首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of bulking agents on organic matter (OM) stability and nitrogen (N) availability in sewage sludge composts was investigated. The same sludge was composted on an industrial plant with different mixtures of bulking agents. The composting process included an active phase and a curing phase, both lasting 6 weeks, separated by the screening of composts. The OM evolution was characterised by carbon (C) and N mass balances in biochemical fractions. The OM stability and N potential availability of final composts were measured during soil incubations. During composting, the C and N losses reached more than 62% of the initial C and more than 45% of the initial N, respectively, due to C mineralisation or N volatilisation and screening. The bulking materials mostly influenced OM evolution during the active phase. They contributed to the mitigation of N losses during the active phase where N immobilisation through active microbial activity was favoured by bulking agents increasing the C:N ratio of the initial mixtures. However, the influence of bulking agents on OM evolution was removed by the screening; this induced the homogenisation of compost characteristics and led to the production of sludge composts with similar organic matter characteristics, C degradability and N availability.  相似文献   

2.
Since the indiscriminate disposal of pig slurry can cause not only air pollution and bad odours but also nutrient pollution of ground waters and superficial waters, composting is sometimes used as one environmentally acceptable method for recycling pig manure. The aim of this study was to evaluate the effect of composting pig slurry on its sanitation (evaluated by ecotoxicity assays and pathogen content determination), as well as to determine the effect of a carbon-rich bulking agent (wood shavings, WS) and the starting C/N ratio on the changes undergone by different chemical (volatile organic matter, C and N fractions) and microbiological (microbial biomass C, ATP, dehydrogenase activity, urease, protease, phosphatase, and beta-glucosidase activities) parameters during composting. Pig slurry mixed with bulking agent (P+WS) and the solid faction separated from it, both with (PSF+WS) and without bulking agent (PSF), were composted for 13 weeks. Samples for analysis were taken from composting piles at the start of the process and at 3, 6, 9, and 13 weeks after the beginning of composting. The total organic carbon, water soluble C and ammonium content decreased with composting, while Kjeldahl N and nitrate content increased. The nitrification process in the PSF+WS pile was more intense than in the PSF or P+WS composting piles. The pathogen content decreased with composting, as did phytotoxic compounds, while the germination index increased with compost age. Piles with bulking agent showed higher values of basal respiration, microbial biomass carbon, ATP and hydrolase activities during the composting process than piles without bulking agent.  相似文献   

3.
Composting of two types of sludge produced in wastewater treatment plants, raw sludge (RS) and anaerobically digested sludge (ADS), has been systematically studied by means of the experimental design technique. The results have been analyzed using a full factorial experimental design in order to determine the optimal conditions for composting such sludges in terms of bulking agent particle size and bulking agent:sludge volumetric ratio, two of the key parameters to ensure an optimal performance of the composting process. The objective function selected was a simulated death kinetics of Salmonella, which was chosen as a model pathogen microorganism to represent the disinfection of the material. For both types of sludge, optimal values were found at 5mm bulking agent particle size and 1:1 bulking agent:sludge volumetric ratio when a Gaussian function was fitted to the experimental data. Pilot scale experiments using optimal values obtained were successfully undertaken and confirmed a full disinfection of the sludge by means of the composting process. A mathematical model to simulate the disinfection performance of a composting material is presented. The model can be applied to simulate the disinfection performance of a given pathogen.  相似文献   

4.
Three sewage sludge composts were obtained from mixtures of an aerobic sludge (AS) and three organic wastes differing widely in chemical composition: an extremely biodegradable waste (municipal solid waste, MSW), a plant residue (grape debris) and a residue with a carbon fraction not easily mineralizable (peat residue). The following mixtures were made, the proportions referring to their total organic carbon content: AS-MSW 1/1, AS-GRAPE 3/1 and AS-PEAT 1/1. These mixtures were composted over 3 months in the open air with periodical turning, and were left to mature afterwards for 4 months. Uncomposted mixtures and composted mixtures, before and after maturation, were incubated for 38 days, under laboratory conditions, with a calcareous soil and the CO2 emission of the samples periodically measured.Uncomposted mixtures emitted much greater quantities of carbon than those composted, whether before or after maturation period. Both at the beginning and at the end of composting, differences were observed between the total amount of carbon emitted by the mixture containing peat waste and the others. However, the quantities of carbon emitted from the three mixtures tended to even out in mature composts, reaching a maximum of 600 mg carbon per 100 g total organic carbon. This shows that, although the mineralization of carbon depends on the nature of the organic waste mixed with the sewage sludge, it tends to even out when the mixtures have undergone composting.  相似文献   

