首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A Fenton oxidation system employing zero-valent iron (whose source was swarf, a residue of metallurgical industries, in powder form) and hydrogen peroxide for the treatment of an aqueous solution with six pesticides was developed, and the effect of the iron metal content, pH, and hydrogen peroxide concentration was evaluated. The characterization of the aqueous solution resulted in: pH 5.6, 105 mg L?1 of dissolved organic carbon, and 44.6 NTU turbidity. In addition, the characterization of the swarf by FAAS and ICP-MS showed 98.43?±?7.40 % of zero-valent iron. The removal was strongly affected by the content of iron metal, pH, and hydrogen peroxide concentration. The best degradation conditions were 2.0 g swarf, pH 2.0, and 5 mmol L?1 H2O2. At the end of the treatment, the pesticide degradation ranged from 60 to 100 %, leading to 55 % mineralization. Besides, all hydrogen peroxide was consumed and the determination of total dissolved iron resulted in 2 mg L?1. Thus, the advantages of this system are rapid degradation (up to 20 min), high-degradation rates, simple handling, and low cost.
Figure
A Fenton oxidation system employing Fe0 (in which the source of Fe0 was swarf, a residue in powder form of metallurgical industries) and H2O2 for the degradation of synthetic wastewater comprising six pesticides was developed, and the effect of the amount of Fe0, pH, and H2O2 concentration was evaluated.  相似文献   

2.
Butyltin (BT) contamination was evaluated in hermit crabs from 25 estuaries and in sediments from 13 of these estuaries along about 2,000 km of the Brazilian coast. BT contamination in hermit crabs ranged from 2.22 to 1,746 ng Sn g-1 of DBT and 1.32 to 318 ng Sn g-1 of TBT. In sediment samples, the concentration also varied widely, from 25 to 1,304 ng Sn g-1 of MBT, from 7 to 158 ng Sn g-1 of DBT, and from 8 to 565 ng Sn g-1 of TBT. BTs are still being found in surface sediments and biota of the estuaries after the international and Brazilian bans, showing heterogeneous distribution among and within estuaries. Although hermit crabs were previously tested as an indicator of recent BT contamination, the results indicate the presence of contamination, probably from resuspension of BTs from deeper water of the estuary.
Figure
Contamination of the environment and biota continues after the ban  相似文献   

3.

Background and purpose

Besides the opportunities for reuse, stringent regulations and growing public awareness demand an enhanced quality of effluent from dye industries. Treatment of an aqueous solution of dye (reactive red 198) was carried out in a nanofiltration unit using both flat sheet and spiral wound modules to obtain a comparative performance evaluation in terms of permeate flux and quality.

Methods

Hydrophilized polyamide membrane with molecular weight cutoff of 150 was used for the experiments. Effects of trans-membrane pressure (TMP), feed concentration and addition of salt on permeate flux were investigated. Percent reduction of color, chemical oxygen demand (COD), total dissolved solid (TDS), and conductivity were determined to assess performance of the membrane.

Results

The maximum flux decline was 16.1% of its initial value at 490 kPa TMP with 50 ppm feed concentration in spiral wound module, whereas the same in flat sheet under same conditions was 7.2%. The effect of TMP showed a quasi-linear increase in flux with increasing pressure. Increased permeate concentration led to the reduction in observed retention of dye in the membrane. The average reduction in color, COD, and TDS were 96.88%, 97.38%, and 89.24%, respectively. The decline in permeate flux was more in case of spiral wound module compared to flat sheet. However, spiral wound module performed better in terms of color removal, COD reduction, and TDS removal.

Conclusion

Substantial removal of color was achieved in the nanofiltration experiments with a marked reduction in COD and TDS. The process allowed the production of permeate stream with great reutilization possibilities.  相似文献   

4.

Introduction

A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green.

Materials and methods

For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also.

Result and discussion

Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin–Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model.

