首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aposematic (warning) signals of prey help predators to recognize the defended distasteful or poisonous prey that should be avoided. The evolution of aposematism in the context of predation has been in the center of modern ecology for a long time. But, the possible roles of aposematic signals in other ecological contexts have been largely ignored. Here we address the role of aposematic signals in competition between prey and predators. Bumblebees use visual and auditory aposematic signals to warn predators about their defenses. For 2 years, we observed competition for nestboxes between chemically defended insects, Bombus ardens (and possibly also Bombus ignitus), and cavity nesting birds (Parus minor and Poecile varius). Bumblebees settled in 16 and 9 % of nestboxes (in 2010 and 2011 breeding seasons, respectively) that contained bird nests at the advanced stage of nest building or at the stage of egg laying. Presence of bumblebees prevented the birds from continuing the breeding activities in the nestboxes, while insects took over the birds’ nests (a form of kleptoparasitism). Playback experiments showed that the warning buzz by bumblebees contributed to the success in ousting the birds from their nests. This demonstrates that aposematic signals may be beneficial also in the context of resource competition.  相似文献   

2.
The relationship between body mass and reactions speed in response to a predatory threat is poorly understood. Theory predicts that different vigilance patterns are optimal for the detection of different predator types. We suggest that birds of different individual state might also differ in their speed of response dependent upon predator type. We used laboratory trials of wild caught chaffinches (Fringilla coelebs) to determine how between individual differences in chaffinch behaviour and state correlate with latency to react to a ground predator model (domestic cat), thus providing a comparison with previous work in the same model system using aerial predator models. In experiment 1, we observed chaffinch responses to a moving cat model, simulating a stalking predator. In experiment 2, we used a camouflaged cat model simulating an ambush predator. Both experiments show evidence suggesting heavier individuals (which previous literature has linked to impaired flight performance) responded more quickly to the model cat. Heavier individuals also had shorter interscan intervals. In contrast to a previous study, both experiments found individuals with a higher intake rate were not faster at responding to the cat model. In addition, individuals in experiment 1 that head turned more while scanning were slower to respond to the stalking cat model. Our work suggests that although heavier individuals may have impaired escape performance they appear to show behavioural compensation by allocating more attention to anti-predator behaviour and by modifying their interscan intervals, resulting in faster response times to a ground predator. We suggest more experiments investigating response time to different predatory types and explicitly manipulating state to elucidate cause and effect.  相似文献   

3.
Many animals use olfaction to find food and avoid predators, and must negotiate environments containing odors of varying compositions, strengths, and ages to distinguish useful cues from background noise. Temporal variation in odor cues (i.e., “freshness”) seems an obvious way that animals could distinguish cues, yet there is little experimental evidence for this phenomenon. Fresh cues provide a more reliable indicator of donor presence than aged cues, but we hypothesize that the benefits of responding to aged cues depend on whether the cue indicates the proximity of a predator or a potential meal. As prey cannot remain eternally risk averse in response to predator odor, we predict that antipredator responses should diminish as predator cues age. In contrast, animals searching for food should investigate aged prey cues if investigation costs are sufficiently low and the potential benefit (a meal) sufficiently high; thus, we predict that predators will maintain interest in aged prey cues. We tested these ideas using free-ranging rats (Rattus spp.) in two separate experiments; firstly assessing giving-up densities in the presence of predator odor, and secondly examining investigation rates of prey odors. As predicted, giving-up densities dropped once predator odor had aged, but investigation rates remained similar for aged and fresh prey odor. Thus, rats used temporal variation in odor cues to evaluate the cost–benefit relationship of responding to predator and prey odors. We suggest that the ecological significance of variable cue age needs more research and should be considered when interpreting behavioral responses to olfactory information.  相似文献   

