首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atrazine and phenanthrene (Phen) sorption by nonhydrolyzable carbon (NHC), black carbon (BC), humic acid (HA) and whole sediment and soil samples was examined. Atrazine sorption isotherms were nearly linear. The single-point organic carbon (OC)-normalized distribution coefficients (KOC) of atrazine for the isolated HA1, NHC1 and BC1 from sediment 1 (ST1) were 36, 550, and 1470 times greater than that of ST1, respectively, indicating the importance of sediment organic matter, particularly the condensed fractions (NHC and BC). Similar sorption capacity of atrazine and Phen by NHC but different isotherm nonlinearity indicated different sorption domains due to their different structure and hydrophobicity. The positive relationship between (O + N)/C ratios of NHC and atrazine log KOC at low concentration suggests H-bonding interactions. This study shows that sediment is probably a less effective sorbent for atrazine than Phen, implying that atrazine applied in sediments or soils may be likely to leach into groundwater.  相似文献   

2.
The carbonaceous components of Particulate Matter samples form a substantial fraction of their total mass, but their quantification depends strongly on the instruments and methods used. United Kingdom monitoring networks have provided many relevant data sets that are already in the public domain. Specifically, hourly organic carbon (OC) and elemental carbon (EC) were determined at four sites between 2003 and 2007 using Rupprecht and Pattashnik (R & P) 5400 automatic instruments. Since 2007, daily OC/EC measurements have been made by manual thermo-optical analysis of filter samples using a Sunset Laboratory Carbon Aerosol Analysis instrument. In parallel, long term daily measurements of Black Smoke, a quantity directly linked to black carbon (measured by aethalometers) and indirectly related to elemental carbon, have been made at many sites. The measurement issues associated with these techniques are evaluated in the context of UK measurements, making use of several sets of parallel data, with the aim of aiding the interpretation of network results. From the results available, the main conclusions are that the R & P 5400 instruments greatly under-read EC and total carbon (TC = OC + EC) at kerbside sites, probably due to the fact that the smaller particles are not sampled by the instrument; the R & P 5400 instrument is inherently difficult to characterise, so that all quantitative results need to be treated with caution; both aethalometer and Black Smoke (converted to black carbon) measurements can show reasonable agreement with elemental carbon results; and manual thermo-optical OC/EC results may under-read EC (and hence over-read OC), whether either transmittance or reflectance is used for the pyrolysis correction, and this effect is significant at rural sites.  相似文献   

3.
Ahn CK  Kim YM  Woo SH  Park JM 《Chemosphere》2007,69(11):1681-1688
Selective adsorption of a hazardous hydrophobic organic compound (HOC) by activated carbon as a means of recovering surfactants after a soil washing process was investigated. As a model system, phenanthrene was selected as a representative HOC and Triton X-100 as a nonionic surfactant. Three activated carbons that differed in size (Darco 20–40 (D20), 12–20 (D12) and 4–12 (D4) mesh sizes) were used in adsorption experiments. Adsorption of surfactant onto activated carbon showed a constant maximum above the critical micelle concentration, which were 0.30, 0.23, 0.15 g g−1 for D20, D12, and D4, respectively. Selectivity for phenanthrene to Triton X-100 was much higher than 1 over a wide range of activated carbon doses (0–6 g l−1) and initial phenanthrene concentrations (10–110 mg l−1). Selectivity generally increased with decreasing particle size, increasing activated carbon dose, and decreasing initial concentration of phenanthrene. The highest selectivity was 74.9, 57.3, and 38.3 for D20, D12, and D4, respectively, at the initial conditions of 10 mg l−1 phenanthrene, 5 g l−1 Triton X-100 and 1 g l−1 activated carbon. In the case of D20 at the same conditions, 86.5% of the initial phenanthrene was removed by sorption and 93.6% of the initial Triton X-100 remained in the solution following the selective adsorption process. The results suggest that the selective adsorption by activated carbon is a good alternative for surfactant recovery in a soil washing process.  相似文献   

