首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
不同排海方式城市尾水微生物扩散规律   总被引:1,自引:1,他引:0  
尾水中含有大量病原菌,回用或排入自然水体后会对人群健康和生态安全构成威胁.为了探究不同排海方式对微生物扩散规律的影响,本研究利用高通量测序技术对春季污水处理厂尾水细菌群落结构、优势菌群、典型致病菌及其随扩散距离的变化进行研究.结果发现,先排河后排海的尾水物种更加丰富,分布在58个菌纲,相对丰度大于1%的细菌有32种,而直接排海的尾水中仅有41个菌纲,相对丰度大于1%的细菌有28种.相对于直排过程,间排方式微生物群落结构相对丰度更高,说明尾水的直接排海使得微生物更易扩散.同一污水处理厂优势菌门所占比例随着扩散距离的增大整体呈下降趋势,蓝藻菌门(Cyanobacteria)等由于在自然水体中的高浓度出现随扩散距离增大整体上升的趋势.两个系统的优势菌门都属于变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)及厚壁菌门(Firmicutes),纲、种水平重合度较低,但整体来讲排污口附近微生物多样性及丰度远高于海水(空白样品),且污水处理相关菌种丰度较高.另外,尾水中存在一定量的致病菌和条件致病菌,其中Pseudoalteromonas haloplanktis、Pseudomonas anguilliseptica致病性极强,扩散后相对丰度仍然很高,且弓形杆菌属(Arcobacter spp.)与人类和动物的腹泻、菌血症等疾病密切相关.因此,尾水排放过程中应对这几种细菌重点监测.  相似文献   

2.
城市尾水排海过程中微生物及主要致病菌扩散规律   总被引:1,自引:0,他引:1  
城市污水处理厂产生的尾水中含有大量微生物尤其是致病菌,排海后不仅对周围人群产生危害而且对海洋生态安全构成威胁.本研究以青岛市麦岛污水处理厂为研究对象,采用高通量测序技术,研究尾水排海过程中的微生物群落结构,分析尾水中致病菌在排海过程中的动态分布及季节变化规律.结果表明,尾水微生物分布在20~27个菌门,优势菌门为变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes),主要分布在44~65个纲,其中优势菌纲主要分布在变形菌门(Proteobacteria);尾水排海过程中的主要致病菌有55种,致病基因与癌症、心血管、免疫系统、传染性、新陈代谢、神经变性等疾病相关,其中,引起人类和动物腹泻、菌血症相关的弓形杆菌属(Arcobacter spp.)、引发院内感染的条件致病菌不动杆菌属(Acinetobacter spp.)及对海产品养殖和捕捞带来威胁的Shewanella hafniensis等占比例较大.  相似文献   

3.
海水养殖尾水直排对河道沉积物细菌群落的影响   总被引:1,自引:1,他引:0  
胡越航  宣丽霞  裘琼芬 《环境科学》2019,40(9):4185-4194
海水养殖活动对周边水域沉积物生态环境的影响日益受到关注,微生物群落是反映环境质量变化的一个重要指标.本研究采集了养殖区进出水河道4个位点(1个进水渠位点、出水口和2个出水渠位点)的沉积物,通过Illumina MiSeq测序技术测定细菌16S rRNA基因,利用磷脂脂肪酸(phospholipid fatty acid,PLFA)技术对沉积物中的微生物群落进行半定量分析,研究海水养殖尾水直接排放对河道沉积物细菌群落结构的影响.结果表明,4个位点中变形菌门(Proteobacteria)为优势细菌类型,主要包括γ-变形菌纲(γ-Proteobacteria)、δ-变形菌纲(δ-Proteobacteria)和α-变形菌纲(α-Proteobacteria).受养殖尾水排放影响,沉积物微生物生物量明显升高,放线菌门相对丰度降低而拟杆菌门相对丰度升高,氨氧化微生物相对丰度降低.非度量多维尺度(non-metric multidimensional scaling,NMDS)分析表明大部分沉积物细菌群落按位点聚类.多样性分析表明,未受养殖尾水影响的沉积物细菌群落多样性高于受养殖尾水影响的位点.冗余分析(redundancy analysis,RDA)表明氨氮与底泥沉积物细菌群落结构的相关性最大,对细菌群落的影响最明显.综上,养殖废水直排明显改变了养殖场河道沉积物物理化学性质和细菌群落结构,说明养殖废水的长期直排已严重污染河道环境,并可能会进一步对近海生态环境造成威胁.  相似文献   

