung fly (Scatophaga stercoraria) male's optimal copula duration makes virtually no difference to the predicted competitive optimum (ESS). However, this evolutionarily stable strategy (ESS) version allows an explicit solution for the optimum. In a general sense, MVT optima will be close to their ESS equivalent when the cycle duration (expected time between the starts of two successive patch exploitations) is long relative to the plausible patch exploitation times. The optimal copula duration for male dung flies will depend on the ratio of virgin to mated females arriving at the droppings and on whether a male can discriminate between the two sorts of female. In nature, we found only an average of 3% of the total females arriving at the droppings to be virgins, rather less than had been estimated. This means that matings away from droppings (extra-dung matings) must be much commoner than previously suspected. Cumulative gains through copulation time rise much more steeply with virgins than with mated females, and so if males are able to discriminate, on the present model, we calculate that the ESS copula durations (at 20° C) would be around 42 min for non-virgins and 11 min for virgins. If they do not discriminate, the ESS is to copulate for a fixed duration of 41.5 min, i.e. very close to the optimum for mated females. The data indicate that copula duration does not differ for the two types of mating (mated females; virgins), suggesting that males cannot discriminate (or that the copula duration with virgins is not optimised to male interests). ESS copula durations with discrimination are almost entirely independent of the frequency of virgins in the population of females arriving at the droppings; without discrimination the optimal copula duration shifts between the ESS for mated females and that for virgins as the virgin frequency increases from 0 to 1. But at their naturally occurring frequency of only 3%, virgins can be ignored from calculations of optimal copula duration without significant loss of precision.Correspondence to: G.A. Parker  相似文献   

16.
Summary Three lines of evidence, including interspecific comparisons, temporal division of foraging between size castes, and experimental manipulations, suggest that the diurnal parasitoid Neodohrniphora curvinervis (Diptera: Phoridae) influences both the caste sizes and numbers of leaf-cutter ants (Atta cephalotes) that leave their underground nests to collect leaves. At Parque Nacional Corcovado in Costa Rica, A. cephalotes was attacked by Neodohrniphora during the daytime, and foraged less during the day than at night; a closely related ant at the same site, A. colombica, had no phorid parasites and foraged exclusively during the day. Most daytime foragers of A. cephalotes were smaller than the lower size threshold for attack by Neodohrniphora, while nocturnal foragers, active when parasitoids were absent, were both larger than this threshold and within the energetically optimal size range for foraging. When I supplied artificial lighting to allow phorids to hunt at A. cephalotes colonies past dusk, ants foraged less than when light was provided but flies were removed. The influence of Neodohrniphora on the foraging activity of A. cephalotes may explain why investigations focusing on abiotic factors have largely failed to discover what drives this ant's daily foraging cycles, and suggests that forager sizes are influenced not only by energetic efficiency, but also by the threat of parasitism.  相似文献   

17.
Workers in de-queened colonies of the neotropical ant, Pachycondyla cf. inversa, form linear or near-linear dominance hierarchies by violent antennation and biting. In these rank orders, social status and ovarian activity are on average highly correlated. Whereas the presence of a fertile queen appears to be sufficient to prevent workers from laying eggs, fertile workers do not completely control reproduction by their nestmates, suggesting that workers are able to differentiate between an egg-laying queen and an egg-laying worker. Here we show that the composition of cuticular hydrocarbons of egg-laying workers is quantitatively and qualitatively different from that of non-laying workers and resembles the hydrocarbon blend of the queen but does not completely match it. Furthermore, using discriminant analysis, it was possible to distinguish workers with four different classes of ovarian development based only on their cuticular hydrocarbon profiles. Fertility-associated changes in cuticular hydrocarbons may play an important role in the behavioural regulation of reproduction in this ant.  相似文献   

18.
Caste theory predicts that social insect colonies are organized into stable groups of workers specialized on particular task sets. Alternative concepts of organization of work suggest that colonies are composed of extremely flexible workers able to perform any task as demand necessitates. I explored the flexibility of workers in temporal castes of the honey bee Apis mellifera by determining the ability of colonies to reorganize labor after a major demographic disturbance. I evaluated the flexibility of temporal castes by comparing the foraging rates of colonies having just lost their foragers with colonies having also lost their foragers but having been given a week to reorganize. The population sizes and contents of the colonies in each group were equalized and foraging rates were recorded for one week. Colonies given a weeks initial recovery time after the loss of their foragers were found to forage at significantly higher rates than those colonies given no initial recovery time. This result was consistent for nectar and pollen foraging. These results suggest that honeybee workers lack sufficient flexibility to reorganize labor without compromising foraging. This finding is consistent with the caste concept model of organization of work in insect societies.  相似文献   

19.
Females capable of adjusting the sex ratio of their offspring should be more fit than females lacking such an ability. In polygynous birds where breeding success in males is more strongly influenced by body size and/or attractiveness than in females, females might produce more sons when predicting good conditions or when mating with attractive males. Polygynous great reed warbler, Acrocephalusarundinaceus, males direct most of their feeding effort to the primary (first-hatching) nest and in these nests increase their feeding effort in relation to the brood sex ratio (proportion of sons). Therefore, with the expectation of well-nourished sons, we would predict that females which start breeding first within harems might produce more sons than those which start breeding later, and in anticipation of sons with good genes, that females mated to polygynous males might produce more sons than females mated to monogamous males. I took blood samples from hatchlings and determined the sex using DNA markers. The sex ratio of primary (monogamous and polygynous primary) broods is more male-biased (mean 0.58 males, n = 50) than that of secondary (polygynous secondary and tertiary) broods (mean 0.46, n = 25). Moreover, in the secondary broods with the largest clutch (five eggs), in which offspring are most likely to suffer food shortage, the sex ratio was distinctively female biased (mean 0.33, n = 10). In the primary broods, sex ratio was correlated to harem size. The results suggest that great reed warbler females modify the brood sex ratio to produce both well-nourished sons and sons with good genes, but the former effect is probably stronger than the latter factor. Received: 11 March 1998 / Accepted after revision: 23 May 1998  相似文献   

20.
We examined the distribution and ancestral relationships of genetic caste determination (GCD) in 46 populations of the seed-harvester ants Pogonomyrmex barbatus and P. rugosus across the east-to-west range of their distributions. Using a mtDNA sequence and two nuclear markers diagnostic for GCD, we distinguished three classes of population phenotypes: those with GCD, no evidence of GCD, and mixed (both GCD and non-GCD colonies present). The GCD phenotype was geographically widespread across the range of both morphospecies, occurring in 20 of 46 sampled populations. Molecular data suggest three reproductively isolated and cryptic lineages within each morphospecies, and no present hybridization. Mapping the GCD phenotype onto a mtDNA phylogeny indicates that GCD in P. rugosus was acquired from P. barbatus, suggesting that interspecific hybridization may not be the causal agent of GCD, but may simply provide an avenue for GCD to spread from one species (or subspecies) to another. We hypothesize that the origin of GCD involved a genetic mutation with a major effect on caste determination. This mutation generates genetic conflict and results in the partitioning and maintenance of distinct allele (or gene set) combinations that confer differences in developmental caste fate. The outcome is two dependent lineages within each population; inter-lineage matings produce workers, while intra-lineage matings produce reproductives. Both lineages are needed to produce a caste-functional colony, resulting in two reproductively isolated yet interdependent lineages. Pogonomyrmex populations composed of dependent lineages provide a unique opportunity to investigate genetic variation underlying phenotypic plasticity and its impact on the evolution of social structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号