4.
Organic pollutants (e.g. polyaromatic hydrocarbons (PAH)) strongly sorb to carbonaceous sorbents such as black carbon and activated carbon (BC and AC, respectively). For a creosote-contaminated soil (Sigma15PAH 5500 mg kg(dry weight(dw))(-1)) and an urban soil with moderate PAH content (Sigma15PAH 38 mg kg(dw)(-1)), total organic carbon-water distribution coefficients (K(TOC)) were up to a factor of 100 above values for amorphous (humic) organic carbon obtained by a frequently used Linear-Free-Energy Relationship. This increase could be explained by inclusion of BC (urban soil) or oil (creosote-contaminated soil) into the sorption model. AC is a manufactured sorbent for organic pollutants with similar strong sorption properties as the combustion by-product BC. AC has the potential to be used for in situ remediation of contaminated soils and sediments. The addition of small amounts of powdered AC (2%) to the moderately contaminated urban soil reduced the freely dissolved aqueous concentration of native PAH in soil/water suspensions up to 99%. For granulated AC amended to the urban soil, the reduction in freely dissolved concentrations was not as strong (median 64%), especially for the heavier PAH. This is probably due to blockage of the pore system of granulated AC resulting in AC deactivation by soil components. For powdered and granulated AC amended to the heavily contaminated creosote soil, median reductions were 63% and 4%, respectively, probably due to saturation of AC sorption sites by the high PAH concentrations and/or blockage of sorption sites and pores by oil.  相似文献   

5.
A study was performed on the influence of the addition of a relatively large amount of phenanthrene to two in situ contaminated sediments on the fractions of native PAHs in both the slowly desorbing domain and the very slowly desorbing domain in comparison to the undisturbed situation. Added phenanthrene was found to be present in both the slowly desorbing domain and the very slowly desorbing domain. The extent of removal of native PAHs from the very slowly desorbing domain induced by the presence of a large excess of phenanthrene was in line with expectations based on the incubation time and the rate constants for desorption of native PAHs from the very slowly desorbing domain. In contrast, the addition of phenanthrene did not result in a removal of native PAHs from the slowly desorbing domain. This was tentatively explained by assuming that native PAHs in the slowly desorbing domain are at adsorption sites with dimensions specific to each PAH and which are, therefore, less suited to other PAHs.  相似文献   

6.
Black carbon (BC) and total organic carbon (TOC) contents of UK and Norwegian background soils were determined and their relationships with persistent organic pollutants (HCB, PAHs, PCBs, co-planar PCBs, PBDEs and PCDD/Fs) investigated by correlation and regression analyses, to assess their roles in influencing compound partitioning/retention in soils. The 52 soils used were high in TOC (range 54-460 mg/g (mean 256)), while BC only constituted 0.24-1.8% (0.88%) of the TOC. TOC was strongly correlated (p < 0.001) with HCB, PCBs, co-PCBs and PBDEs, but less so with PCDD/Fs (p < 0.05) and PAHs. TOC explained variability in soil content, as follows: HCB, 80%; PCBs, 44%; co-PCBs, 40%; PBDEs, 27%. BC also gave statistically significant correlations with PBDEs (p < 0.001), co-PCBs (p < 0.01) and PCBs, HCB, PCDD/F (p < 0.05); TOC and BC were correlated with each other (p < 0.01). Inferences are made about possible combustion-derived sources, atmospheric transport and air-surface exchange processes for these compounds.  相似文献   

7.
Yu Z  Huang W  Song J  Qian Y  Peng P 《Chemosphere》2006,65(11):2493-2501
The objective of this study was to quantify sorption properties for kerogen/black carbon (BC)-bearing sediments. Single-solute sorption isotherms were measured for five pristine marine sediments using phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,4-dichlorobenzene as the sorbates. The results showed that the sorption isotherms were nonlinear and that the organic carbon normalized single point KOC values were comparable to those reported in the literature for the purified keorgen and BC, but are much higher than the data reported for HA and kerogen/BC-containing terrestrial soils and sediments. It is likely that koergen and BC associated with these pristine marine sediments may not be encapsulated with humic acids or Fe and Mn oxides and hydroxides as often do in terrestrial soils and sediments. As a result, they may be fully accessible to sorbing molecules, exhibiting higher sorption capacities. The study suggests that competition from background HOCs and reduced accessibility when kerogen and BC are associated with terrestrial sediments may dramatically increase variability of sorption reactivities of geosorbents. Such variability may lead to large uncertainties in the prediction of sorption from the contents of kerogen and/or BC along with TOC.  相似文献   