4.
玄武湖微囊藻水华暴发及衰退期细菌群落变化分析   总被引:3,自引:1,他引:3  
郑小红  肖琳  任晶  杨柳燕 《环境科学》2008,29(10):2956-2962
为探索微囊藻水华期间细菌群落的变化及了解水华的动态变化提供线索,采集玄武湖水华暴发及衰退期3个湖区内的水样,采用微生物传统方法,对水体中可培养细菌进行了分离鉴定,并通过变性梯度凝胶电泳技术(DGGE),对水体中细菌16S rDNA V3可变区的PCR扩增片段进行分离,分析了所得到的细菌群落特征DNA指纹图谱,并对其中的优势细菌进行16S rDNA 序列系统发育分析.结果表明,玄武湖微囊藻水华期间水体内细菌主要属于3大类群,包括Proteobacteria、Firmicutes和Baeteroides;水华暴发期,Firmicutes、Bacteroides、α-、β-、γ-Proteobacteria分别占总数的31.25%、25%、18.75%、12.5%、12.5%,优势菌为16种,生物多样性高;水华衰退期γ-Proteobacteria菌群比例上升至50%,其次为Firmicutes和α-Proteobacteria,分别占总数的33.3%和16.7%.水体内原有的Hydrogenophaga、Vogesella、Sphingomonas、Exiguobacterium等菌属消亡,优势菌种数减少至6种,但细菌数量增大;Pseudomonas与Bacillus在水华暴发和衰退期一直处于优势,但优势菌的种类发生改变;同一时期内,藻华相对密集的湖区优势菌种数相对较少,生物多样性相对较低.微囊藻水华暴发与衰退期水体中细菌群落的变化,可能与藻体聚集与消散而引起的水体中有机物浓度及形态等环境因子的变化有关,此外.藻体密集程度也可能对细菌群落生物多样性有一定影响.  相似文献   

5.
稻香湖景酒店景观再生水生产中的细菌群落结构变化   总被引:2,自引:0,他引:2  
为了解生活污水处理系统对水体细菌群落结构及多样性的影响,以北京稻香湖景酒店生活污水处理系统为例,利用16SrDNA文库技术研究了不同处理阶段水体细菌的群落结构及多样性.结果表明,酒店排放的生活污水中细菌类型较多,Shannon-Weaver多样性指数为3.12,其中ε-变形杆菌纲在克隆文库中所占比例最高,达32%;另外还有9%~15%的克隆分别与CFB类群、γ-变形杆菌纲、梭杆菌门和厚壁菌门的细菌高度同源;经中水站处理后,水体细菌多样性指数下降到2.41,β-变形杆菌纲的细菌占据绝对优势,比例高达73%;进一步经小型人工湿地处理后,细菌的多样性指数提高到3.38,其中放线菌门的细菌比例最高达33%,成为最优势的类群,蓝细菌的比例次之,达26%;而对照样品中蓝细菌为最主要的优势类群,比例高达38%,主要涉及的种属为蓝菌属、聚球藻属和微囊藻属,比例分别为47.1%、17.6%和8.8%,且检测到少量铜绿微囊藻,水体有轻度蓝藻水华暴发.因此,该酒店的生活污水经过逐级处理改造成景观再生水的过程中改变了细菌的优势群落结构和多样性;经过处理的水体未有蓝藻水华出现,水体状况优于对照.该研究对了解景观再生水生产过程中细菌微生态的变化、将来从生态学的角度加强蓝藻水华的控制提供有用的资料.  相似文献   

6.
同步硝化反硝化系统中反硝化细菌多样性研究   总被引:14,自引:0,他引:14  
采用聚合酶链式反应(PCR)和分子克隆构建nirS克隆文库对同步硝化反硝化系统好氧池中反硝化细菌多样性进行了研究.从克隆文库中随机挑选75个克隆子进行序列测定,对测序结果进行了BLAST比对.结果表明,有74个克隆子分属于3个不同的细菌类群,包括β-Proteobacteria、γ-Proteobacteria和Uncultured bacterium. β-Proteobacteria纲为好氧池内优势菌群,占文库比例的54.41%;其次是γ-Proteobacteria纲,占文库比例的25%.对测序得到的12个OTU用MEGA软件进行系统发育分析,结果显示Thauera属为该系统中最主要的脱氮菌属.  相似文献   

7.
基于分子技术的1株产毒藻藻际细菌多样性分析   总被引:4,自引:2,他引:2  
采用构建16S rDNA克隆文库的方法,对实验室保存的1株产毒塔玛亚历山大藻在不同时期的藻际细菌群落多样性进行了分析.限制性片段长度多态性(restriction fragment length polymorphism,RFLP)结果表明,塔玛亚历山大藻藻际微生物的16S rDNA克隆文库中的克隆子总共可分为 34 种基因型,选取各谱型的代表克隆子测定其16S rDNA片段核苷酸序列,将所获得的序列与GenBank数据库进行BLAST比对,结果表明所有基因型分属于2个细菌类群:变形细菌门(Proteobacteria)和拟杆菌门(Bacteroidetes).在延滞期的藻培养液中,α-Proteobacteria占36.4%,β-Proteobacteria占9.1%,γ-Proteobacteria占27.3%,拟杆菌门(Bacteroidetes)占27.3%;在指数后期的培养液中,α-Proteobacteria占53.3%,β-Proteobacteria占13.3%,γ-Proteobacteria占6.7%,拟杆菌门(Bacteroidetes)占26.7%; 在稳定期的培养液中,α-Proteobacteria占47.8%,β-Proteobacteria占8.7%,γ-Proteobacteria占21.7%,δ-Proteobacteria占4.3%,拟杆菌门(Bacteroidetes)占17.4%;其中有不少克隆子与已知序列同源性低于 94%,表明塔玛亚历山大藻藻际环境中附着有新的未开发的微生物资源,这些细菌可能在微藻的生消过程中起着重要的调控作用,所以本研究结果在赤潮微生物调控中具有重要的理论意义和应用价值.  相似文献   