Conclusions

The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm?1. Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye–biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.  相似文献   

5.
This study compares the performance of simulated shallow ponds vegetated with Lemna minor L. under controlled and semi-natural conditions for the treatment of simulated wastewater containing textile dyes. The objectives were to assess the water quality outflow parameters, the potential of L. minor concerning the removal of chemical oxygen demand (COD) and four azo dyes (Acid blue 113, reactive blue 198, Direct Orange 46 and Basic Red 46) and the plants’ growth rate. Findings show that all mean outflow values of COD, total dissolved solids (TDS) and electrical conductivity (EC) were significantly (p < 0.05) lower within the outdoor compared to the indoor experiment except the dissolved oxygen (DO). The COD removal was low for both experiments. The outflow TDS values were acceptable for all ponds. The pond systems were able to reduce only BR46 significantly (p < 0.05) for the tested boundary conditions. Removals under laboratory conditions were better than those for semi-natural environments, indicating the suitability of operating the pond system as a polishing step in warmer regions. The mean outflow values of zinc and copper were below the thresholds set for drinking and irrigation waters and acceptable for L. minor. The dyes inhibited the growth of the L. minor.  相似文献   

6.
Two new photoactive materials compatible with environmentally friendly solvents (water and methanol) have been synthesized and characterized. They are comprised of a porous matrix of polystyrene and divinylbenzene with bound Rose Bengal and additional pendant groups added to increase the hydrophilicity (ethylenediamine and γ-gluconolactone). The new polymers are efficient photocatalysts capable of generating singlet oxygen after irradiation with visible light. Photochemical oxygenations of 9,10-anthracenedipropionic acid and 2-furoic acid have been carried out. The measured conversions indicate that the new supported photosensitizers are more effective than the parent hydrophobic polymer. Figure
New photoactive polymers for oxidations in aqueous solvent  相似文献   

7.
To explain the detailed process involved in phosphorus removal by periphyton, the periphyton dominated by photoautotrophic microorganisms was employed in this study to remove inorganic phosphorus (P i ) from wastewater, and the removal kinetics and isotherms were then evaluated for the P i removal process. Results showed that the periphyton was capable of effectively removing P i that could completely remove the P i in 24 h at an initial P i concentration of 13 mg P L?1. Furthermore, the P i removal process by the periphyton was dominated by adsorption at initial stage (~24 h), which involved physical mechanistic process. However, this P i adsorption process was significantly influenced by environmental conditions. This work provides an insight into the understanding of phosphorus adsorption by periphyton or similar microbial aggregates.
Graphical Abstract
?  相似文献   

8.

Introduction

The photocatalytic degradation of Orange G (OG) dye has been investigated using synthesised nanocrystalline ZnO as a photocatalyst and sunlight as the irradiation source. The formation of ZnO prepared from its precursor was confirmed through FT-IR and powder X-ray diffraction analyses.

Materials and methods

Surface morphology was characterised by scanning electron microscope and transmission electron microscope analysis. Band gap energy of synthesised nanocrystalline ZnO was calculated using diffuse reflectance spectroscopy (DRS). Different experimental parameters such as effects of pH, dye concentrations and mass of catalyst were standardised in order to achieve complete degradation of the dye molecules under solar light irradiation.

Results

The kinetics of oxidation of OG was also studied. The complete degradation of OG was evident after 90 min of irradiation at an initial pH of 6.86. The degradation of OG was confirmed by UV?CVisible spectrophotometer, high-pressure liquid chromatography, ESI-Mass and chemical oxygen demand analyses.

Conclusion

The adsorption of dye onto catalytic surface was analysed employing model equations such as Langmuir and Freundlich isotherms, and it was found that the Langmuir isotherm model best fitted the adsorption data. The solar photodegradation of OG followed pseudo-first-order kinetics. HPLC and ESI-Mass analyses of the degraded samples suggested that the dye molecules were readily degraded under solar irradiation with nanocrystalline ZnO.  相似文献   

9.
In the current study, the bioaccumulation of essential and nonessential metals and related antioxidant activity were analyzed in three organs (muscle, gills, and liver) of herbivorous (HF) and carnivorous (CF) edible fish of Chenab River. The comparative analysis revealed a more heterogeneous accumulation of metals in the muscles of HF fish than that of CF fish [chromium (Cr, 3.4 μg g?1), cobalt (Co, 1.7 μg g?1), copper (Cu, 3 μg g?1), and iron (Fe, 45 μg g?1) versus Cr (1.3 μg g?1), Co (0.1 μg g?1), Cu (1.1 μg g?1), and Fe (33 μg g?1), respectively, P?<?0.001]. These results implied an organ-specific accumulation of metals at different trophic levels. According to logistic regression analysis, the bioaccumulation of metals had marked differences in HF and CF. The antioxidant activity was significantly related to the tissue type and the metals to which the organs are exposed to. The liver of CF fish had a higher activity of antioxidant superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and lipid peroxidase (LPO) than that of HF (P?<?0.05). LPO and guaiacol peroxidase (POD) in both groups were associated with a number of metals, but in HF, cadmium (Cd), Cr, Pb, and Zn were more related with the LPO and SOD activities. Moreover, Cd, Co, Fe, Pb, Ni, Cu, and Zn were above the permissible limits set by various agencies. In numerous cases, our results were even higher than those previously reported in the literature. The results provide an insight into the pollution pattern of Chenab River. These results may be helpful in the future to identify biomarkers of exposure in aquatic organisms.
Figure
?  相似文献   

10.