4.
Summary Territory owners often respond less aggressively towards intruding neighbors than towards intruding floaters, an observation termed the dear enemy phenomenon. Comparisons of territory owners' responses to intruding neighbors versus their responses to intruding floaters usually have been made for owners of multi-purpose and/or breeding territories. Here, I describe responses of female northern harriers Circus cyaneus (owners) on winter feeding territories towards three types of intruders (female neighbors, female floaters, and male floaters) and show that the dear enemy phenomenon does not occur. Owners' responses towards neighbors were more intense (mostly flights rather than calls) than responses towards female floaters, which in turn were more intense than responses towards male floaters. The greater intensity of owners' responses towards neighbors compared to owners' responses towards male and female floaters may be related to differences in the threat posed by each of the three intruder types in terms of fighting ability (RHP) and potential losses from intrusion. Hence, whether owners respond more aggressively towards neighbors or floaters, and whether the dear enemy phenomenon is observed, may depend upon the relative magnitude of threat presented by neighbors and floaters to owners in terms of fighting ability and potential losses from intrusion.  相似文献   

5.
Insect herbivores often use chemical signals obtained from their food plants to deter enemies and/or attract sexual partners. Do plant-based visual signals act similarly, i.e., repel consumers' enemies and appeal to potential mates? We explored this question using the pollen-feeding beetle Pygopleurus israelitus (Glaphyridae), a specialized pollinator of Anemone coronaria's chemically defended red-morph flowers. We presented dead beetles, which had fed either on anemones or on cat food, to young domestic chicks on a red (anemone-like) or a green (leaf-like) background. We determined whether the beetles' background color and diet affected the chicks' feeding. Cuticle surface extracts from anemone-fed beetles, but not from cat food-fed beetles, contained a secondary metabolite characteristic of anemones. Latencies to the first picking up and consuming of beetles from green backgrounds were shorter than of beetles from red backgrounds. The picking up order of beetles also indicated that prey from the green background was preferred. The chicks retained this preference when re-tested, 3 days later. Handling times of anemone-fed beetles were longer than of cat food-fed beetles. A previous study showed that glaphyrids improve their mate-finding prospects by orienting to large red anemone flowers. Here, female beetles preferred cat food-fed to anemone-fed males in mate-choice assays, thus anemone-derived chemicals did not increase mating success. Instead, the combined results indicate that A. coronaria's red flowers provide a visual signal that may both deter its herbivore's predators and attract its mates. To our knowledge, this is the first experimental evidence for a potential protective role of plant-derived visual signals for insect herbivores/pollinators.  相似文献   

6.
7.
Habituation to nonlethal predation stimuli may provide benefits for animals living in areas with frequent encounters with low-risk predators. On the other hand, individuals can be very consistent in their antipredator responses, with shy individuals showing greater degree of responsiveness than bold individuals. However, the link between habituation or boldness and individual benefits has not been thoroughly investigated. We established whether and how two behavioral components associated with antipredator responses (habituation and boldness, and their interaction) would influence body condition, which is a parameter related to fitness. We conducted an outdoor semi-natural experiment with Iberian wall lizards (Podarcis hispanica). Individual boldness was consistent across contexts, but we did not find any effect of boldness or the interaction between boldness and habituation on body condition. However, those individuals that habituated more readily to a frequent predatory stimulus were able to increase their body condition more relative to lizards that habituated less. This finding highlights the importance of individual differences in behavioral plasticity, which could influence traits related to fitness. Habituation can provide benefits for individuals exposed to low-risk predators; however, individuals more prone to habituation could also experience mortality costs by wrongly habituating to a dangerous predator.  相似文献   

8.
Summary Twenty-five pair of breeding Whitecrowned Sparrows were presented with a live snake and models of a hawk, jay, and junco. Pairs were tested either when the female was brooding eggs, feeding nestlings, or fledglings. It was found that the snake was responded to the most when the pair had nestlings, very little when the female was brooding eggs, and at a moderate level with fledglings. The hawk and jay models were responded to the least with eggs, more with nestlings, and the most with fledglings. The junco model elicited little response. Both the pattern and level of response is influenced by whether or not the stimulus represents an effective predator at the particular stage of the breeding cycle. They also are influenced by the reproductive value of the progeny. A model is suggested that includes two factors: stimulus value and reproductive value. We propose that this combined model is more suitable than a single factor one.  相似文献   

