首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The nonferrous metal industry (NMI) of China consumes large amounts of energy and associated emissions of carbon dioxide (CO 2) are very high. Actions to reduce CO 2 emissions and energy consumption are warranted. This study aims to analyze current China NMI trends of CO 2 emissions and energy consumption including the underlying regional driver characteristics. We analyze the changes of CO 2 emissions in the NMI based on the Logarithmic Mean Divisia Index (LMDI) method from 2000 to 2011. Then, a classification system is used to study the regional differences in emission changes from the NMI. The results show that the emissions of the Chinese NMI increased rapidly at an average annual growth rate of 31 million metric tons. The economic scale and energy intensity are the main driving factors responsible for the change in the emissions, while carbon emission coefficients make only a small contribution toward decreasing the emissions, and the energy structure has a volatile effect. Emissions and energy intensity of 29 China provinces were divided into five categories. The change in the trend of each region is indicated in this paper. Hebei is one of the provinces that achieved the best performance, and Chongqing achieved the worst performance among all of the regions. The analysis suggests that the main emphasis of CO 2 emission mitigation should be focused on controlling the economic scale and improving the energy intensity. Developing the use of clean energy technologies and policies in both the NMI and power industries is important.  相似文献   

2.
This paper deals with the decomposition analysis of energy-related CO2 emissions in Brazil and Russia from 1992 to 2011. The refined Laspeyres index (RLI) method applied and both aggregated and sectoral changes in CO2 emissions decomposed. Brazil’s and Russia’s economies divided into three economic sectors including agriculture, industry and services. Impact of four main factors, such as economic activity, employment, energy intensity, and carbon intensity in CO2 emissions changes were analyzed. The aggregated decomposition analysis revealed that Brazil is still far from a decoupling between economic growth and carbon dioxide emissions where Russia achieved a substantial decline in carbon emissions mainly due to the improved energy intensity. The empirical findings of sectoral decomposition analysis emphasized that the economic activity was the major CO2 increasing factor in Brazil’s economic sectors. On the other hand the economic activity effect followed a reducing impact in Russia’s sectoral emissions until 2000. The structural changes between sectors and their impacts on CO2 emissions were captured by employment effect. Energy intensity and carbon intensity effects underlined that environmental sustainability widely neglected in Brazil and Russia during the study period. The results yield important hints for energy planning and sustainable environment.  相似文献   

3.
采用IPCC温室气体排放清单中CO2排放因子与估算方法,核算了1995—2012年中国30个省区(不含港澳台地区和西藏自治区数据,全文同)服务业的CO2排放量,并对30个省区服务业人均CO2排放量的时空特征进行分析;利用基于面板数据的EKC模型检验中国及其三大经济带服务业增长与CO2排放之间的关系. 结果表明:在考察期内,中国服务业人均CO2排放量从0.16 t升至0.77 t,服务业人均增加值从1 621.04元增至9 991.95元;服务业人均CO2排放量排在前列的省区大都位于东部地区;东部和中部地区人均CO2排放量与服务业人均增加值之间呈线性正相关,人均服务业增加值每增加1个单位,人均CO2排放量将分别增加1.02和1.16个单位;西部地区人均CO2排放量与服务业人均增加值之间呈单调递增关系. 在此基础上,提出差别化的碳减排对策:①东部地区应通过技术改进和优化产业结构、能源消费结构来降低CO2排放,并成为中国服务业节能减排的“领头羊”;②中、西部地区应在保持服务业经济适当增速的前提下,将提高能源利用效率和降低能源强度作为减排重点.   相似文献   

4.
We present an in-depth decompositionanalysis using physical indicators oftrends in Carbon dioxide (CO2) emissions in the cementindustry in Brazil, China, South Korea andthe United States. Physical indicatorsallow a detailed analysis of intra-sectoraltrends, in contrast to the often usedmonetary indicators. We assess thecontribution of different factors affectingCO2 emissions in the cement industry,including change in product mix, efficiencyof power generation, changes in fuel mixand changes in energy efficiency. Thedecomposition results show that in allexamined countries, increased productionwas the main contributor to the increase intotal CO2 emissions. Energy-efficiencyimprovement is the most important factorthat led to the reduction of emissionintensities for all countries except Korea.For Korea, structural change in the productmix is the most important factorcontributing to the emission intensityreduction.  相似文献   

