首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This paper describes the QUIC-URB fast response urban wind modeling tool and evaluates it against wind tunnel data for a 7 × 11 cubical building array and wide building street canyon. QUIC-URB is based on the Röckle diagnostic wind modeling strategy that rapidly produces spatially resolved wind fields in urban areas and can be used to drive urban dispersion models. Röckle-type models do not solve transport equations for momentum or energy; rather, they rely heavily on empirical parameterizations and mass conservation. In the model-experiment comparisons, we test two empirical building flow parameterizations within the QUIC-URB model: our implementation of the standard Röckle (SR) algorithms and a set of modified Röckle (MR) algorithms. The MR model attempts to build on the strengths of the SR model and introduces additional physically based, but simple parameterizations that significantly improve the results in most regions of the flow for both test cases. The MR model produces vortices in front of buildings, on rooftops and within street canyons that have velocities that compare much more favorably to the experimental results. We expect that these improvements in the wind field will result in improved dispersion calculations in built environments.  相似文献   

2.
Turbulent flow and dispersion characteristics over a complex urban street canyon are investigated by large-eddy simulation using a modified version of the Fire Dynamics Simulator. Two kinds of subgrid scale (SGS) models, the constant coefficient Smagorinsky model and the Vreman model, are assessed. Turbulent statistics, particularly turbulent stresses and wake patterns, are compared between the two SGS models for three different wind directions. We found that while the role of the SGS model is small on average, the local or instantaneous contribution to total stress near the surface or edge of the buildings is not negligible. By yielding a smaller eddy viscosity near solid surfaces, the Vreman model appears to be more appropriate for the simulation of a flow in a complex urban street canyon. Depending on wind direction, wind fields, turbulence statistics, and dispersion patterns show very different characteristics. Particularly, tall buildings near the street canyon predominantly generate turbulence, leading to homogenization of the mean flow inside the street canyon. Furthermore, the release position of pollutants sensitively determines subsequent dispersion characteristics.  相似文献   

3.
G.Q. Chen  L. Zeng  Z. Wu 《Ecological modelling》2010,221(24):2927-2937
As a continuation of the modelling on ecological degradation and hydraulic dispersion of pollutant emission into an idealized two-dimensional free-surface wetland flow (Zeng, L., Chen, G.Q., 2009b. Ecological degradation and hydraulic dispersion of contaminant in wetland. Ecol. Model., doi:10.1016/j.ecolmodel.2009.10.024), an ecological risk assessment model for the typical case of a pulsed contaminant emission into a realistic three-dimensional wetland channel flow is presented in this paper for the fate of cross-sectional mean concentration under environmental dispersion. An environmental dispersion model for the mean concentration is devised as an extension of Taylor’s classical analysis on dispersion in fluid flows. The velocity distribution and the environmental dispersivity in the fully developed steady flow through the wetland is found and illustrated with limiting cases covering various known solutions for the porous media flow between parallel plates, flow in a shallow wetland, sweeping flow in a densely vegetated wetland, and single phase flow in a channel. Obtained by Aris’s method of moments, the environmental dispersivity is shown characterized with multi-scale asymptotic time variations with stem dominated stage, transitional stage, and width-depth-stem dominated stage. Based on the solution for the evolution of contaminant cloud in the wetland channel flow, critical length and duration of the contaminant cloud with concentration beyond given environmental standard level are concretely illustrated for typical pollutant constituents in wastewater emission. Under the same emission intensity and environmental standard, the duration of contaminant cloud in the wetland channel is revealed shorter than that in a free surface wetland, due to the lateral effect.  相似文献   

4.
An artificial neural network (ANN) model is developed for predicting the longitudinal dispersion coefficient in natural rivers. The model uses few rivers’ hydraulic and geometric characteristics, that are readily available, as the model input, and the target output is the longitudinal dispersion coefficient (K). For performance evaluation of the model, using published field data, predictions by the developed ANN model are compared with those of other reported important models. Based on various performance indices, it is concluded that the new model predicts the longitudinal dispersion coefficient more accurately. Sensitive analysis performed on input parameters indicates stream width, flow depth, stream sinuosity, flow velocity, and shear velocity to be the most influencing parameters for accurate prediction of the longitudinal dispersion coefficient.  相似文献   

