首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)—‘VKG D’ and ‘VKG sweet’—in different soil matrices under natural climatic conditions. Dynamics of SFOs’ hydrocarbons (C10–C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons’ content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak.  相似文献   

2.
The remediation of copper-contaminated soils by aided phytostabilisation in 16 field plots at a wood preservation site was investigated. The mobility and bioavailability of four potentially toxic trace elements (PTTE), i.e., Cu, Zn, Cr, and As, were investigated in these soils 4 years after the incorporation of compost (OM, 5 % w/w) and dolomite limestone (DL, 0.2 % w/w), singly and in combination (OMDL), and the transplantation of mycorrhizal poplar and willows. Topsoil samples were collected in all field plots and potted in the laboratory. Total PTTE concentrations were determined in soil pore water (SPW) collected by Rhizon soil moisture samplers. Soil exposure intensity was assessed by Chelex100-DGT (diffusive gradient in thin films) probes. The PTTE phytoavailability was characterized by growing dwarf beans on potted soils and analyzing their foliar PTTE concentrations. OM and DL, singly and in combination (OMDL), were effective to decrease foliar Cu, Cr, Zn, and As concentrations of beans, the lowest values being numerically for the OM plants. The soil treatments did not reduce the Cu and Zn mineral masses of the bean primary leaves, but those of Cr and As decreased for the OM and DL plants. The Cu concentration in SPW was increased in the OM soil and remained unchanged in the DL and OMDL soils. The available Cu measured by DGT used to assess the soil exposure intensity correlated with the foliar Cu concentration. The Zn concentrations in SPW were reduced in the DL soil. All amendments increased As in the SPW. Based on DGT data, Cu availability was reduced in both OM and OMDL soils, while DL was the most effective to decrease soil Zn availability.  相似文献   

3.
Brassica species are very effective in remediation of heavy metal contaminated sites. Lead (Pb) as a toxic pollutant causes number of morphological and biochemical variations in the plants. Synthetic chelator such as ethylenediaminetetraacetic acid (EDTA) improves the capability of plants to uptake heavy metals from polluted soil. In this regard, the role of EDTA in phytoextraction of lead, the seedlings of Brassica napus L. were grown hydroponically. Lead levels (50 and 100 μM) were supplied alone or together with 2.5 mM EDTA in the nutrient culture. After 7 weeks of stress, plants indicated that toxicity of Pb caused negative effects on plants and significantly reduced growth, biomass, chlorophyll content, gas exchange characteristics, and antioxidant enzymes activities such as superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT). Exposure to Pb induced the malondialdehyde (MDA), and hydrogen peroxide (H2O2) generation in both shoots and roots. The addition of EDTA alone or in combination with Pb significantly improved the plant growth, biomass, gas exchange characteristics, chlorophyll content, and antioxidant enzymes activities. EDTA also caused substantial improvement in Pb accumulation in Brassica plants. It can be deduced that application of EDTA significantly lessened the adverse effects of lead toxicity. Additionally, B. napus L. exhibited greater degree of tolerance against Pb toxicity and it also accumulated significant concentration of Pb from media.  相似文献   

4.
Soil pollution caused by polycyclic aromatic hydrocarbons (PAHs) is threatening human health and environmental safety. Investigating the relative prevalence of different PAH-degrading genes in PAH-polluted soils and searching for potential bioindicators reflecting the impact of PAH pollution on microbial communities are useful for microbial monitoring, risk evaluation, and potential bioremediation of soils polluted by PAHs. In this study, three functional genes, pdo1, nah, and C12O, which might be involved in the degradation of PAHs from a coke factory, were investigated by real-time quantitative PCR (qPCR) and clone library approaches. The results showed that the pdo1 and C12O genes were more abundant than the nah gene in the soils. There was a significantly positive relationship between the nah or pdo1 gene abundances and PAH content, while there was no correlation between C12O gene abundance and PAH content. Analyses of clone libraries showed that all the pdo1 sequences were grouped into Mycobacterium, while all the nah sequences were classified into three groups: Pseudomonas, Comamonas, and Polaromonas. These results indicated that the abundances of nah and pdo1 genes were positively influenced by levels of PAHs in soil and could be potential microbial indicators reflecting the impact of soil PAH pollution and that Mycobacteria were one of the most prevalent PAHs degraders in these PAH-polluted soils. Principal component analysis (PCA) and correlation analyses between microbial parameters and environmental factors revealed that total carbon (TC), total nitrogen (TN), and dissolved organic carbon (DOC) had positive effects on the abundances of all PAH-degrading genes. It suggests that increasing TC, TN, and DOC inputs could be a useful way to remediate PAH-polluted soils.  相似文献   