9.
Summary In a laboratory experiment it was shown that piscivorous predators reversed the outcome of competitive interactions between two fish prey species, juveniles of roach (Rutilus rutilus) and perch (Perca fluviatilis), by behaviorally affecting their use of two available habitats, an open water habitat and a structurally complex refuge. The shift in the competitive relationship was the result of predators forcing the juvenile fishes into a prey refuge with high structural complexity. While roach was competitively superior in the unstructured habitat, perch was superior in the structurally complex prey refuge. The reversal in competitive relationship was demonstrated both with respect to foraging rate and growth rate and resulted from the high structural complexity in the prey refuge interfering with the roach's swimming performance. Because survival and growth patterns through the juvenile stages have profound effects on the population/community dynamics of size-structured populations such as those of fish, behaviorally induced changes in competitive ability should have significant implications also at the population and community levels.  相似文献   

10.
农药对鸟类的毒性及其安全性评价   总被引:2,自引:0,他引:2  
阐述了农药对鸟类的急性毒性 ,探讨了农药对不同鸟类的毒性以及不同农药品种、不同农药剂型对鸟类的危害影响 ,并就农药对鸟类的安全性进行了评价  相似文献   

11.
Summary Western meadowlarks (Sturnella neglecta) were played back female calls at various stages of their breeding cycles, to examine how residents might respond to unmated females. Females reacted to intruders with aggressive displays and other responses that varied in intensity (Table 1). Males reacted not only to playback, but also to their mates' responses, often intervening in them. The responses of both males and females, however, were strongly affected by the stage of the breeding cycle at which an intrusion was simulated (Table 3). Females responded to playback most strongly before they began incubating eggs; thereafter, the strength of their responses declined rapidly. Males' also responded less strongly at later stages of their mate's nesting cycle, but the strength of their responses declined less rapidly than did the females'. When the reactions evoked from mated individuals were compared, females responded at least as strongly as their mates, until after their young had fledged (Fig. 3). These seasonal changes in the intensity of females' responses suggest that decisions about how strongly to respond take account of the costs of responding to an intruder, as well as its benefits. Our results suggest that interactions among mated and unmated females may affect the timing of bigamy and, in some cases, its incidence as well.  相似文献   

12.
To father offspring, a male must succeed at two processes of sexual selection: (1) mate with a female and (2) fertilize her eggs. We investigated the relationships between pre- and post-copulatory male traits and female mating responses in wild-captured and laboratory-reared spring field crickets, Gryllus veletis. The phenotype-linked fertility hypothesis suggests that females may receive a direct benefit, enhanced fertilization efficiency, by mating with males that signal attractively. We measured fine-scale components of male acoustic mate attraction signals as well as how much time males spent signalling, measured female preference for males in mating trials and then quantified sperm number and viability. We found no relationship between male signalling traits and male fertility or female preference, providing no evidence for the phenotype-linked fertility hypothesis. We also found no difference in sperm metrics between wild-captured and laboratory-reared males. While female crickets may receive benefits by choosing males based on acoustic signal characteristics, whether the benefits are a result of genetic quality, seminal fluid contents or some other male trait remains unknown.  相似文献   

13.
Toxicity assays of ladybirds using natural predators   总被引:1,自引:0,他引:1  
Nestling blue titsParus caeruleus L. were given diets containing homogenized ladybirds, to assess the effects of their chemical defences. The 2spot, 10spot and water ladybirds produced no apparent toxic effects when small numbers were given at regular intervals.The pine and kidney-spot ladybirds slightly inhibit growth and may be toxic to very young nestlings. The Water ladybird is extremely distasteful to this predator, despite its lack of toxicity. The results are discussed with reference to the proposed Müllerian and Batesian mimetic relationships between the ladybird species.  相似文献   

14.
Vonesh JR  Warkentin KM 《Ecology》2006,87(3):556-562
Predation risk can cause organisms to alter the timing of life history switch points. Theory suggests that increased risk in an early life stage should select for switching earlier and smaller, while increased risk in the subsequent stage should select for switching later and larger. This framework has frequently been applied to metamorphosis in amphibians, with mixed results. Few studies examining the effect of larval predation risk on metamorphosis have observed the predicted pattern, and no studies, to our knowledge, have examined the effect of increased risk during and after metamorphosis on the timing of this switch point. Here we examine the effect of larval and post-metamorphic predation risk on metamorphosis in the red-eyed treefrog, Agalychnis callidryas. We raised tadpoles in the presence or absence of cues from caged water bugs fed larvae and cues from spiders fed emerging metamorphs. Water bugs are effective larval predators, while spiders are poor larval predators but prey on metamorphs. Furthermore, since spiders forage on the water surface it is possible that tadpoles could assess future risk from this predator. Predators induced opposite shifts in life history. Tadpoles emerged smaller and less developed in response to water bugs, but later and larger in response to spiders. Interestingly, predator effects on larval duration were not independent; tadpoles delayed emerging in response to spiders, but only in the absence of water bugs.  相似文献   

