首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Different controlled release formulations (CRFs) of isoproturon, imidacloprid and cyromazine have been studied to contribute to diminish, somehow, the problems related to the application of conventional formulations. The alginate-based CRFs were based on sodium alginate (1.90%), Technical grade (TG) isoproturon or imidacloprid (1.20%), natural bentonite (3.30%), and water (93.6%), and the lignin-based CRF was based on kraft lignin (50.0%) and TG cyromazine (50.0%). The mobility of non-formulated TG pesticides and CRFs were compared by using soil columns. The use of CRFs retard release and reduce the presence of pesticides in the leachate and, moreover, the pesticides stay in the soil longer. Sorption capacity of the soil for pesticides was measured using batch experiments. The results obtained (11.67 mg kg? 1 for isoproturon, 3.17 mg kg? 1 for imidacloprid and 0.63 mg kg?1 for cyromazine) were in agreement with those obtained under dynamic conditions.  相似文献   

2.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg(-1) degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg(-1) application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to >70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of (14)C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative (14)CO(2) was less than 1.5% of applied (14)C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

3.
Laboratory studies were conducted to determine the sorption behaviour of six commonly used pesticides (acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon) on Hungarian brown forest soil with clay alluviation (Luvisol) using the batch equilibrium technique. The sorption isotherms could be described by the Freundlich equation in non-linear form (n < 1) for all compounds, however in case of diazinon using the extended Freundlich equation proved to be a better approach. The adsorption constant related soil organic carbon content (Koc) calculated from Freundlich equation were 314 for acetochlor, 133 for atrazine, 2805 for carbendazim, 1589 for diazinon, 210 for imidacloprid and 174 for isoproturon. The octanol-water partition coefficients (Pow), which can be a useful parameter to predict of adsorption behaviour of a chemical on soil, and dissociation coefficients of these pesticides were calculated based on the chemical structure of them using a computerized expert system. The octanol-water partition coefficients were determined experimentally from high performance liquid chromatographic parameters as well. Good agreement was observed between experimental and the computer expert system estimated data. Computer estimated log Pow values ranged 0.5 and 3.86 for the examined pesticides, with imidacloprid and diazinon being the least and most hydrophobic respectively. Experimentally determined logPow ranged between 0.92 and 3.81 with the same tendency. It can be concluded that the Freundlich adsorption constants (Kf) are slightly related to the octanol-water partition coefficients of investigated chemicals, nevertheless no close correlation could be established because of the influence of further characteristics of solutes and soil.  相似文献   

4.
The herbicides chloridazon and metribuzin, identified as groundwater pollutants, were incorporated in lignin-based granules with different sizes to obtain controlled release formulations (CRFs) and reduce water pollution risk. Kinetics release tests in water and soil showed that the release rate of both from CRFs diminished in comparison to technical products. A linear correlation was obtained between the time taken for 50% of the active ingredient to be released (T50) into water and granule size of the CRFs. Besides, a linear correlation was reached between T50 values in water and soil. Mobility experiments carried out in calcareous soil show that the use of lignin-based CRFs reduces the presence of both herbicides in the leachate compared to the technical grade products. The set of experiments developed in this research can be useful to design, prepare and evaluate formulations with CR properties which can reduce the pollution derived from the use of herbicides.  相似文献   

5.
Controlled release (CR) formulations of imidacloprid (1-(6 chloro-3-pyridinyl methyl)-N- nitro imidazolidin-2- ylideneamine) were prepared using novel amphiphilic polymers synthesized from polyethylene glycol and aliphatic diacids employing encapsulation technique. The bioefficacy of the prepared CR formulations was evaluated against major pests of soybean, namely stem fly, Melanagromyza sojae Zehntmer and white fly, Bemisia tabaci Gennadius along with a commercial formulation at the experimental farm of Indian Agricultural Research Institute (IARI), New Delhi during kharif 2009 and 2010. Most of the CR formulations of imidacloprid gave significantly better control of the pests compare to its commercial formulations, however the CR formulations, Poly [poly (oxyethylene-1000)-oxy suberoyl] amphiphilic polymer based formulation performed better over others for controlling of both stem fly incidence and Yellow Mosaic Virus (YMV) infestation transmitted by white fly. Some of the developed CR formulations recorded higher yield over commercial formulation and control. Nodulation pattern of soybean was not affected due to treatment of CR and commercial formulations of imidacloprid. Also the residues of imidacloprid in seed and soil at harvest were not detectable for both CR and commercial formulations.  相似文献   