5.
The aim of this paper is to provide an investigation, using large eddy simulation, into plume dispersion behind an aircraft in co-flowing take-off conditions. Validation studies of the computational model were presented by Aloysius and Wrobel (Environ Model Softw 24:929–937, 2009) and a study of the flow and dispersion properties of a double-engine aircraft jet was presented by Aloysius et al. (EEC/SEE/2007/001, EUROCONTROL Experimental Centre, ), in which only the engine was modelled. In this paper, the complete geometry of a Boeing 737 is modelled and investigated. The current work represents a contribution towards a better understanding of the source dynamics behind an airplane jet engine during the take-off and landing phases. The information provided from these simulations will be useful for future improvements of existing dispersion models.  相似文献   

6.
The first step in developing travel time and water quality models in streams is to correctly model solute transport mechanisms. In this paper a comparison between two solute transport models is performed. The parameters of the Transient Storage model (TS) and the Aggregated Dead Zone model (ADZ) are estimated using data of thirty seven tracer experiments carried out under different discharges in five mountain streams of Colombian Los Andes. Calibration is performed with the generalized uncertainty estimation method (GLUE) based on Monte-Carlo simulations. Aspects of model parameters identifiability and model parsimony are analyzed and discussed. The TS model with four parameters shows excellent results during calibration but the model parameters present high interaction and poor identifiability. The ADZ model with two independent and clearly identifiable parameters gives sufficiently precise calibration results. As a conclusion, it is stated that the ADZ model with only two parameters is a parsimonious model that is able to represent solute transport mechanisms of advection and longitudinal dispersion in the studied mountain streams. A simple model parameter estimation methodology as a function of discharge is proposed in this work to be used in prediction mode of travel time and solute transport applications along mountain streams.  相似文献   

7.
Fish farms, which initially colonized quiet and protected natural coastal areas, are now frequently installed in open flow zones, due to the lack of space along coasts and to the emergence of new environmental constraints. For the past two decades, a salmon fish farm has been located inside the roadstead of Cherbourg (France) to benefit from both sea protection and tide currents which regularly refresh the water. In spite of these favourable environmental conditions, periods of non-negligible fish mortalities have been observed to occur without clear evidence of their origin. This motivated the turbidity measurements and the numerical simulations presented in this paper. Firstly, it is shown that high turbidities in the farm site under study are mainly due to the flow acceleration under the cages, which causes the re-suspension of sediments and bio-deposits. Secondly, particles which enter the fishnet can have different origins (external source, bottom, or the net itself). Numerical simulations, based on the Reynolds equations and on the discrete random walk model for particle dispersion, suggest that the rear area of the net can be reached by particles emerging from below the net. It is observed that turbulent dispersion is a key ingredient for such a behaviour, as it can lead particles towards a large recirculation cell behind the net. Dispersion by realistic unsteady vortices has also been analysed by means of a Lattice-Boltzmann model. Though these computations involve smaller Reynolds numbers, they confirm qualitatively the observations of the random walk model. In addition, they suggest that vortex shedding and unsteady recirculation cells near the bottom can force particles from the sand bed to be lifted up and reach the rear of the net.  相似文献   

8.
In age-classified population models where all parameters are known, the generation time and growth rate are calculated in a straightforward manner. For many populations, some parameters, such as juvenile survival, are difficult to estimate accurately. In a simplified population model where fecundity and survival are constant from the onset of breeding, it is known that generation time may be calculated given only adult survival, age at first reproduction, and the population growth rate. However, the assumption of constant fecundity from the onset of breeding does not hold for many populations. An extended population model allows calculation of generation time with the additional knowledge of the ratio of age-specific fecundities compared to a maximum fecundity rate. When these relative fecundities are unknown, an ad hoc adjustment to the simplified model performs well.When the study population is in an ideal environment, the optimal generation time and maximum growth rate are linked, and both may be approximated knowing only adult survival, age at first reproduction, and the relative fecundities. The maximum growth rate has important conservation implications, and calculating it correctly is therefore important. Improper use of the simplified population model to calculate the maximum growth rate, combined with a simple decision rule, leads to an average overharvest of 36%, and >60% for three of six bird species studied, compared to the full population model. By comparison, using the approximation from the extended or adjusted models results in average overharvests of only 8% (extended model) and 5% (adjusted model), and <50% for all six species (either model).  相似文献   

