首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An idealised two-dimensional laboratory model of tsunamis generated by submarine landslides is described. The experimental configuration corresponds to the benchmark configuration suggested by other researchers in the international tsunami community. It comprises a semi-elliptical rigid landslide with a height to length ratio of 0.052 sliding down a 15° slope. The initial landslide submergence and specific gravity are varied, the second of which primarily determines the initial landslide acceleration. In these experiments the landslide motion is generally well approximated as consisting of two periods of constant acceleration. The first phase of positive acceleration finishes as the landslide reaches the base of the slope, while the second period of a slower deceleration continues until the landslide comes to rest along the horizontal base of the tank. A novel experimental technique, which utilises laser-induced fluorescence (LIF), is employed to measure the free surface displacement over the entire space and time domains. This enables the wave potential energy field to be computed directly and provides a vivid picture of the wave generation and development process. Particle tracking velocimetry provides detailed information on the landslide motion and also some data on the sub-surface velocity field. Experimental runs require multiple repeats (typically 35–50) of the same setup in order to capture the entire wave field with the desired resolution. Thus high level experimental repeatability is required, and this is demonstrated. A range of parameters relevant to hazard management are presented and discussed. Maximum crest and trough amplitudes of the offshore propagating waves are shown to be approximately proportional to the initial landslide acceleration and somewhat less strongly dependent on the initial landslide submergence. The maximum wave run-up experienced at the shoreline is shown to depend almost linearly on the magnitude of a high deceleration that occurs for a short period when the landslide nears the toe of the slope. The initial submergence and initial acceleration do not directly determine the maximum wave run-up, although for these experiments they impact indirectly on the magnitude of the deceleration. The efficiency of the energy transfer from the landslide potential energy to the wave field potential energy reaches values of up to 6% and is found to be strongly dependent on the initial submergence. However because of the link between the landslide mass and its acceleration, this efficiency is almost completely independent of the initial acceleration. The results from a numerical model based on linear, inviscid and irrotational wave theory, and solved with the boundary element method, are compared with the data from the experimental program. The numerical model accurately produces the generated sequence of wave crests and troughs, but slightly overpredicts their phase speed by between 2 and 4%. For all other parameters the numerical model predictions are within 25% of the experimental values, although this includes both under- and overprediction for the range of independent parameters covered.  相似文献   

2.
3.
The aim of this study was to investigate the response to short-term changes in river freshwater discharges and in nutrients loadings (mainly from the treatment of urban wastewater), of the shallow macrotidal Urdaibai estuary (north of Spain), by using numerical tools. A two-dimensional hydrodynamic model and a water quality model were applied to the estuary, in order to better use it as a prediction tool in the study of the effects of variations in hydrodynamic conditions and in waste water inputs. The model was calibrated and verified using data measured under different hydrological conditions (spring and summer). A model calibration was carried out with field data measured during the summer, while the model validation was conducted for spring conditions. The calibration process allowed the model parameter definition, while the model validation permitted the verification of the calibrated parameters under different environmental conditions. The model results were in reasonable agreement with field measurements, in both the calibration and the validation phases. The model showed a significant decrease in phytoplankton concentration with river input increase. A study on the effects of nutrient input reduction from the Gernika Waste Water Treatment Plant (WWTP) was conducted. It showed a decrease in phytoplankton concentration with decreasing levels of nutrient discharge. This reduction was more pronounced in conjunction with the highest river discharge. In that case, a 50% decrease for the elimination of the WWTP discharge was observed.  相似文献   

4.
We investigate turbulent mixing in a tidally driven, mid-latitude, shallow-water basin. The study is carried out numerically at a laboratory-scale, using large-eddy simulation. We compared the results of the simulation with those of a correspondent purely oscillatory flow (Stokes boundary layer). The effect of rotation on the flow dynamics is twofold. First, rotation gives rise to a mean spanwise flow that concurs to redistribute the turbulent energy among the Reynolds stresses, in particular between the horizontal directions, thus increasing the mixing across the water column and thickening the layer where developed turbulence is observable. Second, the presence of the horizontal component of the background vorticity (latitude effect) breaks the symmetry between the two semi-cycles of the oscillation, since turbulence results suppressed/enhanced during the first/second semi-cycle. These two effects significantly modify the turbulent characteristics with respect to the purely oscillating flow, although the mechanisms that generates turbulence present similar features. The qualitative agreement between our results and some measurements carried out in two sites with characteristics similar to the case analyzed suggests that the outcomes here provided may be of general use for the analysis of mid-latitude, neutrally stratified, shallow-water basins mainly driven by semi-diurnal tidal currents.  相似文献   