6.
A high-performance liquid chromatography method with diode-array detection (HPLC-DAD) is described for the determination of three neonicotinoid insecticides imidacloprid, thiacloprid, and thiamethoxam in soil and water. The soil samples were extracted with acetonitrile, while the water samples were extracted using C18 cartridges. The mean recoveries plus standard deviations for spiked soil samples were 82 +/- 4.2% for thiamethoxam, 99 +/- 4.2% for imidacloprid and 94 +/- 1.4% for thiacloprid. The recoveries for water samples ranged from 87 +/- 3.4% for thiamethoxam to 97 +/- 3.9% for imidacloprid and 97 +/- 2.6% for thiacloprid. The limits of quantitation (LOQ) were 0.1, 0.1, 0.01 mg/kg in soil (5g), and 2, 2, 0.5, micro/L in water (50 mL) for thiamethoxam, imidacloprid, and thiacloprid, respectively.  相似文献   

7.
The acute toxicity was determined for soil algae Chlorella kesslerei and Anabaena inaequalis, exposed to pesticides lindane, pentachlorophenol (PCP), isoproturon (IPU), and methyl parathion (MP). Toxicity markers included growth inhibition, chlorophyll biosynthesis, and total carbohydrate content, as a function of dose and time. Concentration response functions (EC50) were estimated by probit data transformation and weighted linear regression analyses. Lindane's toxicity to Chlorella increased sharply with time (EC50 = 7490, 10.3, 0.09 mg L(-1); 24, 48, 72 h), but remained nearly constant through 72 h with Anabaena (8.7-6.7 mg L(-1); 24-72 h). PCP at low concentrations stimulated algal growth and chlorophyll a production, an effect reversed at higher doses. Anabaena was less tolerant of PCP and MP than was Chlorella. The 96-h static EC50 values for Chlorella were: 0.003, 34, 0.05, and 291 mg L(-1) for lindane, PCP, isoproturon, and MP, respectively; for Anabaena, these were 4.2, 0.13, 0.21, and 19 mg L(-1). Carbohydrate production responses were similar to those of cell density (growth) and chlorophyll biosynthesis, with MP having the lowest adverse impact. The overall relative toxicity among the four tested pesticides was: for Chlorella, lindane > IPU > PCP > MP; and for Anabaena, PCP > IPU > lindane > MP. The results confirm that toxicants such as these pesticides may affect individual (though related) species to significantly different degrees.  相似文献   

8.
Amphiphilic copolymers, synthesized from poly (ethylene glycols) and various aliphatic diacids, which self assemble into nano-micellar aggregates in aqueous media, were used to develop controlled release (CR) formulations of imidacloprid [1-(6 chloro-3-pyridinyl methyl)-N- nitro imidazolidin-2- ylideneamine] using encapsulation technique. High solubilisation power and low critical micelle concentration (CMC) of these amphiphilic polymers may increase the efficacy of formulations. Formulations were characterised by Infrared (IR) spectroscopy, Dynamic Light Scattering (DLS) and Transmission Electron Microscope (TEM). Encapsulation efficiency, loading capacity and stability after accelerated storage test of the developed formulations were checked. The kinetics of imidacloprid release in water from the different formulations was studied. Release from the commercial formulation was faster than the CR formulations. The diffusion exponent (n value) of imidacloprid, in water ranged from 0.22 to 0.37 in the tested formulations. While the time taken for release of 50 % of imidacloprid ranged from 2.32 to 9.31 days for the CR formulations. The developed CR formulations can be used for efficient pest management in different crops.  相似文献   

9.
A novel composite gel composed of carboxymethyl-chitosan (CM-chit) and bentonite (H-bent) was used as the carrier for encapsulating atrazine and imidacloprid to control their release in water and retard their leaching in soil. Strong interactions between CM-chit and H-bent in the composite were confirmed by FT-IR, and good dispersion of pesticides in the carrier was observed by SEM. According to the results of release experiments in water, the CM-chit/H-bent composite carrier showed double advantages of both encapsulation by the polymer and sorption by the bentonite. The time taken for 50 % of active ingredients to be released, t??, was prolonged to 572 h for atrazine and 24 h for imidacloprid, respectively. The difference between the two pesticides on release behavior was related to their hydrophobicity and water solubility. Leaching experiments through a soil layer showed that this novel carrier reduced the amount of pesticides available for leaching, and would be useful for diminishing the environmental pollution of pesticides.  相似文献   