9.
This paper describes a σ-coordinate scalar transport model coupled with a Boussinesq-type hydrodynamic model. The Boussinesq model has the ability to calculate both three-dimensional velocity distributions and the water surface motion. To capture ‘dispersion’ processes in open channel flow, horizontal vorticity effects induced by a bottom shear stress are included in the Boussinesq model. Thus, a reasonable representation of vertical flow structure can be captured in shallow and wavy flow fields. To solve the coupled Boussinesq and scalar transport system, a finite-volume method, based on a Godunov-type scheme with the HLL Riemann solver, is employed. Basic advection and advection–diffusion numerical tests in a non-rectangular domain were carried out and the computed results show good agreement with analytic solutions. With quantitative comparisons of dispersion experiments in an open channel, it is verified that the proposed coupled model is appropriate for both near and far field scalar transport predictions. From numerical simulations in the surf zone, physically reasonable results showing expected vertical variation are obtained.  相似文献   

10.
Spatial statistical models that use flow and stream distance   总被引:6,自引:1,他引:6  
We develop spatial statistical models for stream networks that can estimate relationships between a response variable and other covariates, make predictions at unsampled locations, and predict an average or total for a stream or a stream segment. There have been very few attempts to develop valid spatial covariance models that incorporate flow, stream distance, or both. The application of typical spatial autocovariance functions based on Euclidean distance, such as the spherical covariance model, are not valid when using stream distance. In this paper we develop a large class of valid models that incorporate flow and stream distance by using spatial moving averages. These methods integrate a moving average function, or kernel, against a white noise process. By running the moving average function upstream from a location, we develop models that use flow, and by construction they are valid models based on stream distance. We show that with proper weighting, many of the usual spatial models based on Euclidean distance have a counterpart for stream networks. Using sulfate concentrations from an example data set, the Maryland Biological Stream Survey (MBSS), we show that models using flow may be more appropriate than models that only use stream distance. For the MBSS data set, we use restricted maximum likelihood to fit a valid covariance matrix that uses flow and stream distance, and then we use this covariance matrix to estimate fixed effects and make kriging and block kriging predictions. Received: July 2005 / Revised: March 2006  相似文献   

11.
J. Bila  J. Jura 《Ecological modelling》2011,222(19):3640-3650
This paper proposes three qualitative models that were applied for modeling of Small Water Cycle violation in ecosystem of Trebon region, South Bohemia. SWC refers to the behavior of the local ecosystem (e.g., the Trebon region), in which the volume of water that comes into the ecosystem is evaporated and falls back into this system. SWC is characterized by early morning dues and frequent small rain precipitation. In the Trebon Biosphere Reserve characterized by wetlands, forests and agriculture land, the evaporated water rises quickly inside the zone and does not have time to recondense before it is transported outside the ecosystem to the distant mountains, where it condenses spontaneously in the rising air streams.The essential pre-model for developing our qualitative models is the database model implemented in the MS SQL environment. The data in this model were collected for last five years and contain information about SWC violation and about the landscape stability development. The database system is used for standard reports, for correlating digital and graphic runs from associated meteorological stations, and for computing the evapotranspiration at the points where the stations are located and also at approximate inter-points.In parallel, and in addition to this standard use of the database model, the data was applied in the development of qualitative models (state model, model for the detection of unexpected situations and matroid model). This transformation and compression of the data was done with help of experienced experts and with the help of special mathematical operations. Qualitative models introduced in this paper overcome experience with quantitative models namely in these items: (1) They provide compression of information contained in large volumes of numerical data. (2) On the contrary of individual quantitative modeling qualitative models enable to describe the function and properties of the whole ecosystem. (3) Conclusions from qualitative models are in many cases better than are the generalizations of results from quantitative models.The first goal of the paper is to model situations associated with violations of the Small Water Cycle (SWC) in this ecosystem, and to contribute to acceptable solutions. The second goal of the paper is to investigate temporary models for the stability of the landscape development and to propose qualitative models for software support for integrated environmental modeling.  相似文献   