Introduction

The toxic effect of the oxidation hair dyes on Phanerochaete chrysosporium was investigated by exposure of this fungus in a nitrogen-limited culture medium to various concentrations of the oxidation hair dyes.

Results

The results showed that both the size and the dry weight of the mycelial pellets of P. chrysosporium could be reduced when the concentration of the oxidation hair dyes was higher than 300?mg/L. By using the AFLP analysis and the UPGMA dendrogram, the DNA damage of P. chrysosporium by the oxidation hair dyes was also detected. Comparing with that in the control, the percent polymorphism under different concentrations of the oxidation hair dyes increased. In the meantime, the DNA similarity was decreased, which meant that the DNA damage was aggravated with an increase in the concentrations of the oxidation hair dyes.

Conclusion

Thus, as an environmental pollutant, the oxidation hair dyes have a toxic effect on P. chrysosporium at both cellular and molecular levels.  相似文献   

11.
The search for novel microorganisms able to degrade olive mill wastewaters (OMW) and withstand the toxic effects of the initially high phenolic concentrations is of great scientific and industrial interest. In this work, the possibility of reducing the phenolic content of OMW using new isolates of fungal strains (Coriolopsis gallica, Bjerkandera adusta, Trametes versicolor, Trichoderma citrinoviride, Phanerochaete chrysosporium, Gloeophyllum trabeum, Trametes trogii, and Fusarium solani) was investigated. In vitro, all fungal isolates tested caused an outstanding decolorization of OMW. However, C. gallica gave the highest decolorization and dephenolization rates at 30 % v/v OMW dilution in water. Fungal growth in OMW medium was affected by several parameters including phenolic compound concentration, nitrogen source, and inoculum size. The optimal OMW medium for the removal of phenolics and color was with the OMW concentration (in percent)/[(NH4)2SO4]/inoculum ratio of 30:6:3. Under these conditions, 90 and 85 % of the initial phenolic compounds and color were removed, respectively. High-pressure liquid chromatography analysis of extracts from treated and untreated OMW showed a clear and substantial reduction in phenolic compound concentrations. Phytotoxicity, assessed using radish (Raphanus sativus) seeds, indicated an increase in germination index of 23–92 % when a 30 % OMW concentration was treated with C. gallica in different dilutions (1/2, 1/4, and 1/8).
Figure
?  相似文献   

12.
l-meta-tyrosine is an herbicidal nonprotein amino acid isolated some years ago from fine fescue grasses and characterized by its almost immediate microbial degradation in soil (half-life <24 h). Nine monohalogenated or dihalogenated analogs of this allelochemical have been obtained through a seven-step stereoselective synthesis from commercial halogenated phenols. Bioassays showed a large range of biological responses, from a growth root inhibition of lettuce seedling similar to that noted with m-tyrosine [2-amino-3-(2-chloro-5-hydroxyphenyl)propanoic acid or compound 8b] to an increase of the primary root growth concomitant with a delay of secondary root initiation [2-amino-3-[2-fluoro-5-hydroxy-3-(trifluoromethyl)phenyl]propanoic acid or compound 8h]. Compound 8b was slightly less degraded than m-tyrosine in the nonsterilized nutritive solution used for lettuce development, while the concentration of compound 8h remained unchanged for at least 2 weeks. These data indicate that it is possible to manipulate both biological properties and degradation of m-tyrosine by halogen addition.  相似文献   