5.
Carbon dioxide(CO2) emissions are a leading contributor to the negative effects of global warming. Globally, research has focused on effective means of reducing and mitigating CO2 emissions. In this study, we examined the efficacy of eco-industrial parks(EIPs) and accelerated mineral carbonation techniques in reducing CO2 emissions in South Korea.First, we used Logarithmic Mean Divisia Index(LMDI) analysis to determine the trends in carbon production and mitigation at the existing EIPs. We found that, although CO2 was generated as byproducts and wastes of production at these EIPs, improved energy intensity effects occurred at all EIPs, and we strongly believe that EIPs are a strong alternative to traditional industrial complexes for reducing net carbon emissions. We also examined the optimal conditions for using accelerated mineral carbonation to dispose of hazardous fly ash produced through the incineration of municipal solid wastes at these EIPs. We determined that this technique most efficiently sequestered CO2 when micro-bubbling, low flow rate inlet gas, and ammonia additives were employed.  相似文献   

6.
庄颖  夏斌 《环境科学研究》2017,30(7):1154-1162
交通领域是二氧化碳排放的重要领域,为研究广东省的交通碳排放及影响因素,利用IPCC(联合国政府间气候变化专门委员会)在温室气体清单指南中提供的方法估算了广东交通碳排放量,并应用LMDI分解法(对数平均指数法)对广东交通碳排放进行因素分解分析.结果表明:① 2001-2010年广东交通碳排放量从1 950.98×104 t增至6 068.41×104 t,其中交通运输业碳排放是广东交通碳排放的主体,私人交通碳排放已成为广东交通碳排放不可忽视的组成部分.② 交通运输业中的公路碳排放量占比最大,占56%~64%;铁路的碳排放量占比最小,占0.6%~1.6%;水运具有较大的节能优势;民航单位周转量碳排放量最高.③ 交通运输业发展水平、运输结构、私人汽车数量规模对广东交通碳排放增加的贡献率分别为68.79%、36.14%、18.66%,是拉动广东交通碳排放增长的主要因素;运输强度与能源强度的贡献率分别为-18.1%、-6.46%,是抑制交通碳排放增长的因素.广东可以通过采取优化交通运输结构、使用替代清洁能源等措施减少交通碳排放.   相似文献   

7.
碳达峰碳中和是我国的重大战略决策,对推进产业转型升级和绿色发展具有重要意义. 实现经济增长与资源能源消耗、污染物和碳排放的总量与强度双控制,是推进“双碳”目标的重要支撑. 我国沿海地区制造业发达,污染物和碳排放量较大,寻找减污降碳协同增效路径对区域绿色转型具有重大现实意义. 本文以浙江省宁波市为对象,对全部经济门类的产业结构开展实证研究,运用多准则决策模型和情景分析法,以能源、水资源、4种主要污染物(化学需氧量、氨氮、二氧化硫、氮氧化物)和二氧化碳为约束条件建立了产业结构优化调整模型,将各产业增加值占比的变化程度作为决策变量,筛选出产业结构调整平稳、减排幅度大的调整方案. 制造业作为宁波市经济发展的主体,贡献了较高比例的污碳排放和能源资源消耗. 4.5%、5.5%、6.5%三种年均经济增速情景下宁波市通过产业结构调整实现减污降碳协同增效的潜力分析显示,2020—2030年预期可实现累计97%的经济增长,且能满足区域资源环境的约束限制. 面向2030年提出宁波市产业结构优化调整路径,建议严格控制高排放制造业的准入门槛,提升第一产业和采矿业的资源能源利用效率,推进电力、热力的生产与供应业等存量行业的减污降碳,鼓励发展高附加值的第三产业和循环经济产业.   相似文献   

8.
利用IPCC的参考方法测算并比较分析了2005-2009年我国30个省(市、自治区)的CO2排放总量、人均排放量、排放强度、综合能源排放系数等重要指标,并在此基础上,依据人均GDP、第二产业比重和能源利用结构与碳排放强度的关系,将各省(市、自治区)划分为不同的CO2排放类型。研究结果表明,省域间各指标差异较大,影响碳排放的因素也不尽相同。省域减排的政策、途径和措施须充分考虑各自的经济发展水平、产业结构和能源利用结构等因素。  相似文献   