12.
We propose, discuss and validate a theoretical and numerical framework for sediment-laden, open-channel flows which is based on the two-fluid-model (TFM) equations of motion. The framework models involve mass and momentum equations for both phases (sediment and water) including the interactive forces of drag, lift, virtual mass and turbulent dispersion. The developed framework is composed by the complete two-fluid model (CTFM), a partial two-fluid model (PTFM), and a standard sediment-transport model (SSTM). Within the umbrella of the Reynolds-Averaged Navier-Stokes (RANS) equations, we apply K–ε type closures (standard and extended) to account for the turbulence in the carrier phase (water). We present the results of numerical computations undertaken by integrating the differential equations over control volumes. We address several issues of the theoretical models, especially those related to coupling between the two phases, interaction forces, turbulence closure and turbulent diffusivities. We compare simulation results with various recent experimental datasets for mean flow variables of the carrier as well as, for the first time, mean flow of the disperse phase and turbulence statistics. We show that most models analyzed in this paper predict the velocity of the carrier phase and that of the disperse phase within 10% of error. We also show that the PTFM provides better predictions of the distribution of sediment in the wall-normal direction as opposed to the standard Rousean profile, and that the CTFM is by no means superior to the PTFM for dilute mixtures. We additionally report and discuss the values of the Schmidt number found to improve the agreement between predictions of the distribution of suspended sediment and the experimental data.  相似文献   

13.
Despite proliferation of the use of air pollution models for regulatory application, major discrepancies still occur between models and also between models and observations, especially when oversimplistic models are used. The problem of predicting plume rise (and subsequently ground level concentrations) from a single source is evaluated here in terms of an integral plume rise and dispersion model (USPR) which encompasses both bouyant rise and turbulent spreading; thus avoiding the problems of the concatenation of separate plume rise and dispersion models. The wide range of validity of the USPR model is demonstrated is terms of plume rise by comparison with the highly buoyant GCOS and Kincaid plumes as well as with dense effluents. It is also shown to be in agreement with Briggs' two-thirds law when the restrictions applicable to the latter model are imposed.  相似文献   

14.
In many cities, ambient air quality is deteriorating leading to concerns about the health of city inhabitants. In urban areas with narrow streets surrounded by clusters of tall buildings, called street canyons, air pollution from traffic emissions and other sources may accumulate resulting in high pollutant concentrations. For various situations, including the evacuation of populated areas in the event of an accidental or deliberate release of chemical, biological and radiological agents, it is important that models should be developed that produce urban flow fields quickly. Various computational techniques have been used to calculate these flow fields, but these techniques are often computationally intensive. Most fast response models currently in use are at a disadvantage in these cases as they are unable to correlate highly heterogeneous urban structures with the diagnostic parameterizations on which they are based. In this paper, a novel variant of the popular projection method for solving the Navier–Stokes equations has been developed and applied to produce fast and reasonably accurate parallel computational fluid dynamics (CFD) solutions for flow in complex urban areas. This model, called QUIC-CFD represents an intermediate balance between fast (on the order of minutes for a several block problem) and reasonably accurate solutions. This paper details the solution procedure and validates this model for various simple and complex urban geometries.  相似文献   