5.
A numerical simulation of the 26th December 2004 Indian Ocean tsunami for the Andaman and Nicobar Islands case study is presented. The simulation approach is based on a fully nonlinear Boussinesq tsunami propagation model and included an accurate computational domain and a robust coseismic source. The simulation is first confronted to available tide gauge and run-up observations. The agreement between observations and the predicted wave heights allowed a reasonable validation of the simulation. As a result a full picture of the tsunami impact is provided over the entire coastal zone of Andaman and Nicobar Islands. The processes responsible for coastal vulnerability are discussed.  相似文献   

6.
Particle trajectories of 6.4m Latex spheres were recorded by video, both near an isolated blue mussel, Mytilus edulis, gill filament and, in place of an intact interfilamentary canal, in a model canal of width 200, 100 or 70m, formed by a transparent plate positioned next to a gill filament. Each arrangement was placed in a 2 x 10 x 10 cm test vessel filled with seawater. Serotonin (nerve-transmitter) stimulation was used to activate lateral cilia and to either lock latero-frontal cirri at the end of an active stroke (10-5 M), or to activate them (10-6 M), yielding lateral cilia beat frequencies of 19 and 16 Hz, respectively. With latero-frontal cirri locked, image analysis of particle tracks gave maximum velocities of ca. 2.9±0.2mm s-1 close to the tips of lateral cilia, for both isolated filament and model canal cases. Experimental velocity profiles along the 200-m wide model canal were recorded and used as good approximations to the fluid velocity because of the low Reynolds number. A two-dimensional steady model was proposed for the gill pump, assumed to only comprise lateral cilia. This model was solved numerically for the experimental model, canal in the vessel and the results showed satisfactory agreement with experimental volocity profiles from particle tracks. The numerical approach was also applied to a model of a single interfilamentary canal in the vessel. The resulting mean velocity in the canal was 1.70 mm s-1, but the resistance to flow in the model was less than that in an intact mussel gill. Video graphs of particle tracks indicated that active latero-frontal cirri play a role in the transfer of particles from through current to frontal current, probably by means of a strong interaction through the motion of intervening fluid rather than through a direct physical contact. M. edulis specimens used in the present study were collected in 1990 at Helsingør and in 1991 at Kerteminde, Denmark.  相似文献   

7.
On the behaviour of the residence time at the bottom of the mixed layer   总被引:1,自引:0,他引:1  
To understand why the findings of Deleersnijder et al. [(2006), Environ Fluid Mech 6: 25–42]—the residence time in the mixed layer in not necessarily zero at the pycnocline—are consistent with those of Delhez and Deleersnijder [(2006), Ocean Dyn 56:139–150]—the residence time in a control domain vanishes at the open boundaries of this control domain—, it is necessary to consider a control domain that includes part of the pycnocline, in which the eddy diffusivity is assumed to be zero. Then, depending on the behaviour of the eddy diffusivity near the bottom of the mixed layer, the residence time may be seen to exhibit a discontinuity at the interface between the mixed layer and the pycnocline. If such a discontinuity exists, the residence time is non-zero in the former and zero in the latter. This is illustrated by analytical solutions obtained under the assumption that the eddy diffusivity is constant in the mixed layer.  相似文献   

8.
9.
The propagation of density current under different boundary conditions is investigated using high resolution direct numerical simulations (DNS). A revised Kleiser and Schumann influence-matrix method is used to treat the general Robin type velocity boundary conditions and the related “tau” error corrections in the numerical simulations. Comparison of the simulation results reveals that the boundary conditions change the turbulent flow field and therefore the propagation of the front. This paper mainly focuses on the effects of boundary conditions and initial depth of the dense fluid. The differences in energy dissipation and overall front development in wall-bounded and open channels are examined. Through DNS simulations, it is evident that with the decrease of initial release depth ratio ( $D/H$ ), the effect of the top boundary becomes less important. In wall-bounded channels, there are three distinctive layers in the vertical distribution of energy dissipation corresponding to the contributions from bottom wall, interface, and top wall, respectively. In open channels, there are only two layers with the top one missing due to the shear free nature of the boundary. It is found that the energy dissipation distribution in the bottom layer is similar for cases with the same $D/H$ ratio regardless the top boundary condition. The simulation results also reveal that for low Reynolds number cases, the energy change due to concentration diffusion cannot be neglected in the energy budget. To reflect the real dynamics of density current, the dimensionless Froude number and Reynolds number should be defined using the release depth $D$ as the length scale.  相似文献   