9.
An important subset of the utility sector has been scarcely explored for its ability to reduce carbon dioxide emissions: consumer-owned electric utilities significantly contribute to U.S. greenhouse gas emissions, but are often excluded from energy efficiency and renewable energy policies. They sell a quarter of the nation's electricity, yet the carbon impact of these sales is not well understood, due to their small size, unique ownership models, and high percentage of purchased power for distribution. This paper situates consumer-owned utilities in the context of emerging U.S. climate policy, quantifying for the first time the state-by-state carbon impact of electricity sales by consumer-owned utilities. We estimate that total retail sales by consumer-owned utilities account for roughly 568 million metric tons of CO2 annually, making this sector the 7th largest CO2 emitter globally, and examine state-level carbon intensities of the sector in light of the current policy environment and the share of COU distribution in the states. Based on efficiency and fuel mix pathways under conceivable regulations, carbon scenarios for 2030 are developed.  相似文献   

10.
肖婷玉  束韫  李慧  王涵  李俊宏  严沁  张文杰  姜华 《环境科学》2024,45(3):1265-1273
为量化评估太原市“十四五”大气污染防治政策的减污降碳协同效益,使用京津冀温室气体-空气污染相互作用与协同模型(GAINS-JJJ),模拟评估13项大气污染防治措施的减排潜力,CO2的协同减排效益.2025年政策情景下一次PM2.5、PM10、SO2、NOx、VOCs和NH3分别减排1.8(5%,相对于基准情景减排比例,下同)、2.5(2%)、3.7(16%)、20.0(27%)、13.6(15%)和0.0 kt(0%),CO2减排9.0 Mt(13%),CH4排放增加203.3 kt(相对于基准情景增加25%).SO2、NOx与VOCs减排主要发生在电力、工业燃烧与溶剂使用部门,CO2减排主要发生在工业燃烧部门,CH4排放量增加是由于煤矿开采活动水平升高.限制“双高”行业的能源消耗,严禁新增产能以及可再生能源发电比例提升措施的CO2协同减排效益最高.VOCs具有优异协同减碳效益.建议太原市进一步推进终端电气化政策,同时需加大提升电力行业清洁能源比重和可再生能源发电的消纳能力.  相似文献   

11.
An analysis of the impacts on Mexican energy demand and associated carbon dioxide (CO2) emissions in the year 2005 due to efficient lighting in the commercial and residential sectors and cogeneration in the industrial sector is presented. Estimation of CO2 abatement costs and an incremental cost curve for CO2 mitigation options are considered. These technologies are cost effective opportunities, and together are projected to reduce CO2 emissions in 2005 by nearly 13 percent. Implementation of efficient lighting is already part of the demand side management (DSM) programs of the Mexican state-owned utility. However, there are important barriers that may hinder the implementation of large scale cogeneration plants.  相似文献   

12.
An analysis of the impacts on Mexican energy demand and associated carbon dioxide (CO2) emissions in the year 2005 due to efficient lighting in the commercial and residential sectors and cogeneration in the industrial sector is presented. Estimation of CO2 abatement costs and an incremental cost curve for CO2 mitigation options are considered. These technologies are cost effective opportunities, and together are projected to reduce CO2 emissions in 2005 by nearly 13 percent. Implementation of efficient lighting is already part of the demand side management (DSM) programs of the Mexican state-owned utility. However, there are important barriers that may hinder the implementation of large scale cogeneration plants.  相似文献   

13.
Finland is a forested country with a large export oriented forest industry. In addition to domestic forest extraction, roundwood is imported, thus displacing the environmental impacts of harvests. In this paper, we analyse the international carbon flows of forest industries in Finland from a consumption-based perspective. Quantitative analyses are available on trade embedded emissions of CO2 from fossil fuel combustion, and here we address in a similar way the impact of trade on the carbon budget of the forest products sector in Finland. Carbon flows through the forest industry system increased substantially between 1991 and 2005. We show that the annual carbon balance related to forests and forest industry system in Finland functioned as a sink in 1991, whereas in 2005 the system was a sink on a national level, but not on a global level. Through calculating the carbon content in traded forest industry products and emissions embodied in forest industry activities, we further show that the direct impacts of the forest industry in Finland are only a minor fraction of the total CO2 emissions related to Finnish production. Nearly all of the emissions were caused due to production of exports. Yet, direct carbon dioxide emissions of the industrial production are reported to Finland in the production based inventories.  相似文献   

