共查询到20条相似文献,搜索用时 0 毫秒
1.
Parasitism is hypothesized to reduce reproductive success in heavily parasitized males because females may preferentially mate with less parasitized males (parasite-mediated sexual selection) or parasites may compromise male competitiveness. In marine systems, this hypothesis is largely unexplored. This paper provides the first confirmed record of a copepod ectoparasite (Caligus buechlerae Hewitt 1964) on the common triplefin (Forsterygion lapillum) and evaluates the hypothesis that males parasitized with C. buechlerae experience lower reproductive success than unparasitized males (as determined by the presence and area of eggs within male nests). We found that 38 % of males we surveyed were infected with at least one C. buechlerae, with a median of two individuals per infected male. About 32 % of males were defending eggs, with 62.5 % of those males infected with at least one parasite. Males of greater total length (TL) were both more likely to be infected and more likely to be defending eggs. However, when statistically accounting for the effects of TL, parasite infection had no effect on the probability of defending eggs, or the average surface area of eggs when present. Positive covariation in fish length, the presence of eggs and parasite infection observed here potentially suggest that the importance of parasitic infection on reproductive success may depend upon the strength of selection for larger male body size. Our study is one of the few studies to investigate the effects of ectoparasites on reproductive success in reef fish and also provides a quantitative measure of infection for a widespread species within New Zealand. 相似文献
2.
The diurnal use of space by 25 resident species of coral reef fishes was investigated along three depth (10 to 40 m) transects over an 18 month period. Emphasis was placed on the small, cryptic members of the communities. Three aspects of the use of space — temporal utilization, occupancy and time span — are defined and quantified for each of the species. In addition, an estimate of the diurnal home range volume of each species is provided. The territorial pomacentrids showed the highest level of temporal utilization, holding the same territories throughout the study. The consistent presence of the holocentrid species within the reef infrastructure had the potential to influence the space available to other species. Some species residing in tube-worm holes and sponges also exhibited constant use of space. 相似文献
3.
The cryptobenthic reef fish communities from four microhabitats at Orpheus Island, central Great Barrier Reef are described. Eighty-four 0.4m2 samples yielded a total of 368 individuals from 42 species in eight families, with a mean density of 11 individuals m–2 (±1.7SE) and 2.9 species 0.4 m–2 (±0.2SE). Caves contained the highest number of both individuals (120) and species (26), followed by sand/rubble, soft coral, and open reefs. Microhabitat associations included cave and soft coral specialists. Site fidelity in 71 tagged individuals of 4 species was high, with a mean recapture rate of 53% (±8.4SE) remaining within the ~0.4 m2 sampling area after a 48-h period. Behavioural observations also reflect this limited movement, with the dominant mode of behaviour in 7 species being a motionless state (67.5% ±11.6SE), followed by feeding (21.8% ±8.7SE), hiding (6.3% ±1.6SE), and swimming (4.4% ±1.5SE). Two distinct behavioural groups are identified: (1) sedentary forms, characterised by long periods of immobility (5 species); and (2) winnowers, characterised by long feeding bouts (2 species). The fine-scale partitioning of microhabitats, restricted home ranges, and sedentary behaviour of many cryptobenthic reef fish species suggest that this reef fish community exhibits similar patterns of habitat utilisation to their larger reef-fish counterparts, but at a much finer scale. 相似文献
4.
Coupled bio-physical models of larval dispersal predict that the Costa Rica–Panama (CR–PAN) reefs should constitute a demographically
isolated region in the western Caribbean. We tested the hypothesis that CR–PAN coral reef fish populations would be isolated
from Mesoamerican Barrier Reef System (MBRS) populations. To test that, we assessed population genetic structure in bicolor
damselfish (Stegastes partitus) from both regions. Adult fish were genotyped from five reefs in CR–PAN and from four reefs along the MBRS at 12 microsatellite
loci. Between-region F
ST (F
ST = 0.0030, P < 0.005) and exact test (x
2 = 74.34, df = 18, P < 0.0001) results indicated that there is weak but significant genetic differentiation between regions, suggesting some restriction
in connectivity along the Central American coastline, as predicted by bio-oceanographic models. Additionally, there is among-site
genetic structure in the CR–PAN region, relative to the MBRS and between regions, suggesting higher self-recruitment within
CR–PAN. This finding may be explained by differences in habitat characteristics. 相似文献
5.