5.
Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50–49.80 mg/kg), Cu (159.50–1187.00 mg/kg), Ni (3.50–8.70 mg/kg), Pb (1707.00–4243.00 mg/kg), and Zn (909.00–7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region.  相似文献   

6.
In vitro digestion test can be applied to evaluate the bioaccessibility of soil metals by measuring the solubility of the metals in synthetic human digestive tract. Physiologically based extraction test (PBET), composed of sequential digestion of gastric and intestinal phase, is one of the frequently used in vitro digestion tests. In this study, the PBET was chosen to determine the bioaccessibility of Cu, Zn, and Pb in 14 mildly acidic and alkali (pH 5.87–8.30) soils. The phytoavailability of Cu, Zn, and Pb in the same soils was also measured using six single-extraction methods (0.1 M HNO3, 0.4 M HOAc, 0.1 M NaNO3, 0.01 M CaCl2, 0.05 M EDTA, and 0.5 M DTPA). The extraction efficiencies of the methods were compared. The PBET had a strong ability to extract metals from soil, which was much greater than neutral salt extraction and close to dilute acid and complex extraction in spite of the last 2 h neutral intestinal digestion. The amounts of bioaccessible Cu, Zn, and Pb in the gastric phase and in the gastrointestinal phase were both largely determined by the total content of soil Cu, Zn, and Pb. But the results of gastrointestinal digestion reflected more differences resulting from element and soil types than those of gastric digestion did. It was noticed that most of variations in the amounts of soil Cu, Zn, and Pb extracted by EDTA were well explained by the total soil Cu, Zn, and Pb, as same as the PBET. Moreover, the solubility of Cu, Zn, and Pb in the gastric phase and gastrointestinal phase were all positively linearly correlated with the results of EDTA. It was suggested that EDTA extraction can be used to predict the bioaccessibility of Cu, Zn, and Pb in mildly acidic and alkali (pH?>?5.8) soils, and the PBET and EDTA could be applied to measure, in a certain extent, the bioaccessibility and phytoavailability of Cu, Zn, and Pb in mildly acidic and alkali (pH?>?5.8) soils at the same time.  相似文献   

7.
The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg?1), Cu (8.21 mg kg?1), Pb (41.62 mg kg?1), and Zn (696 mg kg?1) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg?1, respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.  相似文献   

8.
The aim of the study was determination of air pollution impact of the copper smelter in Bor and its surroundings (Serbia) by assessing the suitability of birch (Betula pendula Roth.) and spruce (Picea abies L.) for the purposes of biomonitoring and comparing it with previously published data from the same study area. The concentrations of Cu, Zn, Pb and Mn in leaves/needles, branches, roots and soil were determined. Sampling was performed during 2009 in two zones with high load of air pollution due to copper mining and smelting activities, and one background zone. Metal accumulation and translocation was evaluated in terms of biological factors. In addition, plant enrichment factor was calculated. According to the results, plant foliage was not enriched through soil, which indicates absorption from the air, with both species acting as excluders of Cu, Pb, Zn and Mn. Leaves were more enriched with all the metals than needles, indicating a better response of birch to airborne pollution than spruce. Cluster analysis showed different level of pollution at the sites, while correlations between Cu and Pb obtained by Principal Component Analysis indicated their anthropogenic origin. Regarding previously published results, beside birch leaves, pine needles (which showed higher level of response to pollution compared to linden leaves) could be applied in air biomonitoring surveys near copper smelters.  相似文献   

9.
10.
Paddy soils and rice (Oryza sativa L.) contaminated by mixed heavy metals have given rise to great concern. Field experiments were conducted over two cultivation seasons to study the effects of steel slag (SS), fly ash (FA), limestone (LS), bioorganic fertilizer (BF), and the combination of SS and BF (SSBF) on rice grain yield, Cd, Pb, and Zn and nutrient accumulation in brown rice, bioavailability of Cd, Pb, and Zn in soil as well as soil properties (pH and catalase), at two acidic paddy fields contaminated with mixed heavy metals (Cd, Pb, and Zn). Compared to the controls, SS, LS, and SSBF at both low and high additions significantly elevated soil pH over both cultivation seasons. The high treatments of SS and SSBF markedly increased grain yields, the accumulation of P and Ca in brown rice and soil catalase activities in the first cultivation season. The most striking result was from SS application (4.0 t ha?1) that consistently and significantly reduced the soil bioavailability of Cd, Pb, and Zn by 38.5–91.2 % and the concentrations of Cd and Pb in brown rice by 20.9–50.9 % in the two soils over both cultivation seasons. LS addition (4.0 t ha?1) also markedly reduced the bioavailable Cd, Pb, and Zn in soil and the Cd concentrations in brown rice. BF remobilized soil Cd and Pb leading to more accumulation of these metals in brown rice. The results showed that steel slag was most effective in the remediation of acidic paddy soils contaminated with mixed heavy metals.  相似文献   