14.
Steel dominates the global metal production accounting for 5 % of increase in Earth’s atmospheric carbon dioxide (CO2). Today, India is the 4th largest producer of crude steel in the world. The sector contributes around 3 % to the country’s gross domestic product (GDP) but adds 6.2 % to the national greenhouse gas (GHG) load. It accounts for 28.4% of the entire industry sector emissions, which are 23.9% of the country’s total emissions. Being a developing country, India is not obliged to cut its emissions under the Kyoto Protocol to the United Nations Framework Convention on Climate Change (FCCC), but gave voluntary commitment to reduce the emission intensity of its GDP by 20–25 % from the 2005 level by 2020. This paper attempts to find out if the Indian steel sector can help the country in fulfilling this commitment. The sector reduced its CO2 emissions per ton of steel produced by 58% from 1994 to 2007. The study generates six scenarios for future projections which show that the sector can reduce its emission intensity by 12.5 % to 63 %. But going by the conservative estimates, the sector can reduce emission intensity by 30 % to 53 %. However, actual emissions will go up significantly in every case.  相似文献   

15.
The steel industry is characterised by large amounts of CO2 emissions, but there is no easy means to reduce these emissions. One interesting option for the reduction of CO2 emissions could be the utilisation of steelmaking slags for carbon dioxide mineralisation. In this option CO2 is bound with the calcium of the slag material, producing stable carbonate as an end product. The utilisation of steelmaking slags as the raw material for carbon dioxide mineralisation will change the quality of the slags. If, however, this change degrades the slags it could prevent the use of slags in carbon dioxide mineralisation or make it very expensive.The purpose of the research presented here is to evaluate this issue with the help of a case study where the quality of the residual slag from the recently suggested carbonation method was experimentally investigated. The CO2 mineralisation method, based on steelmaking slags and ammonium salt solutions, was found to change the quality of the slags: the calcium content was reduced, the CaO and Ca(OH)2 phases were completely dissolved, and the solubility of the V and Cr increased notably. This residual slag would presumably have to be handled as waste. Currently, the steelmaking slag used in the case study is defined as a by-product, but if it is used for CO2 mineralisation instead of liming its legal status will be re-evaluated. Subsequently, the CO2 mineralisation process could possibly be defined as an end-of-waste procedure.  相似文献   

16.

China is among the largest emitters of carbon dioxide (CO2), worldwide Thus, its emissions mitigation is of global concern. The power generation sector is responsible for nearly half of China’s total CO2 emissions and plays a key role in emissions mitigation. This study is an integrated evaluation of abatement technologies, including both low-carbon power generation technologies and retrofitting options for coal power plants. We draw marginal abatement cost curves for these technologies using the conservation supply curve method. Using scenario analysis for the years 2015 to 2030, we discuss the potential performance of abatement technologies. Marginal costs for the analyzed abatement technologies range from RMB ? 357.41/ton CO2 to RMB 927.95/ton CO2. Furthermore, their cumulative mitigation potential relative to the baseline scenario could reach 35 billion tons of CO2 in 2015–2030, with low-carbon power generation technologies and coal power abatement technologies contributing 55% and 45% of the total mitigation, respectively. Our case study of China demonstrates the power generation sector’s great potential to mitigate global emissions, and we suggest nuclear power, hydropower, and the comprehensive retrofitting of coal power as key technology options for the low-carbon transition of the energy system and long-term emissions mitigation strategies.