8.
澜沧江流域浮游细菌群落结构特征及驱动因子分析   总被引:5,自引:4,他引:1  
程豹  望雪  徐雅倩  杨正健  刘德富  马骏 《环境科学》2018,39(8):3649-3659
为探究澜沧江流域的浮游细菌群落结构特征及驱动因子,应用16S rRNA高通量测序技术,分析了2017年2月澜沧江流域浮游细菌群落结构特征,并采用Pearson相关性分析(Pearson correlation analysis)和冗余分析(RDA)识别了澜沧江自然河道段和水库段浮游细菌群落结构变化的关键环境因子.结果表明,自然河道段ACE指数和Shannon指数均高于水库段,造成自然河道段和水库段浮游细菌多样性变化的主要环境因子为水温(WT)、溶解氧(DO)、浊度(Tur)、高锰酸盐指数(permanganate index)、p H和总氮(TN).对16S rRNA V3和V4测序,得到用于物种分类的OTU数共26772,涵盖了浮游细菌群落共45门,965属.菌群分类发现,变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)和放线菌门(Actinobacteria)为优势门,其中变形菌门(Proteobacteria)含量相对丰富,占细菌群落的36%~94%.澜沧江流域变形菌门(Proteobacteria)主要包括α-变形菌纲(α-Proteobacteria)、β-变形菌纲(β-Proteobacteria)和γ-变形菌纲(γ-Proteobacteria),分别占变形菌门(Proteobacteria)的比例为0.39%~21.56%、0.39%~55.80%和31.09%~99.18%.澜沧江水体浮游细菌群落空间差异明显,影响浮游细菌群落结构变化的环境因子主要为WT、高锰酸盐指数、Tur、DO和TN.自然河道段和水库段影响浮游细菌群落结构的环境因子不同,DO和Tur是影响自然河道段浮游细菌群落结构的关键环境因子,而水库段浮游细菌群落结构主要受WT、高锰酸盐指数和TN的影响.  相似文献   

9.
针对水源切换可能造成水厂出水微生物风险的问题,以北京某水厂由本地水源切换为河北水源期间原水和出厂水为研究对象,采用焦磷酸测序技术对水中的微生物种群结构和潜在致病菌进行分析.结果显示,出厂水的细菌多样性显著低于原水,原水和出厂水中的优势菌均为变形菌门(Proteobacteria),所占比例为11.99%~95.48%,其中包括α,β和γ变形菌纲(α, β, γ-Proteobacteria),但相对丰度有较大差异.水源切换后的原水中优势菌为蓝藻门(Cyanobacteria),且该菌在切换后的出厂水中也存在.出厂水中检测到部分潜在致病菌,优势菌包括不动杆菌(Acinetobacter)和代尔夫特菌(Delftia),增加了饮用水的微生物安全风险.PCoA结果显示,水源切换前后原水中细菌群落结构变化较大,但改变水源对出厂水的微生物群落影响较小,水厂能够维持稳定的运行.  相似文献   

10.
为了深入了解岩溶洞穴地下水中细菌群落结构特征以及评估旅游活动对细菌群落的影响,对重庆丰都雪玉洞(旅游洞穴)和水鸣洞(未开发洞穴)洞穴地下河水进行了采样,利用16S rDNA高通量测序技术对地下水样品中的细菌进行了定性和定量分析.结果表明,两个洞穴地下水中细菌群落以变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)为主,但细菌群落组成存在差异.雪玉洞地下河上游和下游的变形菌门分别占总群落的62%和64%,拟杆菌门分别占11%和16%;水鸣洞地下水中细菌优势群落除变形菌门(38%)和拟杆菌门(19%)外,绿菌门(Chlorobi)占24%,两个洞穴地下水中变形菌门的纲分类均为γ-变形菌纲.γ-变形菌纲(γ-Proteobacterium)和拟杆菌为两个洞穴地下水的优势种类但其主要细菌存在差异:雪玉洞主要细菌是不动杆菌属(Acinetobacter)、假单胞菌属(Pseudomonas)和黄杆菌科(Flavobacteriaceae),属于致病菌;水鸣洞主要细菌是未培养的甲基球菌科(Methylococcaceae-uncultured)、甲基单胞菌属(Methylomonas)以及甲基杆菌属(Methylobacter),属于甲烷氧化细菌.多样性指数分析结果显示:受旅游活动的强烈影响,雪玉洞群落多样性明显高于水鸣洞并且存在更多的致病菌群落,地下水细菌群落与环境因子多元直接梯度分析(RDA)证明群落分布规律受游客数量与洞穴空气CO_2影响且呈正相关,两种环境因子的Spearman相关性分析进一步表明游客数量对地下水细菌群落结构的影响更明显并导致大量原生细菌消失.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

17.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

18.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

19.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

20.
Single and joint effects of pesticides and mercury on soil urease   总被引:3,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号