首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The main objectives of this study were to (a) study the interaction between N and P cycles in mining-affected aquatic systems and (b) to quantify release rates of sedimentary soluble reactive phosphorus (SRP) that may be related to this interaction. Sediment cores and water from Lake Bruträsket (Boliden, northern Sweden) were collected and a time series of water sampling and flow measurements was conducted in the Brubäcken stream connected to the lake. Factors affecting SRP release were studied in a sediment incubation experiment and water column experiments. Field and laboratory measurements indicated that pH and dissolved oxygen are two important factors for SRP release. At the end of the low-oxygen incubation, an SRP concentration of 56 μg?L?1 resulted in a sedimentary flux of 1.1 mg SRP?m?2?day?1. This is ~10 times higher than the flux of 0.12 mg SRP?m?2?day?1 obtained from depth integration of vertical SRP profiles measured in the lake, and ~100 times higher than the external flux of 0.014 mg SRP?m?2?d?1 into the lake (based on catchment area). Field measurements indicated that oxidation of organic matter and mining-related chemicals (ammonium and thiosulphates) may result in increased internal SRP flux from the sediment. Increased P loading in the lake as a result of low-oxygen conditions could change water column total nitrogen/total phosphorus ratios from 27 to 17, consequently changing the lake from being P-limited to be co-limited by N and P. The obtained findings point to possible interaction between the cycles of nitrogen (oxygen consumption) and P (flux from sediment) that may be important for nutrient regulation in mine water recipients.  相似文献   

2.
Recent studies have shown up to 6 % of rivers in England and Wales to be impacted by discharges from abandoned metal mines. Despite the large extent of impacts, there are still many areas where mine water impact assessments are limited by data availability. This study provides an overview of water quality, trace element composition and flux arising from one such area; the Yorkshire Pennine Orefield in the UK. Mine drainage waters across the orefield are characterised by Ca–HCO3–SO4-type waters, with moderate mineralization (specific electrical conductance: 160–525 μS cm?1) and enrichment of dissolved Zn (≤2003 μg?L?1), Ba (≤971 μg?L?1), Pb (≤183 μg?L?1) and Cd (≤12 μg?L?1). The major ion composition of the waters reflects the Carboniferous gritstone and limestone-dominated country rock, the latter of which is heavily karstified in parts of the orefield, while sulphate and trace element enrichment is a product of the oxidation of galena, sphalerite and barite mineralization. Contaminant flux measurements at discharge sites highlight the disproportionate importance of large drainage levels across the region, which generally discharge into first-order headwater streams. Synoptic metal loading surveys undertaken in the Hebden Beck sub-catchment of the river Wharfe highlight the importance of major drainage levels to instream baseflow contamination, with diffuse sources from identifiable expanses of waste rock becoming increasingly prominent as river flows increase.  相似文献   

3.
The persistence and dissipation kinetics of trifloxystrobin and tebuconazole on onion were studied after application of their combination formulation at a standard and double dose of 75 + 150 and 150 + 300 g a.i. ha?1. The fungicides were extracted with acetone, cleaned-up using activated charcoal (trifloxystrobin) and neutral alumina (tebuconazole). Analysis was carried out by gas chromatograph (GC) and confirmed by gas chromatograph mass spectrometry (GC-MS). The recovery was above 80% and limit of quantification (LOQ) 0.05 mg kg?1 for both fungicides. Initial residue deposits of trifloxystrobin were 0.68 and 1.01 mg kg?1 and tebuconazole 0.673 and 1.95 mg kg?1 from standard and double dose treatments, respectively. Dissipation of the fungicides followed first-order kinetics and the half life of degradation was 6–6.6 days. Matured onion bulb (and field soil) harvested after 30 days was free from fungicide residues. These findings suggest recommended safe pre-harvest interval (PHI) of 14 and 25 days for spring onion consumption after treatment of Nativo 75 WG at the standard and double doses, respectively. Matured onion bulbs at harvest were free from fungicide residues.  相似文献   