  相似文献   

17.
中国电网火电比例的空间差异与插电式混合动力汽车(PHEV)驱动能源的二元性增加了研究PHEV二氧化碳排放的复杂性.使用上海市50辆PHEV汽车13万km的数据,研究了基于PHEV实际运行数据的二氧化碳排放评估方法,分析了PHEV纯电驱动里程比例及其影响因素,获得了纯电续驶里程、充电频率、电网构成对PHEV二氧化碳排放强度的影响,展望了2020年PHEV技术水平的二氧化碳减排效果.结果表明,我国一线城市PHEV乘用车出行主要集中在50 km以内的范围,占日常出行频次的70%;在2016年全国平均电网结构下,续驶里程超过50 km的PHEV比传统燃油车少排放15%以上的二氧化碳;在高比例可再生能源电网结构的地区,PHEV碳排放可降至100.0 g·km-1以下,相比平均电网结构下碳排放水平降低幅度在28%以上;在2016年平均电网结构及技术水平下,纯电续驶里程增加(50~100 km)、充电频率增加(0.5~2次·d-1)对碳排放的改善幅度不明显;与2016年相比,2020年PHEV燃油经济性和电耗水平的改善可降低32%的碳排放.  相似文献   

18.
基于LEAP模型,构建了2015~2040年兰州市道路交通发展“零措施”的基准(BAU)情景以及低碳(LC)和强化低碳(ELC)这2个节能减排情景,模拟评估各项政策和措施下能源消耗情况和温室气体与大气污染物协同减排效果.结果表明,LC情景能源消耗和CO2排放将于2026年达峰,ELC情景能源消耗和CO2排放将于2020年达峰;两种情景下,NOx、 CO、 HC、 PM2.5和PM10等污染物排放量于2015~2017年间开始出现大幅下降,下降趋势于2023年前后逐渐减缓.结合措施可行性和减排成本,LC情景可作为兰州市道路交通碳达峰减排情景:到2040年能源消耗量、 CO2、 NOx、 CO、 HC、 PM2.5和PM10排放相对于BAU情景的削减率分别达到-24.17%、-26.57%、-55.38%、-65.91%、-72.87%、-76.66%和-77.18%.兰州市道路交通当前应以公共...  相似文献   

19.
The use of wood products is often promoted as a climate change mitigation option to reduce atmospheric carbon dioxide concentrations. In previous literature, we identified longevity and recycling rate as two determining factors that influence the carbon stock in wood products, but no studies have predicted the effect of improved wood use on carbon storage over time. In this study, we aimed at evaluating changes in the lifespan and the recycling rate as two options for enhancing carbon stock in wood products for different time horizons. We first explored the behaviour over time of both factors in a theoretical simulation, and then calculated their effect for the European wood sector of the future. The theoretical simulation shows that the carbon stock in wood products increases linearly when increasing the average lifespan of wood products and exponentially when improving the recycling rate. The emissions savings under the current use of wood products in Europe in 2030 were estimated at 57.65 Mt carbon dioxide (CO2) per year. This amount could be increased 5 Mt CO2 if average lifespan increased 19.54 % or if recycling rate increased 20.92 % in 2017. However, the combination of both strategies could increase the emissions saving almost 5 Mt CO2 more by 2030. Incrementing recycling rate of paper and paperboard is the best short-term strategy (2030) to reduce emissions, but elongating average lifespan of wood-based panels is a better strategy for longer term periods (2046).  相似文献   

20.
作为我国经济最为发达的省份之一,广东省社会经济可持续发展面临CO2排放量增长的挑战.从多角度分析广东省CO2排放变化的社会经济影响因素,有助于其实现低碳发展.基于投入产出模型,从生产、需求和供应角度分析1987—2015年广东省CO2排放量的变化;此外,采用结构分解分析方法,从需求和供应角度量化广东省各种社会经济因素对CO2排放变化的相对贡献.结果表明:①与生产端相比,需求侧和供给侧的研究有助于识别不同的关键行业,如建筑业(需求侧)、金融和保险业(供给侧).②降低碳排放强度是减少广东省CO2排放的主要因素,而人均最终需求水平和人均初始投入增加是推动广东省CO2排放增加的主要因素.③生产结构、最终需求结构和初始投入结构变化导致CO2排放量略有增加,表明广东省具有较大的通过调整结构性因素减排CO2的潜力.综上,建议除了生产端CO2减排措施外,广东省还应采取需求侧和供给侧相关措施,如优化消费行为、产品分配行为和初始投入结构等.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号