Toward pristine biomass: reef fish recovery in coral reef marine protected areas in Kenya. 总被引:2,自引:0,他引:2
Tim R McClanahan Nicholas A J Graham Jacqulyn M Calnan M Aaron MacNeil 《Ecological applications》2007,17(4):1055-1067
Identifying the rates of recovery of fish in no-take areas is fundamental to designing protected area networks, managing fisheries, estimating yields, identifying ecological interactions, and informing stakeholders about the outcomes of this management. Here we study the recovery of coral reef fishes through 37 years of protection using a space-for-time chronosequence of four marine national parks in Kenya. Using AIC model selection techniques, we assessed recovery trends using five ecologically meaningful production models: asymptotic, Ricker, logistic, linear, and exponential. There were clear recovery trends with time for species richness, total and size class density, and wet masses at the level of the taxonomic family. Species richness recovered rapidly to an asymptote at 10 years. The two main herbivorous families displayed differing responses to protection, scarids recovering rapidly, but then exhibiting some decline while acanthurids recovered more slowly and steadily throughout the study. Recovery of the two invertebrate-eating groups suggested competitive interactions over resources, with the labrids recovering more rapidly before a decline and the balistids demonstrating a slower logistic recovery. Remaining families displayed differing trends with time, with a general pattern of decline in smaller size classes or small-bodied species after an initial recovery, which suggests that some species- and size-related competitive and predatory control occurs in older closures. There appears to be an ecological succession of dominance with an initial rapid rise in labrids and scarids, followed by a slower rise in balistids and acanthurids, an associated decline in sea urchins, and an ultimate dominance in calcifying algae. Our results indicate that the unfished "equilibrium" biomass of the fish assemblage > 10 cm is 1100-1200 kg/ha, but these small parks (< 10 km2) are likely to underestimate pre-human influence values due to edge effects and the rarity of taxa with large area requirement, such as apex predators, including sharks. 相似文献
6.
We investigated spatial patterns of synchrony among coral reef fish populations and environmental variables over an eight-year period on the Great Barrier Reef, Australia. Our aims were to determine the spatial scale of intra- and interspecific synchrony of fluctuations in abundance of nine damselfish species (genus Pomacentrus) and assess whether environmental factors could have influenced population synchrony. All species showed intraspecific synchrony among populations on reefs separated by < or =100 km, and interspecific synchrony was also common at this scale. At greater spatial scales, only four species showed intraspecific synchrony, over distances ranging from 100-300 km to 500-800 km, and no cases of interspecific synchrony were recorded. The two mechanisms most likely to cause population synchrony are dispersal and environmental forcing through regionally correlated climate (the Moran effect). Dispersal may have influenced population synchrony over distances up to 100 km as this is the expected spatial range for ecologically significant reef fish dispersal. Environmental factors are also likely to have synchronized population fluctuations via the Moran effect for three reasons: (1) dispersal could not have caused interspecific synchrony that was common over distances < or =100 km because dispersal cannot link populations of different species, (2) variations in both sea surface temperature and wind speed were synchronized over greater spatial scales (>800 km) than fluctuations in damselfish abundance (< or =800 km) and were correlated with an index of global climate variability, the El Ni?o-Southern Oscillation (ENSO), and (3) synchronous population fluctuations of most damselfish species were correlated with ENSO; large population increases often followed ENSO events. We recorded regional variations in the strength of population synchrony that we suspect are due to spatial differences in geophysical, oceanographic, and population characteristics, which act to dilute or enhance the effects of synchronizing mechanisms. We conclude that synchrony is common among Pomacentrus populations separated by tens of kilometers but less prevalent at greater spatial scales, and that environmental variation linked to global climate is likely to be a driving force behind damselfish population synchrony at all spatial scales on the Great Barrier Reef. 相似文献
7.