4.
This study presents the degradation of phenol by the photoelectro-Fenton method using nano zero-valent iron (nZVI) immobilized in polyvinyl alcohol–alginate beads. The effect of nZVI loading, H2O2 concentration, pH, and initial phenol concentration on phenol degradation and chemical oxygen demand reduction was studied. The scanning electron microscope images of the nZVI beads were used to analyze their morphology, and their diameters were in the range of 500–600 μm. The concentration of nZVI in the beads was varied from 0.1 to 0.6 g/L. Fe2+ leakage of 1 and 3 % was observed with 0.5 and 0.6 g/L of nZVI, respectively, and the observed beads' fracture frequency was 2 %, which confirmed the stability of the beads. The optimum operating conditions that arrived for better degradation were 0.5 g/L of nZVI, pH 6.2, and 400 mg H2O2/L. The treatment of effluent by this method increased the biodegradability index of the effluent, and the degradation data were found to follow pseudo first-order kinetics.  相似文献   

5.
Understanding oxygen release by plants is important to the design of constructed wetlands for wastewater treatment. Lab-scale systems planted with Phragmites australis were studied to evaluate the amount of oxygen release by plants using electrode techniques and oxygen consumption model. Oxygen release rate (0.14 g O2/m2/day) measured using electrode techniques was much lower than that (3.94–25.20 gO2/m2/day) calculated using the oxygen consumption model. The results revealed that oxygen release by plants was significantly influenced by the oxygen demand for the degradation of pollutants, and the oxygen release rate increased with the rising of the concentration of degradable materials in the solution. The summary of the methods in qualifying oxygen release by wetland plants demonstrated that variations existed among different measuring methods and even in the same measuring approach. The results would be helpful for understanding the contribution of plants in constructed wetlands toward actual wastewater treatment.  相似文献   

6.
The Xin’an Reservoir is an important water supply source and water conservation area for the Qiantang River. However, after the occurrence of the two algae blooms in 1998 and 1999, the safety of water quality has been put into question. In order to study the historical deposition of nutrients, sediment cores were collected in different regions from the Xin’an Reservoir. The stable isotopes δ13C and δ15N, nutrients, total organic carbon (TOC), and inorganic carbon (IC) in the sediment cores were determined. Radiometric methods (210Pb and 137Cs) were used to obtain sediment chronologies. Spatially, it was found that the average total nitrogen (TN) content in the upper 5 cm of sediments increased from 0.21% in the riverine zone, to 0.33%, and then to 0.57% in the lacustrine zone. The average TP content in the upper 5 cm increased from 0.67 g kg?1 in the riverine zone, to 1.03 g kg?1 in the estuary region, and then to 1.65 g kg?1 in the lacustrine zone. In addition, TOC levels showed a distinct increase from 1.42% in the bottom to 5.97% in the surface of the lacustrine zone. These results demonstrated that although primary productivity and the input of nutrients constantly increased in recent years, algae blooms rarely occurred in the Xin’an Reservoir, due to “depth effect” and an aquatic environment protection-oriented fishery policy. However, high TOC flux and high bio-available phosphorus and nitrogen in surface sediment demonstrated that the reservoir is still confronted with the potential risk of algae blooms.  相似文献   

7.
The main objective of this study was to investigate the degradation mechanism, the reaction kinetics, and the evolution of toxicity of naproxen in waters under simulated solar radiation. These criteria were investigated by conducting quenching experiments with reactive oxygen species (ROS), oxygen concentration experiments, and toxicity evaluations with Vibrio fischeri bacteria. The results indicated that the degradation of naproxen proceeds via pseudo first-order kinetics in all cases and that photodegradation included degradation by direct photolysis and by self-sensitization via ROS; the contribution rates of self-sensitized photodegradation were 1.4 %, 65.8 %, and 31.7 % via ·OH, 1O2 and O2 ??, respectively. Furthermore, the oxygen concentration experiments indicated that dissolved oxygen inhibited the direct photodegradation of naproxen, and the higher the oxygen content, the more pronounced the inhibitory effect. The toxicity evaluation illustrated that some of the intermediate products formed were more toxic than naproxen.  相似文献   