8.
Comparability of sediment analyses for semivolatile organic substances is still low. Neither screening of the sediments nor organic-carbon based normalization is sufficient to obtain comparable results. We are showing the interdependency of grain-size effects with inside-sediment organic-matter distribution for PAH, PCB and organochlorine compounds. Surface sediment samples collected by Van-Veen grab were sieved and analyzed for 16 PAH, 6 PCB and 18 organochlorine pesticides (OCP) as well as organic-matter content. Since bulk concentrations are influenced by grain-size effects themselves, we used a novel normalization method based on the sum of concentrations in the separate grain-size fractions of the sediments. By calculating relative normalized concentrations, it was possible to clearly show underlying mechanisms throughout a heterogeneous set of samples. Furthermore, we were able to show that, for comparability, screening at <125 μm is best suited and can be further improved by additional organic-carbon normalization.  相似文献   

9.
Mineral surfaces form the main sorption phase for alcohol ethoxylates (AEs) in marine sediment. Competition for adsorption sites is investigated for marine sediment and kaolinite clay using simple mixtures of AE homologues. For both sorbents, adsorption sites on mineral surfaces can be effectively blocked by an AE homologue with the strongest adsorption affinity. The strongly adsorbed AE, however, forms a second sorption phase to which weakly adsorbing AE will sorb, forming bilayers. An extended dual-mode model accounts for competition effects, while still based on sorption properties of individual compounds. Competition effects become apparent when total adsorbed concentrations reach ∼10% of the adsorption capacity. Deviations from individual sorption isotherms depend on affinity constants and dissolved homologue composition. Competition will not often occur in contaminated field sediments, with AEs concentrations usually far below the adsorption capacity, but will affect sorption studies, sediment toxicity tests or applications with nonionic surfactant mixtures.  相似文献   

10.
Among the numerous PCB congeners, most of the dioxin-like PCBs (DL-PCBs) need to be characterized by hyphenated techniques. It has been shown in several instances that these congeners are well related to the total PCB content in fish. We examined datasets collected mainly in France, on freshwater and marine fish and sediments. A statistical model linking DL- and indicator PCBs was developed for a dataset composed of freshwater fishes, and proved to predict well DL-PCBs from indicator PCBs in all other fish sets, including marine ones. Type II error rates remained low in almost all fish sets. A similar correlation was observed in sediments. Non-dioxin-like PCBs elicit various adverse effects and represent 95% of the total PCBs. A European guideline for them is needed; the correlation between DL- and indicator PCBs could help develop this standard in the future.  相似文献   

11.
The mass concentrations of inorganic ions, water-soluble organic carbon, water-insoluble organic carbon and black carbon were determined in atmospheric aerosol collected at three European background sites: (i) the Jungfraujoch, Switzerland (high-alpine, PM2.5 aerosol); (ii) K-puszta, Hungary (rural, PM1.0 aerosol); (iii) Mace Head, Ireland (marine, total particulate matter). At the Jungfraujoch and K-puszta the contribution of carbonaceous compounds to the aerosol mass was higher than that of inorganic ions by 33% and 94%, respectively. At these continental sites about 60% of the organic carbon was water soluble, 55–75% of the total carbon proved to be refractory and a considerable portion of the water soluble, refractory organic matter was composed of humic-like substances. At Mace Head the mass concentration of organic matter was found to be about twice than that of nonsea-salt ions, 40% of the organic carbon was water soluble and the amount of highly refractory carbon was low. Humic-like substances were not detected but instead low molecular weight carboxylic acids were responsible for about one-fifth of the water-soluble organic mass. These results imply that the influence of carbonaceous compounds on aerosol properties (e.g. hygroscopic, optical) might be significant.  相似文献   