Douglas J. McCauley Fiorenza Micheli Hillary S. Young Derek P. Tittensor Daniel R. Brumbaugh Elizabeth M. P. Madin Katherine E. Holmes Jennifer E. Smith Heike K. Lotze Paul A. DeSalles Suzanne N. Arnold Boris Worm 《Marine Biology》2010,157(12):2739-2750
Large animals are severely depleted in many ecosystems, yet we are only beginning to understand the ecological implications of their loss. To empirically measure the short-term effects of removing large animals from an ocean ecosystem, we used exclosures to remove large fish from a near-pristine coral reef at Palmyra Atoll, Central Pacific Ocean. We identified a range of effects that followed from the removal of these large fish. These effects were revealed within weeks of their removal. Removing large fish (1) altered the behavior of prey fish; (2) reduced rates of herbivory on certain species of reef algae; (3) had both direct positive (reduced mortality of coral recruits) and indirect negative (through reduced grazing pressure on competitive algae) impacts on recruiting corals; and (4) tended to decrease abundances of small mobile benthic invertebrates. Results of this kind help advance our understanding of the ecological importance of large animals in ecosystems. 相似文献
8.
The identity of an individual patch as a source or a sink within a metapopulation is a function of its ability to produce individuals and to disperse them to other patches. In marine systems patch identity is very often defined by dispersal ability alone—upstream patches are sources—while issues of variable habitat quality (which affects local production) are ignored. This can have important ramifications for the science of marine reserve siting. This study develops a spatially explicit source–sink metapopulation model for reef fish and uses it to evaluate the relative importance of connectivity versus demography and how this depends upon the level of local larval retention and the strength of density-dependent recruitment. Elasticity analyses indicated that patch contribution (source or sink) was more sensitive to demographic parameters (particularly survival) than connectivity and this effect was conserved even under strong levels of density-dependence and was generally strengthened as local retention increased. Variability in the relationship between parameter elasticity and local retention was shown to be dependent upon the magnitude of connectivity for an individual patch relative to a critical connectivity value. The proportion of larvae lost due to transport processes was an important parameter which directly affected the magnitude of this critical connectivity value. Patches with connectivity values less than the critical value contributed to the metapopulation largely via production (i.e., local demographics most important). As local retention increased, so did the importance of demographic parameters in these patches. Patches with connectivity values greater than the critical value contributed largely via dispersal of larvae and thus the importance of local demographics decreased as local retention increased. 相似文献
9.
Macroalgal fields are a feature of the shallow tropical benthos, yet their importance for coral reef fish population dynamics remains poorly understood. The abundance of fish recruits was recorded using underwater visual census at six macroalgal and 11 coral reef sites in the Montebello and Barrow Islands. Surveys identified 6,935 individual recruit fish from 105 species, 54 genera and 20 families. Of these, 1,401 recruits from 48 species, 31 genera and 14 families were observed in macroalgal sites. Sixteen of the 105 recruit species (15.2 %) were observed exclusively at macroalgal sites. Forty-two (87.5 %) of these species have been observed as adults on adjacent coral reefs. Species composition of fish recruits differed significantly between the two habitats. Corallivore, small omnivore and zooplanktivore recruits had significantly higher numbers in the coral sites, while the results clearly demonstrate that juveniles, within the genera Lethrinus and Choerodon, as well as large algal croppers, are predominantly found at macroalgal (74–100 %) rather than coral-dominated sites. High-canopy macroalgae cover was positively correlated with abundance of these taxa, particularly Lethrinids (r 2 = 0.40). This study is the first to highlight the important attributes of tropical macroalgal fields and suggests that they have a similar role to seagrass meadows as essential juvenile habitat, thus warranting greater attention in conservation planning and ecological studies. 相似文献
10.