11.

Purpose

Phosphorus amendments have been widely and successfully used in immobilization of one single metal (e.g., Pb) in contaminated soils. However, application of P amendments in the immobilization of multiple metals and particularly investigations about the effects of planting on the stability of the initially P-induced immobilized metals in the contaminated soils are far limited.

Methods

This study was conducted to determine the effects of phosphate rock tailing (PR), triple superphosphate fertilizer (TSP), and their combination (P+T) on mobility of Pb, Cu, and Zn in a multimetal-contaminated soil. Chinese cabbage (Brassica rapa subsp. chinensis) (metal-sensitive) and Chinese kale (Brassica alboglabra Bailey) (metal-resistant) were introduced to examine the effects of planting on leaching of Pb, Cu, and Zn in the P-amended soils.

Results

All three P treatments greatly reduced CaCl2-extractable Pb and Zn by 55.2?C73.1% and 14.3?C33.6%, respectively. The PR treatment decreased CaCl2-extractable Cu by 27.8%, while the TSP and P+T treatments increased it by 47.2% and 44.4%, respectively. All three P treatments were effective in reducing simulated rainwater leachable Pb, with dissolved and total leachable Pb decrease by 15.6?C81.9% and 16.3?C64.5%, respectively. The PR treatment reduced the total leachable Zn by 16.8%, while TSP and P+T treatments increased Zn leaching by 92.7% and 78.9%, respectively. However, total Cu leaching were elevated by 17.8?C178% in all P treatments. Planting promoted the leaching of Pb and Cu by 98.7?C127% and 23.5?C170%, respectively, especially in the colloid fraction, whereas the leachable Zn was reduced by 95.3?C96.5% due to planting. The P treatments reduced the uptake of Pb, Cu, and Zn in the aboveground parts of Chinese cabbage by up to 65.1%, 34.3%, and 9.59%, respectively. Though P treatments were effective in reducing Zn concentrations in the aboveground parts of the metal-resistant Chinese kale by 22.4?C28.9%, they had little effect on Pb and Cu uptake.

Conclusions

The results indicated that all P treatments were effective in immobilizing Pb. The effect on the immobilization of Cu and Zn varied with the different P treatments and evaluation methods. Metal-sensitive plants are more responsive to the P treatments than metal-resistant plants. Planting affects leaching of metals in the P-amended soils, specially leaching of colloid fraction. The conventional assessment on leaching risks of heavy metals by determining dissolved metals (filtered through 0.45-??m pore size membrane) in leachates could be underestimated since colloid fraction may also contribute to the leaching.  相似文献   

12.
Several amendments were tested on soils obtained from an arsenopyrite mine, further planted with Arrhenatherum elatius and Festuca curvifolia, in order to assess their ability to improve soil's ecotoxicological characteristics. The properties used to assess the effects were: soil enzymatic activities (dehydrogenase, β-glucosidase, acid phosphatase, urease, protease and cellulase), terrestrial bioassays (Eisenia fetida mortality and avoidance behaviour), and aquatic bioassays using a soil leachate (Daphnia magna immobilisation and Vibrio fischeri bioluminescence inhibition). The treatment with FeSO4 1 % w/w was able to reduce extractable As in soil, but increased the extractable Cu, Mn and Zn concentrations, as a consequence of the decrease in soil pH, in relation to the unamended soil, from 5.0 to 3.4, respectively. As a consequence, this treatment had a detrimental effect in some of the soil enzymatic activities (e.g. dehydrogenase, acid phosphatase, urease and cellulase), did not allow plant growth, induced E. fetida mortality in the highest concentration tested (100 % w/w), and its soil leachate was very toxic towards D. magna and V. fischeri. The combined application of FeSO4 1 % w/w with other treatments (e.g. CaCO3 1 % w/w and paper mill 1 % w/w) allowed a decrease in extractable As and metals, and a soil pH value closer to neutrality. As a consequence, dehydrogenase activity, plant growth and some of the bioassays identified those as better soil treatments to this type of multi-contaminated soil.  相似文献   