10.
11.
This paper reports a numerical study on dam-break waves over movable beds. A one-dimensional (1-D) model is built upon the Saint-Venant equations for shallow water waves, the Exner equation of sediment mass conservation and a spatial lag equation for non-equilibrium sediment transport. The set of governing equations is solved using an explicit finite difference scheme. The model is tested in various idealized experimental cases, with fairly good agreement between the numerical predictions and measurements. Discrepancies are observed at the earlier stage of the dam-break wave and around the dam location due to no vertical velocity component being taken into account. Sensitivity tests confirm that the friction coefficient is an important parameter for the evaluation of sediment transport processes operating during a dam-break wave. The influence of the non-equilibrium adaptation length (or the lag distance) is negligible on the wavefront celerity and weak on the free surface and bed profiles, which indicates that one may ignore the spatial lag effect in dam-break wave studies. Finally, the simulation of the Lake Ha!Ha! dyke-break flood event shows that the model can provide relevant results if a convenient formula for computing the sediment transport capacity and an appropriate median grain diameter of riverbed material are selected.  相似文献   

12.
Three different modelling techniques to simulate the pollutant dispersion in the atmosphere at the microscale and in presence of obstacles are evaluated and compared. The Eulerian and Lagrangian approaches are discussed, using RAMS6.0 and MicroSpray models respectively. Both prognostic and diagnostic modelling systems are considered for the meteorology as input to the Lagrangian model, their differences and performances are investigated. An experiment from the Mock Urban Setting Test field campaign observed dataset, measured within an idealized urban roughness, is used as reference for the comparison. A case in neutral conditions was chosen among the available ones. The predicted mean flow, turbulence and concentration fields are analysed on the basis of the observed data. The performances of the different modelling approaches are compared and their specific characteristics are addressed. Given the same flow and turbulence input fields, the quality of the Lagrangian particle model is found to be overall comparable to the full-Eulerian approach. The diagnostic approach for the meteorology shows a worse agreement with observations than the prognostic approach but still providing, in a much shorter simulation time, fields that are suitable and reliable for driving the dispersion model.  相似文献   

13.
The objective of this work was to analyze the behavior of the Funchal Port (Madeira Island, Portugal) breakwater using physical and numerical models in order to analyze the evolution of the underwater layers, combining information between the two models as well as simulating storm conditions and atypical docking/undocking impacts of cruise ships. Regarding the physical model using a wave generation system, the data collected and the test conditions were addressed considering different scenarios (return periods of 20, 50 and 100 years). It was found that for return periods of 20 years, the behavior of the infrastructure as a whole was stable. For return periods of 50 years, wave overtopping became more frequent and intense, and began to impact the superstructure. For the 100-year return period the behavior of the infrastructure was found to be unstable, with persistent wave overtopping. The morphology of the submerged layers also changed. The main objectives of the numerical model approach were to estimate the natural frequencies of vibration (when materials suffer a considerable modification, a change in their frequencies of vibration can be detected), and to calculate the expected displacements corresponding to cruise ship docking processes (agitation in a protected area) and the associated maximum maritime (agitation in an exposed area) forces. The maximum displacements obtained for the two cases were about 0.03 m, which is a high value. Considering the results obtained from this work, the Port authorities decided to maintain the monitoring program and perform an underwater video inspection.  相似文献   

14.
15.
Boundary organizations are situated between science, policy, and practice and have a goal of supporting communication and collaboration among these sectors. They have been promoted as a way to improve the effectiveness of conservation efforts by building stronger relationships between scientists, policy makers, industry, and practitioners (Cook et al. 2013). Although their promise has been discussed in theory, the work of and expectations for boundary organizations are less defined in practice. Biodiversity conservation is characterized by complexity, uncertainty, dissent, and tight budgets, so boundary organizations face the challenging task of demonstrating their value to diverse stakeholders. We examined the challenges boundary organizations face when seeking to evaluate their work and thus aimed to encourage more productive conversations about evaluation of boundary organizations and their projects. Although no off‐the‐shelf solution is available for a given boundary organization, we identified 4 principles that will support effective evaluation for boundary organizations: engage diverse stakeholders, support learning and reflection, assess contribution to change, and align evaluation with assumption and values.  相似文献   