15.
Summary Belding's ground squirrels (Spermophilus beldingi) give acoustically distinct alarm calls to aerial and terrestrial predators. The animals typically give multiple-note trills to predatory mammals, and single-note whistles to flying hawks. During a 9-year study of free-living S. beldingi at Tioga Pass, California, the adaptive significance of the whistle call was investigated. Data were gathered on 664 ground squirrel-hawk interactions, most of which were induced by flying trained raptors over individually marked study animals of known sex and age. The sight of a flying hawk and the sound of whistles stimulated widespread calling and running to shelter by the ground squirrels (Fig. 1). Wild raptors were rarely successful at capturing the rodents once a whistle had been given, and fewer callers than noncallers were killed (Table 1). Individuals of both sexes and all ages whistled equally often (Fig. 4), and females' tendencies to whistle were not affected by the presence of relatives, including offspring (Fig. 5). The most frequent callers were animals in exposed positions: far from cover and close to the predatory bird (Table 2). Taken together the data suggest that unlike trills, which increase vulnerability to terrestrial predators (Table 1) and function to warn relatives, whistle directly benefit callers by increasing their chances of escaping from hawks.  相似文献   

16.
Summary The responses of individually marked pikas (Ochotona princeps) to terrestrial predators were investigated in 1980 and 1981 in the Rocky Mountains of Colorado. Pikas uttered short call vocalizations in a variety of contexts: preceding or following an individual's movement, and in response to conspecifics, other nonpredaceous mammals and predators. Adult pikas apparently discriminated contexts in which predators were present by short calling more frequently and for longer duration compared with calling in nonpredator contexts. Short calls uttered by juveniles were similar in all contexts.Adults responded differently to two types of terrestrial predators: weasels and pine martens. Pikas called less frequently in response to weasels than to martens and avoided weasels more often than martens. They delayed the initiation of calling following the first sighting of a weasel more often than to martens. Weasels were determined to be more effective predators of pikas than martens, and these asymmetries in behavior and alarm vocalizations may indicate that responses reduce an individual's risk of predaton by weasels.Both male and female pikas called in response to predators, and residents called more often than nonresidents. The possible function of predator-related vocalization in pikas is discussed. It is suggested that calls to predators may function to warn local residents, which in pikas are usually closely related.  相似文献   

17.
随着森林生态系统的正向演替,植物物种多样性、群落结构、生产力以及土壤条件均会发生显著的变化,这些变化对菌根类型和多样性会产生不同程度的影响。为了探讨群落结构和功能的变化对菌根资源可能产生的影响,选择季风常绿阔叶林及其演替系列上的代表性森林生态系统为对象,对菌根化根系、菌根类型和菌根真菌孢子密度进行调查,并结合已有的群落信息和土壤养分状况,分析在森林演替过程中菌根资源的变化情况和可能的影响因素。结果表明:季风常绿阔叶林各演替阶段的森林生态系统中菌根化比例接近70%,但不同演替阶段森林的优势菌根类型存在明显的差异。处于演替初期的马尾松(Pinus massoniana)林以丛枝菌根为主,占菌根总数的78%;演替中期的针阔叶混交林中的外生菌根占有绝对优势,占75%,是丛枝菌根的3倍;演替顶级的季风常绿阔叶林中的外生菌根和丛枝菌根的比例相当。马尾松林的菌根真菌孢子密度最高,每20 g风干土壤中的孢子数量高达2 925个,是针阔叶混交林的2.5倍,季风常绿阔叶林的2倍。演替系列上的森林生态系统的菌根类型的差异与植物物种多样性和群落结构,尤其是林下的灌木、草本层密度存在一定的相关性,同时也受土壤养分状况的影响。马尾松林具有较丰富的草本植物和较高的草本层密度,并且该森林的土壤相对贫瘠,这些条件都有利于丛枝菌根真菌侵染草本植物的根系形成丛枝菌根并产生大量孢子。针阔叶混交林中外生菌根的优势主要受该森林中外生菌根植物在群落组成上的绝对优势影响。季风常绿阔叶林的物种丰富,群落结构复杂,因此该森林呈现了两种类型菌根优势相当的现象。该文的结果表明,随着季风常绿阔叶林演替的进行,菌根资源在类型上会出现较大的分异,而这种变化受植物物种数量、群落结构的影响,与土壤养分状况存在一定的关系,并且不同演替阶段森林生态系统影响菌根组成的因素存在差异。  相似文献   