13.
Microbe-assisted phytoremediation has been considered as a promising measure for the remediation of heavy metal-polluted soils. In this study, a metal-tolerance and plant growth-promoting endophytic bacterium JN6 was firstly isolated from roots of Mn-hyperaccumulator Polygonum pubescens grown in metal-contaminated soil and identified as Rahnella sp. based on 16S rDNA gene sequence analysis. Strain JN6 showed very high Cd, Pb and Zn tolerance and effectively solubilized CdCO3, PbCO3 and Zn3(PO4)2 in culture solution. The isolate produced plant growth-promoting substances such as indole-3-acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic deaminase, and also solubilized inorganic phosphate. Based upon its ability in metal tolerance and solubilization, the isolate JN6 was further studied for its effects on the growth and accumulation of Cd, Pb and Zn in Brassica napus (rape) by pot experiments. Rape plants inoculated with the isolate JN6 had significantly higher dry weights, concentrations and uptake of Cd, Pb and Zn in both above-ground and root tissues than those without inoculation grown in soils amended with Cd (25 mg kg?1), Pb (200 mg kg?1) or Zn (200 mg kg?1). The isolate also showed a high level of colonization in tissue interior of rapes. The present results demonstrated that Rahnella sp. JN6 is a valuable microorganism, which can cost-effectively improve the efficiency of phytoremediation in soils contaminated by Cd, Pb and Zn.  相似文献   

14.
15.
Elsholtzia splendens is a well-known Cu-tolerant plant; yet, the impact of Cu-contaminated soil on bacterial community in its rhizosphere is not known. We studied the spatial variability of bacteria in the rhizosphere using Cu-contaminated soil with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR. In the uncontaminated soil, the content of the dissolved organic carbon (DOC) and bacterial diversity gradually increased in the rhizosphere soil along the root growth direction (from the interface zone to the meristematic zone), while for the Cu-contaminated soil, the highest DOC content and the strongest potential bioavailability of Cu were found in the interface zone, which also had the lowest bacteria diversity. Bacteria diversity was positively correlated with DOC in the uncontaminated soil (p?Firmicutes only existed in the rhizosphere of contaminated soil, while the very small amount (if any) of some species exists such as Deinococcus-Thermus, indicating that the contaminated environment altered the bacterial composition. Moreover, spatial variation of the bacterial community was found among different soil zones. Real-time PCR confirmed the spatial variation via the gene expression of flagellin (fliC) and chemotaxis gene (cheA). The spatial characteristics of cheA expression were consistent with that of DOC and bacterial diversity. In conclusion, we demonstrated that the spatial variation of the bacterial community in the rhizosphere was present, independent of Cu contamination. DOC and Cu toxicity may affect specific gene expressions such as fliC and cheA, resulting in bacterial spatial variation.  相似文献   

16.
The aim of this study was to characterize the features of a Cd-, Pb-, and Zn-resistant endophytic fungus Lasiodiplodia sp. MXSF31 and to investigate the potential of MXSF31 to remove metals from contaminated water and soils. The endophytic fungus was isolated from the stem of Portulaca oleracea growing in metal-contaminated soils. The maximum biosorption capacities of MXSF31 were 3.0?×?103, 1.1?×?104, and 1.3?×?104 mg kg?1 for Cd, Pb, and Zn, respectively. The biosorption processes of Cd, Pb, and Zn by MXSF31 were well characterized with the pseudo-second-order kinetic model. The biosorption isotherm processes of Pb and Zn by the fungus were fitted better with the Langmuir model, while the biosorption processes of Cd was better fitted with the Freundlich model. The biosorption process of MXSF31 was attributed to the functional groups of hydroxyl, amino, carbonyl, and benzene ring on the cell wall. The active biomass of the strain removed more Cd, Pb, and Zn (4.6?×?104, 5.6?×?105, and 7.0?×?104 mg kg?1, respectively) than the dead biomass. The inoculation of MXSF31 increased the biomass of rape (Brassica napus L.), the translocation factor of Cd, and the extraction amount of Cd by rape in the Cd?+?Pb-contaminated soils. The results indicated that the endophytic fungus strain had the potential to remove heavy metals from water and soils contaminated by multiple heavy metals, and plants accumulating multiple metals might harbor diverse fungi suitable for bioremediation of contaminated media.  相似文献   