12.
Zhang W  Zhuang L  Yuan Y  Tong L  Tsang DC 《Chemosphere》2011,83(3):302-310
Phenanthrene is commonly present together with heavy metals at many contaminated sites. This study investigated the influence of coexisting lead (Pb2+) or cadmium (Cd2+) on phenanthrene adsorption on soils. Batch experiments were conducted under different geochemical conditions including pH, mineral structure, organic matter content, and varying amounts of heavy metals. The results showed that the presence of heavy metals in solution at a fixed pH of 5.8 ± 0.1 enhanced phenanthrene adsorption, the extent of which was closely related to the concentrations and the electro-negativity of the metals. The enhancement on phenanthrene adsorption was positively correlated to the amount of adsorbed metals. Although Cd2+ is a softer Lewis acid, Pb2+ displayed a more significant effect as it was adsorbed to a greater extent on the soil surfaces. Thus, density of cation accumulation appears to be more influential than metal softness in enhancing phenanthrene adsorption. Moreover, with a portion of organic matter removed by heating at 550 °C, there was a stronger enhancement of phenanthrene adsorption by coexisting Pb2+, indicating an increasingly dominant mechanisms associated with Pb2+ at a lower organic matter content. Similar enhancement phenomenon was observed on bentonite and kaolinite, probably resulting from the cation-π bonding between the adsorbed soft metal cations and the aromatic ring of phenanthrene in solution. The desorption experiments further suggested that the bonding of phenanthrene adsorption was strengthened in the presence of Pb2+ and that a larger proportion of adsorbed phenanthrene remained on the soils (residual fraction) even after sequential methanol extractions. Further spectroscopic analyses and surface characterization are required to provide direct evidence of the formation and relative significance of cation-π bond for phenanthrene adsorption.  相似文献   

13.
Oleszczuk P  Xing B 《Chemosphere》2011,85(8):1312-1317
High adsorption capacity of carbon nanotubes (CNTs) may greatly determine the bioavailability and mobility of organic contaminants. The fate of contaminants adsorbed by CNTs may be substantially influenced by surfactants used both in the synthesis and dispersion of CNTs. The aim of this research was to determine the influence of surfactants (nonionic - TX100, cationic - CTAB and anionic - SDBS) on adsorption and desorption of oxytetracycline (OTC) by multiwalled carbon nanotubes (MWCNTs). The surfactants used had a substantial influence on both adsorption and desorption of OTC. The direction of changes depended clearly on the type of surfactant. In case of anionic SDBS, increased adsorption of OTC by MWCNTs was observed. The presence of TX100 and CTAB decreased the adsorption of OTC by MWCNTs significantly. The increase of OTC adsorption after ultrasonic treatment was observed in case of MWCNTs alone and MWCNTs with SDBS and TX100. However, ultrasonic treatment caused OTC adsorption decrease in the presence of CTAB. The change of pH had also an important effect on OTC adsorption in the presence of surfactants. Depending on the surfactant and pH, an increase or decrease of OTC adsorption was observed. The presence of surfactants increased OTC desorption from MWCNTs significantly as follows: SDBS = CTAB < TX100. The results obtained suggest new potential threats and constitute a basis for further research considering the bioavailability and toxicity of antibiotics in the presence of MWCNTs and surfactants.  相似文献   

14.
Detailed soil screening data from the Czech Republic as a typical Central European country are presented here. Determination of a wide selection of organic and inorganic pollutants as well as an assessment of specific soil parameters allowed us to study the soil contamination in relation to the land use and soil properties. While HCHs and HCB were found at highest levels in arable soils, the higher concentrations of PCDDs/Fs, PCBs, PAHs and DDTs were observed in high altitude forest soils. Concentrations of these compounds strongly correlated with the soil organic carbon content. Several possible reasons have been suggested for the observed higher concentrations in mountain forest soils but the impact of each of these influencing factors remains to be identified. An inventory of the soil contamination is needed as a first step in our effort to estimate an extent to which the secondary sources contribute to the enhanced atmospheric levels of POPs.  相似文献   

15.
A PAH contaminated river floodplain soil was separated according to grain size and density. Coal and coal-derived particles from coal mining, coal industry and coal transportation activities were identified by organic petrographic analysis in our samples. Distinct concentrations of PAHs were found in different grain size and density fractions, however, similar distribution patterns of PAHs indicated similar sources. In addition, although light fractions had the mass fraction by weight of less than 5%, they contributed almost 75% of the total PAHs in the soil. PAH concentrations of all sub fractions showed positive correlation with their TOC contents. Altogether, coal and coal-derived particles that were abundant in light fractions could be the dominant geosorbents for PAHs in our samples.  相似文献   

16.
The effect of synthetic and mineral oils on the formation of polyaromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls (PCBs) in emissions from a spark ignition engine was studied on a Skoda Favorit engine fueled with leaded gasoline. The test cycle simulated urban traffic conditions on a chassis dynamometer, in accordance with the ECC 83.00 test. The data for selected PAHs as well as PCDDs, PCDFs, and PCBs congener profiles are presented. PCDD/Fs emissions for an unused oil and the oil after 10000-km operation varied from 300 to 2000 fmol/m3, PCBs emissions from 75 to 178 pmol/m3, and PAHs emissions from 150 to 420 microg/m3. The content of PCBs in oils varied from 2 to 920 mg/kg.  相似文献   