8.
Photochemical advanced oxidation processes have been considered for the treatment of water and wastewater containing the herbicide atrazine (ATZ), a possible human carcinogen and endocrine disruptor. In this study, we investigated the effects of the photon emission rate and initial concentration on ATZ photolysis at 254 nm, an issue not usually detailed in literature. Moreover, the role of reactive oxygen species (ROS) is discussed. Photon emission rates in the range 0.87?×?1018–3.6?×?1018 photons L?1 s?1 and [ATZ]0?=?5 and 20 mg L?1 were used. The results showed more than 65 % of ATZ removal after 30 min. ATZ photolysis followed apparent first-order kinetics with k values and percent removals decreasing with increasing herbicide initial concentration. A fivefold linear increase in specific degradation rate constants with photon emission rate was observed. Also, regardless the presence of persistent degradation products, toxicity was efficiently removed after 60-min exposure to UV radiation. Experiments confirmed a noticeable contribution of singlet oxygen and radical species to atrazine degradation during photolysis. These results may help understand the behavior of atrazine in different UV-driven photochemical degradation treatment processes.  相似文献   

9.
Soil organic matter (SOM) releasing with dissolved organic matter (DOM) formed in solution was confirmed in a sediment/water system, and the effects of SOM releasing on the sorption of phenanthrene on sediments were investigated. Inorganic salt (0–0.1 mol L?1 NaCl) was used to adjust SOM releasing, and two sediments were prepared, the raw sediment (S1) from Weihe River, Shann’xi, China, and the eluted sediments with and without DOM supernatant remained, termed as S2a and S2b, respectively. The FTIR and 1H NMR analysis indicate that the low molecular weight hydrophilic SOM fraction released prior to the high molecular weight hydrophobic fraction. As a response, phenanthrene sorption kinetics on S1 showed atypical and expressed as three stages: rapid sorption, pseudo sorption with partial desorption, and slow sorption, thus a defined “sorption valley” occurred in kinetic curve. In all cases, partition dominates the sorption, and sorption capacity (Kd) ranked as S2b > S1 > S2a. Compared with the alterations of sediment characters, DOM solubilization produced by SOM releasing exhibited a greater inhibitory effect on sorption with a relative contribution of 0.67. Distribution coefficients (Kdoc) of PHE into DOM clusters were 2.10?×?104–4.18?×?104 L kg?1, however a threshold concentration of 6.83 mg L?1 existed in DOM solubilization. The study results will help to clarify PAHs transport and their biological fate in a sediment/water system.  相似文献   

10.
Photocatalytic degradation of dissolved organic carbon (DOC) by utilizing Fe(III)-doped TiO2 at the visible radiation range is hereby reported. The photocatalyst was immobilized on sintered glass frits with the coating done by wet method, calcinated at 500 °C and then applied in a photodegradation reactor. The addition of a transition metal dopant, Fe(III), initiated the red shift which was confirmed by UV–Vis spectroscopy, and the photocatalyst was activated by visible radiation. X-ray diffraction patterns showed that Fe(III) doping had an effect on the crystallinity of the photocatalysts. Mixtures of DOC and associated coloured solutions were degraded in first-order kinetics, showing that the degradation process was not dependent on intermediates or other species in solution. A reactor with a catalyst coating area of 12.57 cm2 was able to degrade 0.623 mg of the dissolved material per minute. Exposure of the reactor to hostile acidic conditions and repeated use did not compromise its efficiency. It was observed that the reactor regenerates itself in the presence of visible light, and therefore, it can be re-used for more than 100 runs before the performance dropped to <95 %. The results obtained indicate that the photocatalyst reactor has a great potential of application for use in tandem with biosorbent cartridges to complement water purification methods for domestic consumption.  相似文献   

11.
This paper highlights the utility of riverbed sand (RS) for the treatment of Ni(II) from aqueous solutions. For enhancement of removal efficiency, RS was modified by simple methods. Raw and modified sands were characterized by scanning electron microscope (SEM), Energy Dispersive Spectroscopy (EDS), and Fourier Transform Infrared Spectroscopy (FTIR) to investigate the effect of modifying the surface of RS. For optimization of various important process parameters, batch mode experiments were conducted by choosing specific parameters such as pH (4.0–8.0), adsorbent dose (1.0–2.0 g), and metal ion concentrations (5–15 mg/L). Removal efficiency decreased from 68.76 to 54.09 % by increasing the concentration of Ni(II) in solution from 5 to 15 mg/L. Removal was found to be highly dependent on pH of aqueous solutions and maximum removal was achieved at pH 8.0. The process of removal follows first-order kinetics, and the value of rate constant was found to be 0.048 min?1 at 5 mg/L and 25 °C. Value of intraparticle diffusion rate constant (k id) was found to be 0.021 mg/g min1/2 at 25 °C. Removal of Ni(II) decreased by increasing temperature which confirms exothermic nature of this system. For equilibrium studies, adsorption data was analyzed by Freundlich and Langmuir models. Thermodynamic studies for the present process were performed by determining the values of ΔG°, ΔH°, and ΔS°. Negative value of ?H° further confirms the exothermic nature of the removal process. The results of the present investigation indicate that modified riverbed sand (MRS) has high potential for the removal of Ni(II) from aqueous solutions, and resultant data can serve as baseline data for designing treatment plants at industrial scale.  相似文献   