15.
Lagrangian models of dispersion in marine environment   总被引:1,自引:0,他引:1  
Turbulent dispersion can be studied successfully by using Lagrangian particle models. In general, the prediction of correct concentration fields is a complex issue when the turbulent field is inhomogeneous and non-stationary. Two classes of Lagrangian dispersion models have been considered in this work, which are based on the Wiener process and the so called “well-mixed” criterion. In order to test the performances of these models and shed light on the underlying physical processes and modeling assumptions, four different numerical models have been compared and tested by means of their long time behavior by considering several study cases concerning idealized marine environment. Furthermore, the coupling of the community model Princeton Ocean Model (POM) with the Lagrangian model LASEMOD (LAgrangian SEa MODel) is used to investigate the temporal and spatial evolution of a passive pollutant released in the vicinity of the coast in the Tyrrhenian Sea basin. The simulation shows with reasonable accuracy the time evolution of both the hydrodynamic and the concentration fields and provides a useful insight into the evaluation of the environmental impact of pollutant releases along the coast.  相似文献   

16.
Three different modelling techniques to simulate the pollutant dispersion in the atmosphere at the microscale and in presence of obstacles are evaluated and compared. The Eulerian and Lagrangian approaches are discussed, using RAMS6.0 and MicroSpray models respectively. Both prognostic and diagnostic modelling systems are considered for the meteorology as input to the Lagrangian model, their differences and performances are investigated. An experiment from the Mock Urban Setting Test field campaign observed dataset, measured within an idealized urban roughness, is used as reference for the comparison. A case in neutral conditions was chosen among the available ones. The predicted mean flow, turbulence and concentration fields are analysed on the basis of the observed data. The performances of the different modelling approaches are compared and their specific characteristics are addressed. Given the same flow and turbulence input fields, the quality of the Lagrangian particle model is found to be overall comparable to the full-Eulerian approach. The diagnostic approach for the meteorology shows a worse agreement with observations than the prognostic approach but still providing, in a much shorter simulation time, fields that are suitable and reliable for driving the dispersion model.  相似文献   

17.

Contamination of coastal water is a persistent threat to ecosystems around the world. In this study, a novel model for describing the dispersion, dilution, terminal layer formation and influence area from a point source discharge into a water body is presented and compared with field measured data. The model is a Combined Integral and Particle model (CIPMO). In the initial stage, the motion, dispersion and dilution of a buoyant jet are calculated. The output from the buoyant jet model is then coupled with a Lagrangian Advection and Diffusion model describing the far-field. CIPMO ensures that both the near- and far-field processes are adequately resolved. The model either uses empirical data or collects environmental forcing data from open source hydrodynamic models with high spatial and temporal resolution. The method for coupling the near-field buoyant jet and the particle tracking model is described and the output is discussed. The model shows good results when compared with measurements from a field study.

  相似文献   

18.
LES validation of urban flow,part II: eddy statistics and flow structures   总被引:1,自引:0,他引:1  
Time-dependent three-dimensional numerical simulations such as large-eddy simulation (LES) play an important role in fundamental research and practical applications in meteorology and wind engineering. Whether these simulations provide a sufficiently accurate picture of the time-dependent structure of the flow, however, is often not determined in enough detail. We propose an application-specific validation procedure for LES that focuses on the time dependent nature of mechanically induced shear-layer turbulence to derive information about strengths and limitations of the model. The validation procedure is tested for LES of turbulent flow in a complex city, for which reference data from wind-tunnel experiments are available. An initial comparison of mean flow statistics and frequency distributions was presented in part I. Part II focuses on comparing eddy statistics and flow structures. Analyses of integral time scales and auto-spectral energy densities show that the tested LES reproduces the temporal characteristics of energy-dominant and flux-carrying eddies accurately. Quadrant analysis of the vertical turbulent momentum flux reveals strong similarities between instantaneous ejection-sweep patterns in the LES and the laboratory flow, also showing comparable occurrence statistics of rare but strong flux events. A further comparison of wavelet-coefficient frequency distributions and associated high-order statistics reveals a strong agreement of location-dependent intermittency patterns induced by resolved eddies in the energy-production range. The validation concept enables wide-ranging conclusions to be drawn about the skill of turbulence-resolving simulations than the traditional approach of comparing only mean flow and turbulence statistics. Based on the accuracy levels determined, it can be stated that the tested LES is sufficiently accurate for its purpose of generating realistic urban wind fields that can be used to drive simpler dispersion models.  相似文献   