17.
Bioavailable water concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were assessed at several freshwater sites in and around the city of Amsterdam. Carp (Cyprinus carpio) were caged for 4 weeks at 10 sites, together with semipermeable membrane devices (SPMDs). In addition, sediment samples were taken at each site. SPMDs and sediments were analysed for PAHs, PCBs and OCPs. Carp muscle tissues were analysed for PCBs and OCP, while PAH metabolites were assessed in fish bile. Contaminant concentrations in the water phase were estimated using three different methods: 1. Using fish tissue concentrations and literature bioconcentration factors (BCFs), 2. Using SPMD levels and a kinetic SPMD uptake model, and 3. Using sediment levels and literature sorption coefficients (Kocs). Since PAH accumulation in fish is not considered an accurate indicator of PAH exposure, calculated aqueous PAH concentrations from SPMD data were compared with semiquantitatively determined biliary PAH metabolite levels. Contaminant concentrations in the water phase estimated with fish data (Cwfish) and SPMD data (Cwspmd) were more in line for compounds with lower Kow than for compounds with higher Kow values. This indicates that the assumption of fish–water sorption equilibrium was not valid. At most sites, sediment-based water levels (Cwsed) were comparable with the Cwspmd, although large differences were observed at certain sites. A significant correlation was observed between biliary PAH metabolite levels in fish and aqueous PAH concentrations estimated with SPMD data, suggesting that both methods may be accurate indicators of PAH exposure in aquatic ecosystems.  相似文献   

18.
Aliphatic and aromatic hydrocarbon fluxes were measured in time series sediment trap samples at 200 m and at 1000 m depths in the open Northwestern Mediterranean Sea, from December 2000 to July 2002. Averaged fluxes of n-alkanes, UCM and T-PAH35 were 2.96 ± 2.60 μg m−2 d−1, 64 ± 60 μg m−2 d−1 and 0.68 ± 0.59 μg m−2 d−1, respectively. Molecular compositions of both hydrocarbon classes showed a contamination in petrogenic hydrocarbons well above the background levels of such an open site, whereas pyrolytic hydrocarbons stand in the range of other open Mediterranean locations. Fluxes displayed ample interannual and seasonal variabilities, mainly related to mass flux variation while concentration evolutions trigger secondary changes in pollutant fluxes. High lithogenic flux events exported particles with a larger pollutant load than biogenic particles formed during the spring bloom and during the summer. Sinking hydrocarbons were efficiently transported from 200 m to 1000 m.  相似文献   

19.
Yang Y  Ligouis B  Pies C  Achten C  Hofmann T 《Chemosphere》2008,71(11):2158-2167
Organic petrographic analysis was applied to provide direct information on carbonaceous geosorbents for PAHs in river floodplain soils. The anthropogenic OM group (primarily coal and coal-derived particles) displayed large volume amounts for all the soil samples. Distinct PAH concentrations with similar PAH distribution patterns were determined in grain size and density fractions for each sample. Two-ring PAHs had stronger correlation to organic carbon (OC) than black carbon (BC) contents, while heavier PAHs showed correlation to BC, rather than OC. In this study, we combined grain size and density separation, PAH determinations, TOC and BC measurements, and organic petrographic identification, and concluded that two-ring PAHs in soils were associated to coal particles. Other heavier PAHs could be more controlled by black carbon (BC), which were mostly coal-derived particles from former coal mining and coal industrial activity.  相似文献   

20.
Good quality data apt for an assessment of temporal trends of polychlorinated dibenzo-p-dioxins and furans (PCDDs/Fs) in soils are difficult to obtain since there is a general lack of information on their residues in soils. Variability of soil profiles, non-homogeneity of samples, and often also inconsistency of applied sampling procedures further complicate this problem. To assess spatial and temporal trends of contamination, three soil sampling campaigns have been performed over the period of 12 years at the mountain forest sites in the Czech Republic. Relation between the air, needle and soil contaminations was addressed in addition to time-related variability of soil. It has been confirmed that soil is a good matrix for evaluation of spatial distribution of persistent organic pollutants (POPs) but difficult for establishment of temporal trends. A slow rate of the soil-forming processes and their site-specificity was generally the major source of uncertainties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号