5.
Changes in the chemical and chemical-structural composition of the organic matter of two different sewage sludges (aerobic and anaerobic) mixed with sawdust (1:1 and 1:3, v/v) during composting were determined by monitoring chemical and microbiological parameters as well as by pyrolysis-gas chromatography. Composting was carried out in periodically turned outdoor piles, which were sampled for analysis 1, 30, 60 and 90 days after the beginning of the composting process. Both volatile organic matter and the water soluble C fraction decreased during composting, indicating that the more labile C fractions are mineralized during the process. Microbial activity as measured by microbial respiration (CO(2) evolved from compost samples during incubation) also decreased with composting, reflecting the more stable character of the resulting compost. No major differences were observed between the four composts studied as regards their chemical-structural characteristics. The acetonitrile, acetic acid and phenol pyrolytic fragment tended to increase with composting. Although the final composts were more aromatic in nature than the starting materials, a low degree of humification was observed in all four composts studied, as determined by their high proportion of polysaccharides and alkyl compounds. For this reason, the relationship between pyrolytic fragments, such as benzene/toluene or benzene+toluene/pyrrol+phenols, which are used as indices of humification for soil organic matter, are not of use for such poorly evolved sludge composts; instead, ratios that involve carbohydrate derivatives and aromatic compounds, such as furfural+acetic/benzene+toluene or acetic/toluene, are more sensitive indices for reflecting the transformations of these materials during composting. Both the chemical and microbiological parameters and pyrolytic analysis provided valuable information concerning the nature of the compost's organic matter and its changes during the composting process.  相似文献   

6.
The disposal problem represented by vegetable-tannery sludge is of great and ever-increasing concern in Italy. Such sludge is of a highly polluting nature and therefore, requires a reliable and safe treatment to make it harmless before release into the environment. Vegetable-tannery sludge contains some very toxic compounds, mainly polyphenols (i.e. tannins) and sulphides, that are hazardous to biological systems. This paper deals with experiments evaluating the feasibility of vegetable-tannery sludge management and recycling by an integrated composting process. Static windrow technique with forced air and temperature feedback has been adopted for composting a mixture of vegetable-tannery sludge and organic biodegradable fraction of municipal solid waste (MSW) as bulking agent. Physico-chemical, microbiological and phytotoxicological aspects of this compost production from vegetable-tannery sludge are here emphasized along with some technological details.  相似文献   

7.
Increasing pulp industry production has generated additional solid waste (i.e. biological sludge, dregs, etc.) and therefore an increasing disposal problem. On the other hand, composting is emerging as an interesting alternative for the disposal of residues. The objective of this study was to evaluate the physical and chemical properties of sludge, dregs and bark and the effect on their initial conditioning stage prior to composting, using pine chips as bulking agent. After their characterization, these solid wastes were combined in different mixture proportions defined by a 32 experimental design based on the response surface methodology (RSM), in which 18 observations were required for the independent variables (dregs and bark) and the C: N ratio, moisture content and pH were the dependent variables. The characterization indicated that the dregs have alkaline properties with the presence of some essential plant nutrients, such as phosphorous (0.37%), potassium (0.76%), magnesium (1.4%) and calcium (27%). The combination of the macronutrients (phosphorous: 0.39%, potassium: 0.24%, calcium: 1.7%, magnesium: 0.44%) and micronutrients such as ferrous material (0.47%) and zinc (0.12%) found in the sludge suggest a promising alternative despite the potential problem due to the high pH of the dregs. The RSM design indicated a feasible region that satisfied the optimal dregs: bark ratio of 0.25 without exceeding the addition of 12.5% dregs, due to the alkaline properties of these inorganic wastes and the quadratic influence over the C:N ratio. The experimental results indicated that the composting process of dregs, bark and sludge is technically suitable, although the use of a rapidly available C source needs to be evaluated.  相似文献   