12.
A newly designed continuous-flow 915 MHz microwave wastewater treatment system was used to demonstrate the effectiveness of the microwave enhanced advanced oxidation process (MW/H2O2-AOP) for treating dairy manure. After the treatment, about 84% of total phosphorus and 45% of total chemical oxygen demand were solubilized with the highest H2O2 dosage (0.4% H2O2 per %TS). The reaction kinetics of soluble chemical oxygen demand revealed activation energy to be in the range of 5–22 kJ mole?1. The energy required by the processes was approximately 0.16 kWh per liter of dairy manure heated. A higher H2O2 dosage used in the system had a better process performance in terms of solids solubilization, reaction kinetics, and energy consumption. Cost-benefit analysis for a farm-scale MW/H2O2-AOP treatment system was also presented. The results obtained from this study would provide the basic knowledge for designing an effective farm-scale dairy manure treatment system.  相似文献   

13.
Tibetan Plateau is the world’s highest plateau, which provides a unique location for the investigation of global fractionation of organochlorine pesticides (OCPs). In this study, deposition and regional distribution of HCHs and p,p′-DDX in the western and southern Tibetan Plateau were investigated by the records from a sediment core of Lake Zige Tangco and 24 surface soils. Concentration of ΣHCHs in the surface soils of the western Tibetan Plateau was much higher than that of the southern part. Maximum fluxes of α-, β-, and δ-HCH in the sediment core were 9.0, 222, and 21 pg cm?2 year?1, respectively, which appeared in the mid-1960s. Significant correlations were observed between concentrations of α- and β-HCH in both the surface soils and the sediment core. Concentrations of both α- and β-HCH increased with the inverse of the average annual temperature of these sites. γ-HCH became the dominant isomer of HCHs after the late 1970s, and reached the maximum flux of 160 pg cm?2 year?1 in the early 1990s. There were no significant correlations between concentrations of γ-HCH and the other isomers in both the surface soils and the sediment core. The results suggested that there was input of Lindane at scattered sites in this area. In contrast to ΣHCHs, concentration of Σp,p′-DDX in the surface soils of the southern part was much higher than that of the western part. Maximum flux of Σp,p′-DDX was 44 pg cm?2 year?1, which appeared in the mid-1960s. Local emission of p,p′-DDT was found at scattered sites. This study provides novel data and knowledge for the OCPs in the western and southern Tibetan Plateau, which will help understand the global fractionation of OCPs in remote alpine regions.  相似文献   

14.
This study describes a novel wastewater treatment technology suitable for small remote northern communities. The technology is based on an enhanced biodegradation of organic carbon through a combination of anaerobic methanogenic and microbial electrochemical (bioelectrochemical) degradation processes leading to biomethane production. The microbial electrochemical degradation is achieved in a membraneless flow-through bioanode–biocathode setup operating at an applied voltage below the water electrolysis threshold. Laboratory wastewater treatment tests conducted through a broad range of mesophilic and psychrophilic temperatures (5–23 °C) using synthetic wastewater showed a biochemical oxygen demand (BOD5) removal efficiency of 90–97% and an effluent BOD5 concentration as low as 7 mg L?1. An electricity consumption of 0.6 kWh kg?1 of chemical oxygen demand (COD) removed was observed. Low energy consumption coupled with enhanced methane production led to a net positive energy balance in the bioelectrochemical treatment system.  相似文献   