A simple field technique to obtain a gross estimate of the surface area of a quadrat on a coral reef is described. This measure, termed the substrate rugosity index, was determined, in conjunction with two other substrate variables (vertical relief and coral species richness), in a series of 4 quadrats (10 to 40 m depth) along 4 transects. The mean substrate rugosity and vertical relief of a quadrat were highly correlated. A correlation analysis was made of the substrate variables and several reef fish community parameters (species richness, number of fishes and diversity). Species richness was highly correlated with substrate rugosity. This relationship was tested in two experimental quadrats and the results were generally in accord with those predicted. Stratification of the fish communities by body size revealed that the correlation with substrate rugosity was scale-dependent. The fish community parameters were poorly correlated with percentage substrate cover by corals (ramose and glomerate) and by sand. A significant area effect was determined for two species of sand-dwelling goby. 相似文献
11.
Summary We show how mate limitation appears to be critical in determining whether or not males exercise mate choice among available females. Thalassoma bifasciatum is a Caribbean reef fish with two distinct mating patterns: group-spawning and pair-spawning. In both mating systems, female fecundity is variable and size dependent, and female availability is high. However, sperm competition among group-spawning males apparently limits the number of effective matings in which a male may engage, whereas territorial pair-spawning males have little or no such limitation. Group-spawning males should be discriminating in their choice of mates and our data confirm this: there is strong evidence for assortative mating in group-spawns, with more large males joining in mating groups around large females. In contrast, pair-spawning males show no indication of mate preferences, and spawn with all females who arrive at their territories. 相似文献
12.
Few time series collections have been made of the larval ichthyofauna in waters directly above shallow coral reefs. As a result, relatively little is known regarding the composition and temporal dynamics of larval fish assemblages in shallow-reef waters, particularly those near a major western boundary current. We conducted a series of nightly net tows from a small boat over a shallow reef (Pickles Reef) along the upper Florida Keys during four new moon and three third-quarter moon periods in July (two new moons), August, and September 2000. Replicate tows were made after sunset at 0–1 m and at 4–5 m depth to measure the nightly progression in community composition, differences in depth of occurrence, and abundance and diversity with lunar phase. A total of 66 families was collected over the 3-month period, with a mean (±SE) nightly density of 23.7±2.1 larvae per 100 m 3 and diversity of 24.2±0.9 taxa per tow. A total of 28.8% of the catch was composed of small, schooling fishes in the families Atherinidae, Clupeidae, and Engraulidae. Of the remaining catch, the top ten most abundant families included reef fishes as well as mangrove and oceanic taxa (in descending order): Scaridae, Blennioidei (suborder), Gobiidae, Paralichthyidae, Lutjanidae, Haemulidae, Labridae, Gerreidae (mangrove), Balistidae, and Scombridae (oceanic). These near-reef larval fish assemblages differed substantially from those collected during previous offshore collections. Taxa such as the Haemulidae were collected at a range of sizes and may remain nearshore throughout their larval period. Overall, the abundance and diversity of taxa did not differ with depth (although within-night vertical migration was evident) or with lunar phase. Temporal patterns of abundance of larval fish families clustered into distinct groups that in several cases paralleled family life-history patterns. In late July, a sharp shift in larval assemblages signaled the replacement of oceanic water with inner shelf/bay water. In general, the suite and relative abundance of taxa collected each night differed from those collected on other nights, and assemblages reflected distinct nightly events as opposed to constant or cyclical patterns. Proximity to the Florida Current likely contributes to the dynamic nature of these near-reef larval assemblages. Our results emphasize the uniqueness of near-reef larval fish assemblages and point to the need for further examination of the biophysical relationships generating event-related temporal patterns in these assemblages. 相似文献
13.
Two complete collections of the fishes residing on an isolated coral patch reef ( 1500 m2) at Oahu, Hawaii, were made 11 years apart. Of the 112 species of fishes in both collections combined, only 40% were in common, but these made up more than 85% of the wet biomass in each collection. The two assemblages of fishes were similar in trophic structure and standing crop. Many coral reef fish communities are dominated by carnivorous forms. In the present study, planktivorous fishes were the most important trophic group in the community; this was related to abundant zooplankton resources. Following the second collection in 1977, recolonization by fishes was followed for 1 year. Recolonization proceeded rapidly and was primarily by juvenile fishes well beyond larval metamorphosis. Within 6 months of the second collection, the trophic structure had been re-established. The MacArthur-Wilson model of insular colonization described the recolonization process and predicted an equilibrium situation in less than 2 years. The recolonization data suggested that chance factors may explain the colonization process on a small scale, but a relatively deterministic pattern emerged when considering the entire reef. Thus, at the community level the fishes are a persistent and predictable entity. 相似文献
14.