16.
A series of laboratory experiments has been carried out to investigate the passage of an internal solitary wave of depression over a bottom ridge, in a two-layer fluid system for which the upper and lower layer is linearly-stratified and homogeneous respectively. Density, velocity and vorticity fields induced by the wave propagation over the ridge have been measured simultaneously at three locations, namely upstream, downstream and over the ridge crest, for a wide range of model parameters. Results are presented to show that wave breaking may occur for a sufficiently large wave amplitude and a strong ridge blockage factor, with accompanying mixing and overturning. Density field data are presented (i) to illustrate the overturning and mixing processes that accompany the wave breaking and (ii) to quantify the degree of mixing in terms of the wave and ridge parameters. For weak encounters, good agreement is obtained between the laboratory experimental results (velocity and vorticity fields induced by the wave propagation) and the predictions of a recently-developed fully nonlinear theory. Discrepancies between theory and experiment are discussed for cases in which breaking and mixing occur.  相似文献   

17.
《Ecological modelling》2005,184(1):55-68
One of the most important sources of pollution in coastal zones (CZ) is certainly that one produced by human activities in the associated river basin. Understanding the linkage between water quality in CZ and river catchments is important in order to better assess CZ processes and to evaluate different management options aimed at improving the coastal ecosystem state. CZ water quality targets as identified by the Water Framework Directive (EC 2000/60) require an accurate study of the effects of pollutant loads coming from river discharge.In order to evaluate the impacts of human activities in river catchments on the associated coastal zone, a sound definition for this geographic area is needed. Many definitions for this area have been proposed in different contexts. The definition is generally built upon a particular goal, and is henceforth highly variable according to the different purposes. In this paper a general methodology allowing to discern those areas of the sea that are directly influenced by fluvial discharge is presented. The methodology is based on the variation pattern of sea water characteristics, and provides a numerical evaluation of this influence. In particular an analysis based on salinity as tracer, results in a sound definition of this area. The methodology has been applied on the case study of the Po river. Due to the significant nutrient loads discharged by the river, the CZ associated with Po is affected by severe eutrophication phenomena that have important consequences on the ecosystem and on the socio-economy of the area.In order to study the impacts of nutrients loads carried by the river, a water quality model (WASP6) has been implemented. The model simulates the seasonal variability of nutrient concentrations, phytoplankton biomass and dissolved oxygen. Using the CZ model is possible to compare the effects of variations of nutrient loads on the biochemical (short term) and ecological (long term) quality of the coastal environment. This is accomplished by feeding nutrients loads forecasted for different scenarios by the catchment model (MONERIS) as forcing functions to the CZ model. This way the effect of the different catchment management scenarios are propagated to the CZ model, and the trophic conditions of the coastal ecosystem evaluated using TRIX.This study has been developed in the context of the European project EUROCAT.  相似文献   

18.
The hypothesis that drifting red algal mats inhibit settlement of planktonic larvae was tested in a field experiment in 1986. Substratum free of algae (caged boxes) was compared with substratum covered with algae (natural substratum and open boxes). Whereas settling densities of 1500 to 5500 ind. m-2 of the bivalves Macoma balthica, Cardium glaucum and Mya arenaria were observed in sediment without algal cover, no recruits of the same species were found beneath the algae during the period of peak settlement (June to July). The same difference was observed for the polychaete Nereis diversicolor, although in this case occasional individuals were found beneath the algae. The results demonstrate that algae mats may be efficient inhibitors of larval settlement to benthic soft-substratum communities. It is concluded that algae act as a larval filter.  相似文献   

19.
A fully non-linear analysis of forcing influences on temperatures is performed in the climate system by means of neural network modelling. Two case studies are investigated, in order to establish the main factors that drove the temperature behaviour at both global and regional scales in the last 140 years. In particular, our neural network model shows the ability to catch non-linear relationships among these variables and to reconstruct temperature records with a high degree of accuracy. In this framework, we clearly show the need of including anthropogenic inputs for explaining the temperature behaviour at global scale and recognise the role of El Niño southern oscillation for catching the inter-annual variability of temperature data. Furthermore, we analyse the relative influence of global forcing and a regional circulation pattern in determining the winter temperatures in Central England, showing that the North Atlantic oscillation represents the driven element in this case study. Our modelling activity and results can be very useful for simple assessments of relationships in the complex climate system and for identifying the fundamental elements leading to a successful downscaling of atmosphere–ocean general circulation models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号