18.
The effectiveness of generalist predators in biological control may be diminished if increased availability of alternative prey causes individual predators to decrease their consumption of crop pests. Farming practices that enhance densities of microbidetritivores in the detrital food web can lead to increased densities of generalist predators that feed on pest species. The ability to predict the net biocontrol impact of increased predator densities depends upon knowing the extent to which individual predators may shift to detrital prey and feed less on crop pests when prey of the detritus-based food web are more abundant. We addressed this question by comparing ratios of stable isotopes of carbon (delta13C) and nitrogen (delta15N) in generalist ground predators and two types of prey (crop pests and microbidetritivores) in replicated 8 x 8 m cucurbit gardens subjected to one of two treatments: a detrital subsidy or no addition of detritus (control). Small sheet-web spiders (Linyphiidae) and small wolf spiders (Lycosidae) had delta13C values similar to those of Collembola in both the detrital and control treatments, indicating that small spiders belong primarily to the detrital food web. In control plots the larger generalist predators had delta13C values similar to those of the major insect pests, consistent with their known effectiveness as biocontrol agents. Adding detritus may have caused delta13C of one species of large wolf spider to shift toward that of the microbi-detritivores, although evidence is equivocal. In contrast, another large wolf spider displayed no shift in delta13C in the detrital treatment. Thus, stable isotopes revealed which generalist predators will likely continue to feed on pest species in the presence of greater densities of alternative prey.  相似文献   

19.
Antipredator behavior includes several qualitatively distinct activities, but few studies have determined the degree to which these activities are independent. If behaviors are not independent, then the nature of the relationship would illustrate potential performance constraints. We studied crimson rosellas (Platycercus elegans) and first focused on acoustic predator discrimination. We measured time allocation before and after playback of one of three experimental treatments (peregrine falcons—Falco peregrinus, wedge-tailed eagles—Aquila audax, and crimson rosellas) to determine whether or not rosellas discriminated predators from non-predators, and specifically whether or not they discriminated large from small predators. We then focused on the decision to flee. We experimentally approached subjects and measured the distance at which they oriented to us (alert distance) and the distance at which they fled (flight initiation distance; FID). We found that rosellas could distinguish among predators; however, there was no effect on general wariness as measured by FID. These two processes of antipredator behavior may, thus, be independent.  相似文献   

20.
Predators hunting for cryptic prey use search images, but how do prey search for cryptic predators? We address this question using the interaction between bumblebees and the colour-changing crab spider Misumena vatia which can camouflage itself on some flowers. In laboratory experiments, we exposed bumblebees to an array of flowers concealing robotic predators (a trapping mechanism combined with a 3D life-sized model of a crab spider or a circle). Groups of bees were trained to avoid either cryptic yellow spiders or yellow circles (equal area to the spiders) or remained predator naive. The bees were then exposed to a new patch of white flowers containing some cryptic predators (either white spiders, white circles or a mixture of both). We monitored individual foraging choices and used a 3D video tracking system to quantify the bees’ flight behaviour. The bees trained to avoid cryptic spiders, chose 40% fewer spider-harbouring flowers than expected by chance, but were indifferent to cryptic circles. They also aborted a higher proportion of landings on flowers harbouring spiders, ultimately feeding from half as many ‘dangerous’ flowers as naive bees. Previous encounters with cryptic spiders also influenced the flight behaviour of bees in the new flower patch. Experienced bees spent more time inspecting the flowers they chose to reject (both with and without concealed spiders) and scanned from side to side more in front of the flowers to facilitate predator detection. We conclude that bees disentangle shape from colour cues and thus can form a generalised search image for spider shapes, independent of colour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号