13.
A novel photocatalytic reactor for wastewater treatment was designed and constructed. The main part of the reactor was an aluminum tube in which 12 stainless steel circular baffles and four quartz tube were placed inside of the reactor like shell and tube heat exchangers. Four UV–C lamps were housed within the space of the quartz tubes. Surface of the baffles was coated with TiO2. A simple method was employed for TiO2 immobilization, while the characterization of the supported photocatalyst was based on the results obtained through performing some common analytical methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and BET. Phenol was selected as a model pollutant. A solution of a known initial concentration (20, 60, and 100 ppmv) was introduced to the reactor. The reactor also has a recycle flow to make turbulent flow inside of the reactor. The selected recycle flow rate was 7?×?10?5 m3.s?1, while the flow rate of feed was 2.53?×?10?7, 7.56?×?10?7, and 1.26?×?10?6 m3.s?1, respectively. To evaluate performance of the reactor, response surface methodology was employed. A four-factor three-level Box–Behnken design was developed to evaluate the reactor performance for degradation of phenol. Effects of phenol inlet concentration (20–100 ppmv), pH (3–9), liquid flow rate (2.53?×?10?7?1.26?×?10?6 m3.s?1), and TiO2 loading (8.8–17.6 g.m?2) were analyzed with this method. The adjusted R 2 value (0.9936) was in close agreement with that of corresponding R 2 value (0.9961). The maximum predicted degradation of phenol was 75.50 % at the optimum processing conditions (initial phenol concentration of 20 ppmv, pH?~?6.41, and flow rate of 2.53?×?10?7 m3.s?1 and catalyst loading of 17.6 g.m?2). Experimental degradation of phenol determined at the optimum conditions was 73.7 %. XRD patterns and SEM images at the optimum conditions revealed that crystal size is approximately 25 nm and TiO2 nanoparticles with visible agglomerates distribute densely and uniformly over the surface of stainless steel substrate. BET specific surface area of immobilized TiO2 was 47.2 and 45.8 m2 g?1 before and after the experiments, respectively. Reduction in TOC content, after steady state condition, showed that maximum phenol decomposition occurred at neutral condition (pH?~?6). Figure
The schematic view of the experimental set-up  相似文献   

14.

Purpose

The discharge of colored effluents from industries is an important environmental issue and it is indispensable to remove the dyes before the water gets back to the rivers. The magnetic adsorbents present the advantage of being easily separated from the aqueous system after adsorption by positioning an external magnetic field.

Methods

Magnetic N-lauryl chitosan (L-Cht/??-Fe2O3) particles were prepared and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, and vibrating sample magnetometry. Remazol Red 198 (RR198) was used as a reactive dye model for adsorption on L-Cht/??-Fe2O3. The adsorption isotherms were performed at 25°C, 35°C, 45°C, and 55°C and the process was optimized using a 23 factorial design (analyzed factors: pH, ionic strength, and temperature). The desorption and regeneration studies were performed in a three times cycle.

Results

The characterization of the material indicated that the magnetic particles were introduced into the polymeric matrix. The pseudo-second order was the best model for explaining the kinetics and the Langmuir?CFreundlich was the best-fitted isotherm model. At room temperature, the maximum adsorption capacity was 267?mg?g?1. The material can be reused, but with a decrease in the amount of adsorbed dye.

Conclusions

L-Cht/??-Fe2O3 is a promising material to remove RR198 and probably other similar reactive dyes from aqueous effluents.  相似文献   

15.
Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (~10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes.  相似文献   

16.

Background, aim, scope

Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst.

Materials and methods

Ferrous sulfate (FeSO4·7H2O), sulfuric acid (36?N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50?cm and diameter 6?cm, were fabricated with PVC while one reactor was packed with MAC of mass 150?g and other without MAC served as control.

Results and discussion

The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89?kJ/mol, respectively. The thermodynamic parameters ??G, ??H, and ??S were calculated for the oxidation processes using Van??t Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV?Cvisible spectroscopy, and cyclic voltammetry.

Conclusions

The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time?C4?h, and H2O2/FeSO4·7H2O in the molar ratio of 2:1.  相似文献   

17.
Oropharyngeal cancer is a significant public health issue in the world. The incidence of oropharyngeal cancer has been increased among people who have habit of chewing smokeless tobacco (SLT) in Pakistan. The aim of present study was to evaluate the concentration of nickel (Ni) in biological samples (whole blood, serum) of oral (n?=?95) and pharyngeal (n?=?84) male cancer patients. For comparison purposes, the biological samples of healthy age-matched referents (n?=?150), who consumed and did not consumed SLT products, were also analyzed for Ni levels. As the Ni level is very low in biological samples, a preconcentration procedure has been developed, prior to analysis of analyte by flame atomic absorption spectrometry (FAAS). The Ni in acid-digested biological samples was complexed with ammonium pyrrolidinedithio carbamate (APDC), and a resulted complex was extracted in a surfactant Triton X-114. Acidic ethanol was added to the surfactant-rich phase prior to its analysis by FAAS. The chemical variables, such as pH, amounts of reagents (APDC, Triton X-114), temperature, incubation time, and sample volume were optimized. The resulted data indicated that concentration of Ni was higher in blood and serum samples of cancer patients as compared to that of referents who have or have not consumed different SLT products (p?=?0.012–0.001). It was also observed that healthy referents who consumed SLT products have two to threefold higher levels of Ni in both biological samples as compared to those who were not chewing SLT products (p? Figure
?  相似文献   

18.