8.
Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery–distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain.  相似文献   

9.
Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and bulking agent to waste ratio: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone and 1-propanol-2-methyl. However, dropping the aeration rate and increasing the bulking agent to waste ratio reduced gaseous odour emissions by a factor of 5–10, when the required threshold dilution factor ranged from 105 to 106, to avoid nuisance at peak emission rates. Process influence on emissions of dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide were poorly correlated with both aeration rate and bulking agent to waste ratio as a reaction with hydrogen sulphide was suspected. Acetophenone emissions originated from the wood chips. Olfactory measurements need to be correlated to gaseous emissions for a more accurate odour emission evaluation.  相似文献   

10.
Effectiveness of three bulking agents for food waste composting   总被引:3,自引:0,他引:3  
Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends. Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment.  相似文献   

11.
Characteristics of municipal solid waste and sewage sludge co-composting   总被引:1,自引:0,他引:1  
The purpose of this work is to study the characteristics of the co-composting of municipal solid waste (MSW) and sewage sludge (SS). Four main influencing factors (aeration pattern, proportion of MSW and SS, aeration rate and mature compost (MC) recycling) were systematically investigated through changes of temperature, oxygen consumption rate, organic matters, moisture content, carbon, nitrogen, carbon-to-nitrogen ratio, nitrogen loss, sulphur and hydrogen. We found that a continuous aeration pattern during composting was superior to an intermittent aeration pattern, since the latter delayed the composting process. A 3:1 (v:v) mixture of MSW and SS was most beneficial to composting. It maintained the highest temperature for the longest duration and achieved the fastest organic matter degradation and highest N content in the final composting product. A 0.5L/minkgVS aeration rate best ensured rapid initiation and maintained moderate moisture content for microorganisms. After the mature MC was recycled to the fresh materials as a bulking agent, the structure and moisture of the initial materials were improved. A higher proportion of MC resulted in quicker decrease of the temperature, oxygen consumption rate and moisture. Therefore a 3:1:1 (v:v:v) proportion of MSW: SS: MC is recommended.  相似文献   

12.
Waste materials from the clam processing industry (offal, shells) have several special characteristics such as a high salinity level, a high nitrogen content, and a low C/N ratio. The traditional disposal of clam waste through landfilling is facing the challenges of limited land available, increasing tipping fees, and strict environmental and regulatory scrutiny. The aim of this work is to investigate the performance of in-vessel composting as an alternative for landfill application of these materials. Experiments were performed in both laboratory-scale (5L) and pilot-scale (120L) reactors, with woodchips as the bulking agent. In the laboratory-scale composting test, the clam waste and woodchips were mixed in ratios from 1:0.5 to 1:3 (w/w, wet weight). The high ratios resulted in a better temperature performance, a higher electrical conductivity, and a higher ash content than the low-ratio composting. The C/N ratio of the composts was in the range of 9:1-18:1. In the pilot-scale composting test, a 1:1 ratio of clam waste to woodchips was used. The temperature profile during the composting process met the US Environmental Protection Agency sanitary requirement. The final cured compost had a C/N ratio of 14.6, with an ash content of 167.0+/-14.1g/kg dry matter. In addition to the major nutrients (carbon, nitrogen, calcium, magnesium, phosphorus, potassium, sulfur, and sodium), the compost also contained trace amounts of zinc, manganese, copper, and boron, indicating that the material can be used as a good resource for plant nutrients.  相似文献   

13.
Micronutrient content and availability in composts may be affected by the addition of wood chips or tree bark as a bulking agent in the compost feedstock. In the first part of this study, micronutrient levels were assessed in bark and wood of poplar and willow clones in a short-rotation coppice. Large differences between species were observed in bark concentrations for Cd, Zn and Mn. In the second part of the study, we aimed to determine the effect of feedstock composition and composting on Cd, Zn and Mn concentrations and availability. By means of three composting experiments we examined the effect of (a) bark of different tree species, (b) the amount of bark, and (c) the use of bark versus wood chips. In general, compost characteristics such as pH, organic matter and nutrient content varied due to differences in feedstock mixture and composting process. During the composting process, the availability of Cd, Zn and Mn decreased, although the use of willow and poplar bark or wood chips resulted in elevated total Cd, Zn or Mn concentrations in the compost. Cd concentrations in some composts even exceeded legal criteria. Cd and Zn were mainly bound in the reducible fraction extracted with 0.5 M NH2OH?HCl. A higher acid-extractable fraction for Mn than for Cd and Zn was found. Higher Cd concentrations in the compost due to the use of bark or wood chips did not result in higher risk of Cd leaching. The results of the pH-stat experiment with gradual acidification of composts illustrated that only a strong pH decline in the compost results in higher availability of Cd, Zn and Mn.  相似文献   