10.
Amphiphilic copolymers, synthesized from poly (ethylene glycols) and various aliphatic diacids, which self assemble into nano-micellar aggregates in aqueous media, were used to develop controlled release (CR) formulations of imidacloprid [1-(6 chloro-3-pyridinyl methyl)-N-nitro imidazolidin-2-ylideneamine] using encapsulation technique. High solubilisation power and low critical micelle concentration (CMC) of these amphiphilic polymers may increase the efficacy of formulations. Formulations were characterised by Infrared (IR) spectroscopy, Dynamic Light Scattering (DLS) and Transmission Electron Microscope (TEM). Encapsulation efficiency, loading capacity and stability after accelerated storage test of the developed formulations were checked. The kinetics of imidacloprid release in water from the different formulations was studied. Release from the commercial formulation was faster than the CR formulations. The diffusion exponent (n value) of imidacloprid, in water ranged from 0.22 to 0.37 in the tested formulations. While the time taken for release of 50 % of imidacloprid ranged from 2.32 to 9.31 days for the CR formulations. The developed CR formulations can be used for efficient pest management in different crops.  相似文献   

11.
A novel composite gel composed of carboxymethyl-chitosan (CM-chit) and bentonite (H-bent) was used as the carrier for encapsulating atrazine and imidacloprid to control their release in water and retard their leaching in soil. Strong interactions between CM-chit and H-bent in the composite were confirmed by FT-IR, and good dispersion of pesticides in the carrier was observed by SEM. According to the results of release experiments in water, the CM-chit/H-bent composite carrier showed double advantages of both encapsulation by the polymer and sorption by the bentonite. The time taken for 50 % of active ingredients to be released, t 50, was prolonged to 572 h for atrazine and 24 h for imidacloprid, respectively. The difference between the two pesticides on release behavior was related to their hydrophobicity and water solubility. Leaching experiments through a soil layer showed that this novel carrier reduced the amount of pesticides available for leaching, and would be useful for diminishing the environmental pollution of pesticides.  相似文献   

12.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

13.
The mobility of isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] from an alginate-based controlled release (CR) formulation was investigated by using soil columns. A layered bed system simulating the typical arrangement under a plastic greenhouse, which is composed of sand, peat, amended soil and native soil was used. The CR formulation was based on sodium alginate (1.87%), isoproturon (1.19%), natural bentonite (3.28%), and water (93.66%), and was compared to technical grade isoproturon. The use of the alginate-bentonite CR formulation produced less vertical mobility of the active ingredient as compared to the technical product. There was no presence of herbicide in the leachate when the alginate-bentonite CR formulation was used. However, 0.90% of isoproturon appeared when the treatment was carried out with technical grade material. Isoproturon mobility was modelled using the programme CMLS, which showed the peat layer to retard pesticide leaching. Analysis of the soil columns showed the highest isoproturon concentration in the peat layer.  相似文献   

14.
Dissipation of β-cyfluthrin and imidacloprid in okra was studied following three applications of a combination formulation of Solomon 300 OD (β-cyfluthrin 9 % + imidacloprid 21 %) @ 60 and 120 g a.i. ha(-1) at 7 days interval. Residues of β-cyfluthrin and imidacloprid in okra were estimated by gas liquid chromatography (GLC) and high performance liquid chromatography (HPLC), respectively. Residues of β-cyfluthrin were confirmed by gas chromatograph-mass spectrometry (GC-MS) and that of imidacloprid by high performance thin layer chromatography (HPTLC). Half-life periods for β-cyfluthrin were found to be 0.91 and 0.68 days whereas for imidacloprid these values were observed to be 0.85 and 0.96 days at single and double the application rates, respectively. Residues of β-cyfluthrin dissipated below its limit of quantification (LOQ) of 0.01 mg kg(-1) after 3 and 5 days at single and double the application dosage, respectively. Similarly, residues of imidacloprid took 5 and 7 days to reach LOQ of 0.01 mg kg(-1), at single and double dosages respectively. Soil samples collected after 15 days of the last application did not show the presence of β-cyfluthrin and imidacloprid at their detection limit of 0.01 mg kg(-1).  相似文献   