15.
Rates of 14C-phenanthrene mineralization in contaminated, undisturbed marine sediments were measured using the whole core injection method to assess microbial natural attenuation activity as a function of sediment depth. Submerged sediments were sampled from Eagle Harbor, a marine superfund site in Puget Sound. Experiments show significant biodegradation activities (0.0012-0.0036 day(-1)) in the sediment horizons from 0 to 10 cm. The purpose and scope of this paper is to evaluate the range of experimental conditions giving valid results; a mathematical simulation described competing contaminant 14C-phenanthrene diffusion and simultaneous biodegradation (Monod kinetics), both retarded by sorption. The effect of aging was examined with two sorption models in presumed pseudo-homogenous sediments having effective properties. The simulation predictions provide quantitative guidelines for the successful use of the whole core injection method. (1) The effective Monod constant KS' in sediment is increased by a large partition coefficient KP between sediment and water and makes the apparent 14C-phenanthrene biodegradation approach first-order kinetics. (2) When KS'>1 mg(-1) l(-1), the measured 14C-phenanthrene biodegradation extent is biased by inadequately distributed injected tracer only when less than 7% of the sediment horizon is initially probed and mixed with injected tracer. (3) A short incubation time (<20 days) is necessary when a mobile indicator, e.g., gaseous 14CO2, is used. For longer incubation times, predictions show that a 14CO2 indicator diffuses to adjacent horizons, thus smearing the depth profile of biodegradation. (4) This method employing a radiolabeled tracer provides accurate biodegradation rates for freshly contaminated sediments, and represents an upper limit to the natural phenanthrene biodegradation extents if the contaminant is aged over 50 days.  相似文献   

16.
Abstract

Incorporation of the remaining crop residue, including the root system, of grain (soybean and corn) and fiber (cotton) crops into the soil following harvest is a common agricultural practice. The crop residue represents a substantial portion of nitrogen initially applied as fertilizer, and thus is a potential source of nitrogen for NO emissions during the winter fallow period. Fluxes of NO and NO2 were measured from fallow fields from February 7 to March 23, 1994, using a dynamic chamber technique (ambient air as the carrier gas). Average NO flux rates, as a function of previous crop residue, were 9.2 (range –4.2 to 76) ng–N m–2 s–1 for soybean, 6.1 (range –11.7 to 110) ng–N m–2 s–1 for cotton, and 4.7 (range –0.2 to 40) ng–N m–2 s–1 for corn. Maximum NO fluxes were observed in mid–morning when soil temperatures were lowest. Minimum NO flux occurred after mid–afternoon when soil temperature reached a maximum. The decrease in NO flux with increase in soil temperature (5 cm depth) reflected the existence of a NO compensation concentration (i.e., the rate for the NO consumption reactions continued to increase with increase in temperature). NO2 deposition was calculated for 92% of the data points, with no trend in deposition between the three fields and their corresponding crop residue. These results indicate that significant fluxes of NO are generated from fallow agricultural fields following incorporation of the residue from the previous crop.  相似文献   

17.
Intensive agricultural land use imposes multiple pressures on streams. More specifically, the loading of streams with nutrient-enriched soil from surrounding crop fields may deteriorate the sediment quality. The current study aimed to find out whether stream restoration may be an effective tool to improve the sediment quality of agricultural headwater streams. We compared nine stream reaches representing different morphological types (forested meandering reaches vs. deforested channelized reaches) regarding sediment structure, sedimentary nutrient and organic matter concentrations, and benthic microbial respiration. Main differences among reach types were found in grain sizes. Meandering reaches featured larger mean grain sizes (50–70 μm) and a thicker oxygenated surface layer (8 cm) than channelized reaches (40 μm, 5 cm). Total phosphorous amounted for up to 1,500 μg?g?1 DW at retentive channelized reaches and 850–1,050 μg?g?1 DW at the others. While N-NH4 accumulated in the sediments (60–180 μg?g?1 DW), N-NO3 concentrations were generally low (2–5 μg?g?1 DW). Benthic respiration was high at all sites (10–20 g O2 m?2?day?1). Our study shows that both hydromorphology and bank vegetation may influence the sediment quality of agricultural streams, though effects are often small and spatially restricted. To increase the efficiency of stream restoration in agricultural landscapes, nutrient and sediment delivery to stream channels need to be minimized by mitigating soil erosion in the catchment.  相似文献   

18.