14.
The influence of the proportion of C- and N-rich raw materials (initial C/N ratio) and bulking agent on the chemical functional groups composition, humic-like substances (HS-like) content and physicochemical properties of composts was assessed. To achieve these goals, seven initial mixtures (BA1–6 and C1) of dog food (N-rich raw material) were composted with wheat flour (C-rich raw material). Composts were analyzed in terms of chemical functional groups, physicochemical, maturity and stability parameters.The C-rich raw material favored the formation of oxidized organic matter (OM) during the composting process, as suggested by the variation of the ratios of the peaks intensity of FT-IR spectra, corresponding to a decrease of the polysaccharides and an increase of aromatic and carboxyl-containing compounds. However, although with high proportion of C-rich raw material, mixtures with low initial C/N seems to have favored the accumulation of partially oxidized OM, which may have contributed to high electrical conductivity values in the final composts. Therefore, although favoring the partial transformation of OM into stabilized HS-like, initial mixtures with high proportion of C-rich raw material but with low initial C/N led to unstable composts.On the other hand, as long as a high percentage of bulking agent was used to promote the structure of biomass and consequently improve of the aeration conditions, low initial C/N was not a limiting factor of OM oxidation into extractable stabilized humic-like acids.  相似文献   

15.
Rice hulls and sawdust are two common C-rich wastes derived from rice and timber agro-industries in subtropical NE Argentina. An alternative to the current management of these wastes (from bedding to uncontrolled burning) is composting. However, given their C-rich nature and high C/N ratio, adequate composting requires mixing with a N-rich waste, such as poultry manure. The effect of different proportions of poultry manure, rice hulls and/or sawdust on composting efficiency and final compost quality was studied. Five piles were prepared with a 2:1 and 1:1 ratio of sawdust or rice hulls to poultry manure, and 1:1:1 of all three materials (V/V). Different indicators of compost stability and quality were measured. Thermophilic phase was shorter for piles with rice hulls than for piles with sawdust (60 days vs. 105 days). Time required for stability was similar for both C-rich wastes (about 180 days). Characteristics of final composts were: pH 5.8–7.2, electrical conductivity 2.5–3.3 mS/cm, organic C 20–26%, total N 2.2–2.9%, lignin 19–22%, total Ca 18–24 g/kg, and extractable P 6–8 g/kg, the latter representing 60% of total P. Nitrogen conservation was high in all piles, especially in the one containing both C-rich wastes. Piles with sawdust were characterized by high total and available N, while piles with only rice hulls had higher Si, K and pH. Extractable P was higher in 1:1 piles, and organic C in 2:1 piles.  相似文献   

16.
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.  相似文献   

17.
In the present study, we investigated the effects of two bulking materials, Sphagnum peat and pine wood chips, on the early stages of biowaste composting in two pilot-scale processes. Emphasis was placed on studying the formation conditions of malodorous compost gases in the initial phases of the processes. The results showed that gas emission leaving an open windrow and a closed drum composting system contained elevated concentrations of fermentative microbial metabolites when acid Sphagnum peat (pH 3.2) was used as a bulking material. Moreover, the gas emission of the peat amended drum composter contained a high concentration of odour (up to 450,000 ou m?3 of air). The highest odour values in the outlet gas of peat amended composts coincided with the elevated concentrations of volatile organic compounds such as acetoin and buthanedion. We conclude that the acidifying qualities of composting substrates or bulking material may intensify odour emission from biowaste composts and prolong the early stages of the composting process.  相似文献   