15.
Feng S  Kong Z  Wang X  Zhao L  Peng P 《Chemosphere》2004,56(5):457-463
Imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitro-imidazolidin-2-ylideneamine] and RH-5849 [2'-benzoyl-l'-tert-butylbenzoylhydrazinel] are two pesticides used in China since 1992. In the present study we conducted acute toxicity test, micronucleus (MN) test and comet assay of the two pesticides on amphibian, Rana N. Hallowell, a sensitive organism suitable for acting as the bio-indicator of aquatic and agricultural ecosystems. The values of LC50-48 h of imidacloprid were found to be 165 mg l(-1) for tadpoles of Rana limnocharis and 219 mg l(-1) for tadpoles of Rana N. Hallowell. On the other hand, RH-5849 showed no acute toxicity to tadpoles during the 96 h exposure even it was saturated in the test solutions. There were significant differences in the MN frequencies between the negative controls and the treated groups at the dose of 8 mg l(-1) for imidacloprid (p < 0.05) and 40 mg l(-1) for RH-5849 (p < 0.01). Comet assay found significant differences (p < 0.01) in the distributions of DNA damage grades between the negative controls and groups treated in vitro with 0.05, 0.1, 0.2 and 0.5 mg l(-1) of imidacloprid and 5, 25, 50 and 100 mg l(-1) of RH-5849, respectively. DNA damage scores increased with the exposure levels of the two pesticides and dose-effect relationships were observed for both imidacloprid (r2 = 0.92) and RH-5849 (r2 = 0.98). The MN test and comet assay revealed potential adverse effects of the two pesticides on DNA in the erythrocytes of amphibians in aquatic and agricultural ecosystems.  相似文献   

16.
An encapsulation system was developed and designed to give long-lasting effectiveness of the insect growth regulator cyromazine. Cyromazine was incorporated in lignin-poly (ethylene glycol) (PE) controlled-release formulations by means of a melting process. The basic formulation [lignin (65%)–PE (20%)–cyromazine (15%)] was coated in a Wurster-type fluidized-bed equipment using two different amounts of ethylcellulose. That of the highest one was modified by the addition of a plasticizer, dibutyl sebacate (DBS). The effect on cyromazine release rate caused by the incorporation of ethylcellulose and DBS in lignin-PE formulation was studied by immersion of the granules in water under static conditions. Using an empirical equation, the time taken for 50% of the active ingredient to be released into water (T50) was calculated. From the analysis of the T50 values, the influence of ethylcellulose appears clearly defined, observing a delay in release rate of cyromazine with respect to the basic lignin-PE formulation. In addition, the granules coated with ethylcellulose and the plasticizer lead the slowest release rate into water. The release of cyromazine into water is controlled by a diffusion mechanism. The thickness and permeability of the coating film are the most important factors that affect cyromazine release.  相似文献   

17.
Biodegradation of imidacloprid by an isolated soil microorganism   总被引:2,自引:0,他引:2  
Imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine), a chloronicotinyl insecticide used to control biting and sucking insects, is very persistent in the soil with a half-life often greater than 100 days. Although a few soil metabolites have been reported in the literature, there are no reports of imidacloprid-degrading soil microorganisms. Our objectives were to discover, isolate, and characterize microorganisms capable of degrading imidacloprid in soil. Two soil-free stable enrichment cultures in N-limited media were obtained that degraded 19 mg L(- 1) (43%) and 11 mg L(- 1) (16%) of the applied imidacloprid, and produced about 19 mg L(- 1) 6-chloronicotinic acid in three weeks. Enrichment media without microorganisms had no loss of imidacloprid. Strain PC-21, obtained from the enrichment cultures, degraded 37% to 58% of 25 mg L(- 1) imidacloprid in tryptic soy broth containing 1 g L(- 1) succinate and D-glucose at 27 degrees C incubation over a period of three weeks. Trace amounts of NO(3)(-)/NO(2)(-)were produced and six metabolites were characterized by high performance liquid chromatography (HPLC) using (14)C-methylene-imidacloprid and liquid chromatograph-electrospray-mass spectrometer (LC-MS). Two of the metabolites were identified as imidacloprid-guanidine and imidacloprid-urea by HPLC standards and LC-MS. During the experiment, 6-chloronicotinic acid was not produced. Less than 1% of the applied (14)C was incorporated into the microbial biomass and no (14)CO(2) was detected. Strain PC-21, identified as a species of Leifsonia by PCR amplification of a 500 bp sequence of 16s rRNA, cometabolized imidacloprid.  相似文献   