17.
Industrialization and urbanization have led to a great deterioration of air quality and provoked some serious environmental concerns. One hundred and five samples of atmospheric deposition were analyzed for their concentrations of 13 trace elements (As, Cd, Cu, Fe, Al, Co, Cr, Hg, Mn, Mo, Pb, Se, and Zn) in Shanxi Basin, which includes six isolate basins. The input fluxes of the trace elements in atmospheric deposition were observed and evaluated. Geostatistical analysis (EF, PCA, and CA ) were conducted to determine the spatial distribution, possible sources, and enrichment degrees of trace elements in atmospheric deposition. Fe/Al and K/Al also contribute to identify the sources of atmospheric deposition. The distribution of trace elements in atmospheric deposition was proved to be geographically restricted. The results show that As, Cd, Pb, Zn, and Se mainly come from coal combustion. Fe, Cu, Mn, Hg, and Co originate mainly from interactions between local polluted soils and blowing dust from other places, while the main source of Al, Cr, and Mo are the soil parent materials without pollution. This work provides baseline information to develop policies to control and reduce trace elements, especially toxic elements, from atmospheric deposition. Some exploratory analytical methods applied in this work are also worth considering in similar researches.  相似文献   

18.
The effect of the earthworm Lumbricus terrestris L. on metal availability in two mining soils was assessed by means of chemical extraction methods and a pot experiment using crop plants. Results from single and sequential extractions showed that L. terrestris had a slight effect on metal fractionation in the studied soils: only metals bound to the soil organic matter were significantly increased in some cases. However, we found that L. terrestris significantly increased root, shoot and total Pb and Zn concentrations in maize and barley for the soil with the highest concentrations of total and available metals. Specifically, shoot Pb concentration was increased by a factor of 7.5 and 3.9 for maize and barley, respectively, while shoot Zn concentration was increased by a factor of 3.7 and 1.7 for maize and barley, respectively. Our results demonstrated that earthworm activity increases the bioavailability of metals in soils.  相似文献   

19.
某矿区土壤和地下水重金属污染调查与评价   总被引:3,自引:0,他引:3  
为了解湘南某矿区土壤和地下水重金属污染状况,对该矿区东河流域附近重金属污染源进行了调查,同时,对地下水和土壤样品进行了采样分析,结果表明:(1)该矿区东河流域附近的主要污染源有18个,其中有色金属选厂、尾矿库、采矿场和冶炼厂是排放重金属较多的污染源;(2)20个采样点中土壤重金属Pb、Cd、Zn、As和Hg大部分超过国家土壤环境质量标准(GB15618-1995),综合污染指数P综〉1,该矿区主要的重金属污染元素为Cd、As和Hg,且土壤中Cd、Zn和As的含量两两之间存在着极显著的正线性相关关系;(3)重金属元素在土壤中的纵向迁移不明显,该矿区附近20个采样点的地下水并未受到污染,综合污染指数P综〈1。20个采样点地下水Pb、Cd、Zn、As、Hg浓度均能达到地下水质量标准(GB/T14848.9)中的Ⅲ类标准。  相似文献   

20.
The efficiency of aided phytostabilization using organic amendments such as ramial chipped wood (RCW) and composted sewage sludge (CSS) was studied on contaminated techno-soils, on nine experimental plots. The objective was to characterize the role of fulvic (FA) and humic acids (HA) on the mobilization of trace elements, specifically As, Cu, Mo, Pb and Zn. Results showed that the addition of CSS increased the total organic carbon and nitrogen content more than with RCW and as a result, the C/N ratio in the CSS soil was higher than in the RCW and non-amended (NE) soil, reflecting the high decomposition of soil organic matter in the CSS soil compared with the other soils. The RCW and CSS amendments increased the hydrogen index (HI) values and the oxygen index (OI) values compared with the NE soil, especially for the soil treated with CSS which contained more aliphatic than aromatic compounds. The addition of CSS to the techno-soil significantly increased the percentage of C org associated with the HA fractions compared with the RCW and NE soils. The soil amended with CSS showed the highest E 4/E 6 ratio and the lowest E 2/E 3 ratio of FA. Zn and As were more abundant in the FA fraction than in the HA fraction, whereas Pb, Cu and Mo were more associated to HA than to FA in the treated and untreated soils, which may explain the difference in their mobility and availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号