18.
This study investigated sludge granulation inoculated with various mixtures of aerobic and anaerobic sludge at low dissolved oxygen (DO; 0.3–0.6 mg/l) or aerobic (>2.5 mg/l) conditions in four parallel flow reactor systems. Formation of high-density coupled granules was achieved in the reactor system inoculated with anaerobic and aerobic sludge seeds (1:1 mass ratio) at low DO concentrations, with a mean size of 2.5 mm after only 27 days of cultivation. The highest ratio of protein (PN) to polysaccharide (PS; 3.3) was observed for the coupled sludge compared to granules cultivated under aerobic conditions. The PN/PS ratio correlated well with high hydrophobicity, low sludge volumetric index, and compact granular structure. Activity tests of the specific anaerobic and aerobic biomass confirmed that anaerobes and aerobes coexisted in the same coupled granule. Based on the optical microscopic and SEM observations, the process of coupled granule formation was proposed.  相似文献   

19.
A wide variety of antibiotics have been detected in natural water samples and this is of potential concern because of the adverse environmental effects of such antibiotic residues. One of the main sources of antibiotics effluence to the surrounding environment is livestock manures which often contain elevated concentrations of veterinary antibiotics (VAs) which survive digestion in the animal stomach following application in animal husbandry practices. In Korea, livestock manures are normally used for compost production indicating that there is potential for antibiotic release to the environment through compost application to agricultural lands. Therefore, reduction of the amount of VAs in composts is crucial. The purpose of this study was to understand the influence of the composting process and the components of the compost on the levels of three common classes of antibiotics (tetracyclines, sulfonamides, and macrolides). Composted materials at different stages of composting were collected from compost manufacturing plants and the variation in antibiotic concentrations was determined. Three different antibiotics, chlortetracycline (CTC), sulfamethazine (SMZ), and tylosin (TYL) at three different concentrations (2, 10, and 20 mg kg−1) were also applied to a mixture of pig manure and sawdust and the mixtures incubated using a laboratory scale composting apparatus to monitor the changes in antibiotic concentrations during composting together with the physicochemical properties of the composts. During composting, in both field and lab-scale investigations, the concentrations of all three different antibiotics declined below the relevant Korean guideline values (0.8 mg kg−1 for tetracyclines, 0.2 mg kg−1 for sulfonamides and 1.0 mg kg−1 for macrolides). The decline of tetracycline and sulfonamide concentrations was highly dependent on the presence of sawdust while there was no influence of sawdust on TYL decline.  相似文献   

20.
In the current climate of increasing emphasis on environmental protection and efficient waste management, regional management bodies and environmental agencies are striving to achieve an economical and environmentally acceptable system for the recycling of biodegradable organic wastes. Composting would appear to be a cost effective solution to this problem, but in its entirety, composting is an inherently lengthy and variable process and is restrictive in terms of the demand on resources and space in composting plants. The aim of this study was to compare a biological composting process of solid residues with an enzymatic hydrolysis process of residues. The length of time required to naturally compost three organic materials, spent mushroom compost (SMC), farmyard manure (FYM) and dairy wastewater sludge (DWS) under optimal conditions was 42 days, 98 days and 84 days, respectively. In an attempt to accelerate this process, commercial enzymes were added to the waste products in a heterogeneous solid-liquid system. The enzymes utilised included a range of proteases, cellulases, ligninases, lipases and pectinases, which are responsible for the hydrolysis of protein, cellulose, lignin, lipids and carbohydrates, respectively. Preliminary results indicate that all of the organic materials were stabilised within 9h and that the enzymes used would, therefore, improve the efficiency of a waste management plant, if such a system were employed. Spent mushroom compost has a mean N/P/K ratio of 20:10:10 recorded for composted SMC, while a similar ratio of 20:10:20 was obtained for hydrolysed SMC. In contrast, composted farmyard manure has a N/P/K ratio of 30:0:30 and a ratio of 10:1:10 for hydrolysed FYM. Finally, composted DWS has a N/P/K ratio of 20:1:30 while DWS hydrolysate has a N/P/K ratio of 40:1:20, with the decrease in nitrogen in the composted DWS attributed to the addition of wood chippings and sawdust as a bulking agent. While all three materials have a considerable supply of plant nutrients, the variability in nutrients could be overlooked when employed as a soil amendment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号