18.
An encapsulation system was developed and designed to give long-lasting effectiveness of the insect growth regulator cyromazine. Cyromazine was incorporated in lignin-poly (ethylene glycol) (PE) controlled-release formulations by means of a melting process. The basic formulation [lignin (65%)-PE (20%)-cyromazine (15%)] was coated in a Wurster-type fluidized-bed equipment using two different amounts of ethylcellulose. That of the highest one was modified by the addition of a plasticizer, dibutyl sebacate (DBS). The effect on cyromazine release rate caused by the incorporation of ethylcellulose and DBS in lignin-PE formulation was studied by immersion of the granules in water under static conditions. Using an empirical equation, the time taken for 50% of the active ingredient to be released into water (T(50)) was calculated. From the analysis of the T(50) values, the influence of ethylcellulose appears clearly defined, observing a delay in release rate of cyromazine with respect to the basic lignin-PE formulation. In addition, the granules coated with ethylcellulose and the plasticizer lead the slowest release rate into water. The release of cyromazine into water is controlled by a diffusion mechanism. The thickness and permeability of the coating film are the most important factors that affect cyromazine release.  相似文献   

19.
The mobility of atrazine [6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine] from alginate-bentonite-based controlled release (CR) formulations was investigated by using soil columns. Two CR formulations based on sodium alginate (14.0 g kg(-1), atrazine (6.0 g kg(-1), natural or acid-treated bentonite (50 g kg(-1), and water (924 g kg(-1) were compared to technical grade product and commercial liquid (CL) formulation (Gesaprim 500FW). All herbicide treatments were applied to duplicate layered bed systems simulating the typical arrangement under a plastic greenhouse, which is composed of sand (10 cm), peat (2 cm), amended soil (20 cm) and native soil (20 cm). The columns were leached with 39 cm (1500 ml) and 156 cm (6000 ml) of 0.02 M CaCl2 solution to evaluate the effect of water volume applied on herbicide movement. When 39 cm of 0.02 M CaCl2 solution was applied, there was no presence of herbicide in the leachate for the alginate-bentonite CR treatments. However, 0.11% and 0.14% of atrazine appeared in the leachate when the treatment was carried out with technical grade and CL formulations, respectively. When 156 cm of 0.02 M CaCl2 solution was applied, the use of the alginate-acid treated bentonite CR formulation retards and reduces the presence of atrazine in the leachate as compared to technical product. Analysis of the soil columns showed the highest atrazine concentration in the peat layer. Alginate-bentonite CR formulations might be an efficient system for reducing atrazine leaching in layered soil and thus, it could reduce the risks of pollution of groundwater.  相似文献   

20.
Isoproturon is a herbicide, which was used in Denmark against grass weeds and broad-leaved weeds until 1998. Isoproturon has frequently been detected in ground water monitoring studies. Leaching of isoproturon (N,N-dimethyl-N'-(4-(1-methylethyl)-phenyl)urea) and its metabolites, N'-(4-isopropylphenyl)-N-methylurea and N'-(4-isopropylphenyl)urea was studied in four lysimetres, two of them being replicates from a low-tillage field (lysimeter 3 and 4), the other two being replicates from a normal tillage field (lysimeter 5 and 6). In both cases the soil was a sandy loam soil with 13-14% clay. The lysimetres had a surface area of 0.5 m2 and a depth of 110 cm. Lysimeter 3 and 4 were sprayed with unlabelled isoproturon while lysimeter 5 and 6 was sprayed with a mixture of 14C-labelled and unlabelled isoproturon. The total amount of isoproturon sprayed onto each lysimeter was 63 mg, corresponding to 1.25 kg active ingredient per ha. The lysimeters were sprayed with isoproturon on October 26, 1997. The lysimetres were installed in an outdoor system in Research Centre Flakkebjerg and were thus exposed to normal climatic conditions of the area. A mean of 360 l drainage water were collected from lysimeter 3 and 4 and a mean of 375 litres from lysimeter 5 and 6. Only negligible amounts of isoproturon and its primary metabolites were found in the drainage water samples, and thus no significant difference between the two lysimeter sets was shown. In a total of 82 drainage water samples, evenly distributed between the four lysimetres isoproturon was found in detectable amounts in two samples and N'-(4-isopropylphenyl)urea was found in detectable amounts in two other samples. The detection limit for all the compounds was 0.02 microg/l. 48% and 54% of the added radioactivity were recovered from the upper 10 cm soil layer in lysimeter 5 and 6, respectively, and 17 and 14% from 10-20 cm's depth. By extraction first with an aquatic CaCl2 solution 0.49% of the added radioactivity was extracted from the upper 10 cm layer in lysimeter 5. In the subsequent extraction with acetonitril, 1.19% of the added radioactivity was extracted. In lysimeter 6, upper 10 cm, 0.2% were extracted with water and 0.56% were extracted with acetonitril. Below 10 cm's depth no measurable amounts could be extracted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号