Purpose

Biodegradation and biodecolorization of Drimarene blue K2RL (anthraquinone) dye by a fungal isolate Aspergillus flavus SA2 was studied in lab-scale immobilized fluidized bed bioreactor (FBR) system.

Method

Fungus was immobilized on 0.2-mm sand particles. The reactor operation was carried out at room temperature and pH?5.0 in continuous flow mode with increasing concentrations (50, 100, 150, 200, 300, 500?mg?l?1) of dye in simulated textile effluent on the 1st, 2nd, 5th, 8th, 11th, and 14th days. The reactors were run on fill, react, settle, and draw mode, with hydraulic retention time (HRT) of 24?C72?h. Total run time for reactor operation was 17?days.

Results

The average overall biological oxygen demand (BOD), chemical oxygen demand (COD), and color removal in the FBR system were up to 85.57%, 84.70%, and 71.3%, respectively, with 50-mg?l?1 initial dye concentration and HRT of 24?h. Reductions in BOD and COD levels along with color removal proved that the mechanism of biodecolorization and biodegradation occurred simultaneously. HPLC and LC?CMS analysis identified phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and catechol as degradation products of Drimarene blue K2RL dye. Phytotoxicity analysis of bioreactor treatments provided evidence for the production of less toxic metabolites in comparison to the parent dye.

Conclusion

The present fluidized bed bioreactor setup with indigenously isolated fungal strain in its immobilized form is efficiently able to convert the parent toxic dye into less toxic by-products.  相似文献   

19.

Purpose

With the aim of enhanced degradation of azo dye alizarin yellow R (AY) and further removal of the low-strength recalcitrant matter (LsRM) of the secondary effluent as much as possible, our research focused on the combination of aerobic bio-contact oxidation (ABO) with iron/carbon microelectrolysis (ICME) process.

Materials and methods

The combined ABO (with effective volume of 2.4?l) and ICME (with effectively volume of 0.4?l) process were studied with relatively short hydraulic retention time (HRT) of 4 or 6?h.

Results

At the HRT of 6?h with the reflux ratio of 1 and 2, the AY degradation efficiency in the final effluent was >96.5%, and the total organic carbon (TOC) removal efficiency were 69.86% and 79.44%, respectively. At the HRT of 4?h and the reflux ratio of 2, TOC removal efficiency and AY degradation efficiency were 73.94% and 94.89%, respectively. The ICME process obviously enhanced the total AY removal and the generated micromolecule acids and aldehydes then that wastewater backflow to the ABO where they were further biodegraded.

Conclusion

The present research might provide the potential options for the advanced treatment azo dyes wastewater with short HRT and acceptable running costs.  相似文献   

20.

Purpose

The aim of this work was to improve the ability of electro-Fenton technique for the remediation of wastewater contaminated with synthetic dyes using a model azo dye such as Azure B.

Methods

Batch experiments were conducted to study the effects of main parameters, such as dye concentration, electrode surface area, treatment time, and voltage. In this study, central composite face-centered experimental design matrix and response surface methodology were applied to design the experiments and evaluate the interactive effects of the four studied parameters. A total of 30 experimental runs were set, and the kinetic data were analyzed using first- and second-order models.

Results

The experimental data fitted to the empirical second-order model of a suitable degree for the maximum decolorization of Azure B by electro-Fenton treatment. ANOVA analysis showed high coefficient of determination value (R 2?=?0.9835) and reasonable second-order regression prediction. Pareto analysis suggests that the variables, time, and voltage produce the largest effect on the decolorization rate.

Conclusion

Optimum conditions suggested by the second-order polynomial regression model for attaining maximum decolorization were dye concentration 4.83?mg/L, electrode surface area 15?cm2, voltage 14.19?V, and treatment time of 34.58?min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号