19.
Eradication and control of invasive species are often possible only if populations are detected when they are small and localized. To be efficient, detection surveys should be targeted at locations where there is the greatest risk of incursions. We examine the utility of habitat suitability index (HSI) and particle dispersion models for targeting sampling for marine pests. Habitat suitability index models are a simple way to identify suitable habitat when species distribution data are lacking. We compared the performance of HSI models with statistical models derived from independent data from New Zealand on the distribution of two nonindigenous bivalves: Theora lubrica and Musculista senhousia. Logistic regression models developed using the HSI scores as predictors of the presence/absence of Theora and Musculista explained 26.7% and 6.2% of the deviance in the data, respectively. Odds ratios for the HSI scores were greater than unity, indicating that they were genuine predictors of the presence/ absence of each species. The fit and predictive accuracy of each logistic model were improved when simulated patterns of dispersion from the nearest port were added as a predictor variable. Nevertheless, the combined model explained, at best, 46.5% of the deviance in the distribution of Theora and correctly predicted 56% of true presences and 50% of all cases. Omission errors were between 6% and 16%. Although statistical distribution models built directly from environmental predictors always outperformed the equivalent HSI models, the gain in model fit and accuracy was modest. High residual deviance in both types of model suggests that the distributions realized by Theora and Musculista in the field data were influenced by factors not explicitly modeled as explanatory variables and by error in the environmental data used to project suitable habitat for the species. Our results highlight the difficulty of accurately predicting the distribution of invasive marine species that exhibit low habitat occupancy and patchy distributions in time and space. Although the HSI and statistical models had utility as predictors of the likely distribution of nonindigenous marine species, the level of spatial accuracy achieved with them may be well below expectations for sensitive surveillance programs.  相似文献   

20.
This paper presents a novel methodology for time reversal in advective-diffusive pollutant transport in groundwater systems and other environmental flow systems (specifically: time reversal of diffusive terms). The method developed in this paper extends previous particle-based approaches like the Reversed Time Particle Tracking Method of Bagtzoglou [6]. The reversal of the ‘diffusive’ and/or ‘macrodispersive’ component of pollutant migration is especially under focus here. The basis of the proposed scheme for anti-diffusion is a continuous time, censored, non-local random walk capable of tracking groundwater solute concentration profiles over time while conserving the (reverse) Fickian properties of the anti-diffusing particle cloud in terms of moments. This scheme is an alternative to the direct solution of the eulerian concentration-based diffusion PDE, which is notoriously unstable in reverse time. Our analysis leads to the conclusion that an adaptive time stepping scheme—with decreasing time step—is necessary in order to maintain a constant amount of anti-diffusion (the reverse form of Fick’s law). Specifically, we study the relations between the following parameters: time step evolution vs. time (or vs. number of steps); variance evolution (decrease rate); total time (or number of steps) required to reach a fully anti-diffused solution. The proposed approach is shown to be quite efficient; typically, for every ten time steps, one to two orders of magnitude reduction of the dispersion width of the plume can be attained. Furthermore, the method is shown to be asymptotically exact for reverse Fickian diffusion. The method is applied with success to several situations involving the diffusive transport of a conservative solute in the following cases: (i) Single source recovery in one-dimensional space with constant diffusion parameters (this example serves as a validation test for the theory); (ii) Single source recovery in two-dimensional space with constant isotropic diffusion (this example also serves as a test for the theory); (iii) Multiple source recovery in two-dimensional space, assuming isotropic diffusion. It is expected that the methodology tested in this paper is applicable more generally to complex environmental pollution problems involving multiple sources, anisotropic hydrodynamic dispersion, and space-time variable advection-diffusion flow systems; the modeling of reverse diffusion/dispersion in such systems is currently under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号