15.
Temporal variance in species abundance, a potential driver of extinction, is linked to mean abundance through Taylor's power law, the empirical observation of a linear log-log relationship with a slope between 1 and 2 for most species. Here we test the idea that the slope of Taylor's power law can vary both among species and spatially as a function of habitat area and isolation. We used the world's most extensive database of coral reef fish communities comprising a 15-year series of fish abundances on 43 reefs of Australia's Great Barrier Reef. Greater temporal variances were observed at small and isolated reefs, and lower variances at large and connected ones. The combination of reef area and isolation was associated with an even greater effect on temporal variances, indicating strong empirical support for the idea that populations on small and isolated reefs will succumb more frequently to local extinction via higher temporal variability, resulting in lower resilience at the community level. Based on these relationships, we constructed a regional predictive map of the dynamic fragility of coral reef fish assemblages on the Great Barrier Reef. 相似文献
16.
Safety in numbers and the spatial scaling of density-dependent mortality in a coral reef fish 总被引:2,自引:0,他引:2
In coral reef fishes, density-dependent population regulation is commonly mediated via predation on juveniles that have recently settled from the plankton. All else being equal, strong density-dependent mortality should select against the formation of high-density aggregations, yet the juveniles of many reef fishes aggregate. In light of this apparent contradiction, we hypothesized that the form and intensity of density dependence vary with the spatial scale of measurement. Individual groups might enjoy safety in numbers, but predators could still produce density-dependent mortality at larger spatial scales. We investigated this possibility using recently settled juvenile bluehead wrasse, Thalassoma bifasciatum, a small, aggregating reef fish. An initial caging experiment demonstrated that juvenile bluehead wrasse settlers suffer high predation, and spatial settlement patterns indicated that bluehead wrasse juveniles preferentially settle in groups, although they are also found singly. We then monitored the mortality of recently settled juveniles at two spatial scales: microsites, occupied by individual fish or groups of fish and separated by centimeters, and sites, consisting of approximately 2400-m2 areas of reef and separated by kilometers. At the microsite scale, we measured group size and effective population density independently and found that per capita mortality decreased with group size but was not related to density. At the larger spatial scale, however, per capita mortality increased with settler density. This shift in the form of density dependence with spatial scale could reconcile the existence of small-scale aggregative behavior typical of many reef fishes with the population-scale density dependence that is essential to population stability and persistence. 相似文献
17.
David A. Feary 《Marine Biology》2007,153(2):153-161
Ecological theory predicts that habitat generalists are less prone to decline or extinction in response to habitat disturbance
than habitat specialists. One mechanism that may afford habitat generalists greater persistence is their ability to successfully
emigrate from degrading environments. This study compared the response of habitat specialist and generalist reef fish species
to live coral disturbance. In replicate coral colonies, live coral was experimentally degraded (low, medium and high coral
loss). Species continued residence within the colonies was then surveyed over time. In addition, the ability of habitat generalist
and specialist species to migrate between degraded (100% loss) and live coral colonies was compared. Habitat specialists exhibited
a higher propensity to remain in colonies with low levels of coral loss. However, there was no significant difference between
specialist and generalist species in continued residence in habitats with either medium or high levels of coral loss; both
functional groups showed low levels of residence. In terms of migration success, generalists moved further than specialists
and showed higher levels of successful migration over the majority of distances examined. The influence of habitat specialization
on the behavioral response to coral loss may be a useful predictor of changes to coral reef fish communities in response to
coral disturbance. 相似文献
18.