Photolysis behavior of a new herbicide propisochlor in water media as well as the effects of light sources, initial concentration of propisochlor, pH value, dissolved oxygen (DO) level, and salinity on the photolysis process was investigated. It was found that the relationship between initial concentration of propisochlor and its photodegradation rate was negatively correlated. The changes in acidity and alkalinity of the reaction medium influenced the photoreaction rate evidently. In the alkaline solution the degradation was accelerated. In the reaction media with different pH values, the photolysis followed the first-order kinetics. The presence of dissolved oxygen may promote the photolysis and there existed an optimum of dissolved oxygen concentrations. Increasing the DO level can weaken the promotion and even have an adverse effect. It was demonstrated that with dissolved oxygen the photodegradation of propisochlor followed the first-order kinetics equation. The addition of salt ions Ca2+ and Mg2+ changed the ionic strength and solvent polarity, resulting in the effect on propisochlor photolysis. The photoproducts were detected by both HPLC and GC-MS methods. It was found that photolysis products varied under different light sources. Conclusions may be reached that in the photodegradation of propisochlor, the benzene ring remained intact under irradiation of both solar light and high-pressure mercury lamp, and the amido link was relatively stable, while dechlorination was liable to take place; moreover, α-hydrogen at the substituent of benzene ring was active.  相似文献   

19.
Concentrations of inorganic tin (Sninorg), tributyltin (TBT) and its degradation products dibutyltin (DBT) and monobutyltin (MBT) were measured in surface sediments and in two cores from the Toulon Bay, hosting the major French military harbour. Anticipating planned dredging, the aim of the present work is to map and evaluate for the first time the recent and historic contamination of these sediments by inorganic and organic Sn species derived from antifouling paints used for various naval domains including military, trade, tourism and leisure. Tin and butyl-Sn concentrations in the bay varied strongly (4 orders of magnitude), depending on the site, showing maximum values near the shipyards. The concentrations of total Sn (1.3–112 μg g?1), TBT (<0.5–2,700 ng g?1), DBT (<0.5–1,800 ng g?1) and MBT (0.5–1,000 ng g?1) generally decreased towards the open sea, i.e. as a function of both distance from the presumed main source and bottom currents. Progressive degradation state of the butyl-Sn species according to the same spatial scheme and the enrichment factors support the scenario of a strongly polluted bay with exportation of polluted sediment to the open Mediterranean. Low degradation and the historical records of butyl-Sn species in two 210Pb-dated sediment cores, representative of the Northern Bay, are consistent with the relatively recent use of TBT by military shipyards and confirm maximum pollution during the 1970s, which will persist in the anoxic sediments for several centuries. The results show that (a) degradation kinetics of butyl-Sn species depend on environmental conditions, (b) the final degradation product SninorgBT is by far the dominant species after 10–12 half-life periods and (c) using recent data to reliably assess former TBT contamination requires the use of a modified butyl-Sn degradation index BDImod. Resuspension of extremely contaminated subsurface sediments by the scheduled dredging will probably result in mobilization of important amounts of butyl-Sn species.  相似文献   

20.
ABSTRACT

This study evaluates the dissipation of terbuthylazine, metolachlor, and mesotrione at different depths in soils with contrasting texture. The field trial was conducted at the Padua University Experimental Farm, north-east Italy. The persistence of three herbicides was studied in three different soil textures (clay soil, sandy soil, and loamy soil) at two depths (0–5 and 5–15 cm). Soil organic carbon content was highest in the clay (1.10%) followed by loam (0.67%) and sandy soil (0.24%); the pH of soils was sub-alkaline. Terbuthylazine, metolachlor, and mesotrione were applied on maize as a formulated product (Lumax®) at a dose of 3.5 L ha?1. Their dissipation in the treated plots was followed for 2 months after application. The concentrations of herbicides were analyzed by liquid chromatography-mass spectrometry. The dissipation of terbuthylazine, metolachlor, and mesotrione could be described by a pseudo first-order kinetics. Terbuthylazine showed the highest DT50, followed by metolachlor and mesotrione. Considering the tested soil, the highest DT50 value was found in clay soil for terbuthylazine and metolachlor, whereas for mesotrione there was no difference among soils. Significant differences were found between the two soil depths for terbuthylazine and metolachlor, whereas none were found for mesotrione. These results suggest that soil texture and depth have a strong influence on the dissipation of terbuthylazine and metolachlor, whereas no influence was observed on mesotrione because of its chemical and physical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号