J. A. Hansen D. W. Klumpp D. M. Alongi P. K. Dayton M. J. Riddle 《Marine Biology》1992,113(3):363-372
Coral reef lagoons have generally been regarded as sinks for organic matter exported from more productive reef front and reef flat zones. The object of this study was to examine the importance of detritus as a carbon source for benthic communities in the lagoon at Davies Reef, central Great Barrier Reef. We report the results of seasonal measurements, taken in 1986, of bacterial numbers and production, protozoan numbers, community primary production and respiration in the sediments of Davies Reef lagoon. Deposition rates of organic matter in the lagoon were also measured. Deposition rates (±1 SE) of carbon ranged from 9.2 (±1.5) to 140.7 (±10.3) mg Cm-2d-1. Deposition rates were highest in winter and spring, lowest in summer. Rates of bacterial production ranged from 4.7 (±0.2) pmol thymidine incorporated g-1 dry wt (DW) h-1 in winter to 23.5 (±1.0) pmol thymidine incorporated g-1 DW h-1 in spring. The number of ciliates ranged from 65 (±10) to 356 (±50) cm-3 through the year and the number of large (20 m) flagellates from 38 (±7) to 108 (±16) cm-3. There were no clear relationships between the sediment organic content, detrital input or temperature and the rates of bacterial processes, community metabolism or the standing stocks of microbes in the lagoon. The relative significance of detritus and in situ primary production as sources of carbon in the lagoon varied with season. In summer and autumn, detritus was less important than primary production as a source of carbon (4 to 27% of total carbon input). In winter and spring, detritus input became more significant in supply of carbon to the sediments (32 to 67% of the total carbon input). The lagoon does not simply act as a sink for carbon exported from the reef flat. We calculate that only 5% of the net reef flat primary production reached lagoon sediments in summer, but nearly 40% in winter. 相似文献
19.
M. J. Riddle D. M. Alongi P. K. Dayton J. A. Hansen D. W. Klumpp 《Marine Biology》1990,104(1):109-118
Coral reef lagoons are generally regarded as zones of net heterotrophy reliant on organic detritus generated in more productive parts of the reef system, such as the seaward reef flat. The abundance and biomass of sediment infauna were measured seasonally for one year (1986) within the lagoon of Davies Reef, central Great Barrier Reef, to test the hypothesis that macrofaunal biomass and production of coral reef lagoons would decrease with distance from the reef flat and would change seasonally. In general, there were no simple relationships between infaunal standing stock or production and distance from the reef flat or season. Bioturbation by callianassid shrimps negatively affected the abundance of smaller infauna, suggesting a community limited by biogenic disturbance rather than by supply of organic material. Polychaetes and crustaceans were dominant amongst the smaller infauna (0.5 to 2mm) while larger animals (> 2 mm) were mostly polychaetes and molluscs. Mean biomass of infauna at both sites and all seasons was 3 181 mg C m?2. The smaller animals (0.5 to 2 mm) contributed about 40% of total macrofaunal respiration and production although they represented only 15% of the total macrofaunal biomass. The biomass of macrofauna was about equal to that of the bacteria and meiofauna, while respiration represented 10 to 20% of total community respiration. Consumption by macrofauna accounts for only 3 to 11% of total organic inputs to sediment, with a further 14 to 17% being lost by macrofaunal respiration. 相似文献
20.
Experimental etching with hydrofluoric acid indicated that silica deposition occurs in a recognizable pattern in common sponge microscleres. The postdepositional alteration of these spicules has previously been generally unrecognized or misinterpreted in the literature. Early stages of postdepositional etching of sponge spicules were observed in the acid insoluble fraction of sediments from the West Atlantic barrier reef near Carrie Bow Cay, Belize. Preliminary data on silica distribution in the Belize barrier reef show that concentrations in fine sediment (<0.25 mm) increase landward of the main reef tract. Sponge spicules are the main component of particulate silica in sediments of the reef and fore-reef where sponge populations abound, whereas grains prevail in the back-reef lagoon deposits. Recycling of locally dissolved silica appears to be important for the growth of many off-shore reef sponges. 相似文献