首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photochemical transformation of azoxystrobin in aqueous solutions   总被引:2,自引:0,他引:2  
The photochemical behaviour of azoxystrobin fungicide (AZX) in water was studied under laboratory conditions. Photodegradation was initiated using a solar simulator (xenon arc lamp) or a jacketed Pyrex reaction cell equipped with a 125 W, high-pressure mercury lamp. HPLC/MS analysis (APCI and ESI in positive and negative modes) was used to identify AZX photoproducts. The calculated polychromatic quantum efficiencies (phi) of AZX at pH 4.5, 7 and 9 were 5.42 x 10(-3), 3.47 x 10(-3) and 3.06 x 10(-3) (degraded molecules per absorbed photon), respectively. The relatively narrow range of values indicates the stability of AZX with respect to photodegradation in the studied pH range. Results from the HPLC/MS analysis suggest that the phototransformation of AZX proceeds via multiple, parallel reaction pathways including: (1) photo-isomerization (E-->Z), (2) photo-hydrolysis of the methyl ester and of the nitrile group, (3) cleavage of the acrylate double bond, (4) photohydrolytic ether cleavage between the aromatic ring giving phenol, and (5) oxidative cleavage of the acrylate double bond.  相似文献   

2.
The photochemical persistence of quinalphos, one of the most widely used organophosphorous insecticides, was investigated in a variety of environmental matrices such as natural waters and soils of different composition. Simulated solar irradiation was obtained using a xenon arc lamp (Suntest CPS+ apparatus) giving an irradiation intensity of 750 W m(-2) equivalent to a light dose per hour of irradiation of 2,700 kJ m(-2). The phototransformation rates were determined using solid-phase microextraction (SPME) and ultrasonic extraction (USE) coupled to GC-FTD, while the identification of photoproducts was carried out by GC-MS. In water samples, the degradation kinetics followed a pseudo-first-order reaction and photolysis half-lives ranged between 11.6 and 19.0 h depending on the constitution of the irradiated media. Dissolved organic matter (DOM) has a predominant retarding effect, while nitrate ions accelerated the photodegradation kinetics. In soil samples, the degradation kinetics was monitored on 1mm soil layer prepared on glass TLC plates. The kinetic behaviour of quinalphos was complex and characterized by a double step photoreaction, fast in the first 4h of irradiation followed by a slow degradation rate up to 64 h. The photolysis half-life of quinalphos was shorter in sandy soil compared to the rest of the soil samples, varying between 16.9 and 47.5 h, and showing a strong dependence on the composition of the irradiated media. Among the transformation products formed mainly through photohydrolysis and photoisomerization processes, some photoproduct structures were proposed according to their mass spectral information.  相似文献   

3.
BACKGROUND: Synthetic musk compounds are widely used as additives in personal care and household products. The photochemical degradation of musk tibetene in aqueous solutions or in acetonitrile/water mixtures under different conditions was studied in order to assess its environmental fate. METHODS: Musk tibetene dissolved (or suspended) in water and/or acetonitrile/water mixtures was irradiated at different times by UV-light and by solar light. The irradiation mixtures were analyzed by NMR and TLC. The photoproducts formed were identified by GC-MS and NMR data. RESULTS: The experimental results indicated that musk tibetene was photodegradable in water or acetonitrile/water mixtures with half-life reaction times close to 20 minutes. The irradiation mixtures were separated by chromatographic techniques yielding three photoproducts (3,3,5,6,7-pentamethyl-4-nitro-3H-indole, 3,3,5,6,7-pentamethyl-4-nitro-1H-indoline and 3,3,5,6,7-pentamethyl-4-nitro-3H-indolinone) identified by means of spectroscopic analysis. DISCUSSION: The numerical modelling of the photodegradation concentration-time profiles gave (8.13 +/- 0.15) x 10(-2) and (1.34 +/- 0.04) x 10(-2) mol/E for the overall primary quantum yield of direct photolysis for musk tibetene and the major intermediate (3,3,5,6,7-pentamethyl-4-nitro-3H-indolinone), respectively, in the wavelength range 305-366 nm. The half-life times of photodegradation of the both substances varied from 1-1.5 hours at 20 degrees N during the summer season to 6-10 hours for highest latitudes in winter. CONCLUSIONS: Under solar light, musk tibetene was photolabile in acetonitrile and acetonitrile/water 1/1, while it was slowly degraded when suspended in water. In all media, musk tibetene was photodegraded into three photoproducts. By using a kinetic model, the overall primary quantum yields of direct photolysis of musk tibetene and its main photoproduct, in the wavelength range 305-366 nm, were estimated, indicating that the photodegradation rate for musk tibetene is faster than the photolysis rate of the major by-product. RECOMMENDATIONS AND PERSPECTIVES: The results indicate that, in order to assess the environmental impact of musk tibetene on the aquatic ecosystem, great attention should be focused on the major photoproduct which is proved to be more persistent than the parent compound under light irradiation. The predicted half-life times of direct photolysis for both substances ranged from 1-1.5 hours at 20 degrees N during the summer season to about 6-10 hours for highest latitudes in winter, indicating that, from a photochemical point of view, the environmental persistence of these substances increases by increasing the latitudes and during the cold seasons, making more realistic an intake of these xenobiotic molecules into the food chain of aquatic living organisms. Tanabe reports in his Editorial (Tanabe 2005) that "It is necessary to have knowledge of the global picture of synthetic musk pathways. So, it is conceivable that now is the time to study the transport, persistency, distribution, bioaccumulation and toxic potential of this new environmental menace on a global scale, especially in developing countries". Therefore, the future environmental analysis and investigations on the eco-toxicity of nitro musk compounds should take into account not only the presence of the parent compounds but also their photochemical intermediates or end-by-products.  相似文献   

4.
The photodegradation and biotic transformation of the pharmaceuticals lidocaine (LDC), tramadol (TRA) and venlafaxine (VEN), and of the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) in the aquatic environmental have been investigated. Photodegradation experiments were carried out using a medium pressure Hg lamp (laboratory experiments) and natural sunlight (field experiments). Degradation of the target compounds followed a first-order kinetic model. Rates of direct photodegradation (light absorption by the compounds itself) at pH 6.9 were very low for all of the target analytes (?0.0059 h?1 using a Hg lamp and ?0.0027 h?1 using natural sunlight), while rates of indirect photodegradation (degradation of the compounds through photosensitizers) in river water at pH 7.5 were approximately 59 (LDC), 5 (TRA), 8 (VEN), 15 (ODT) and 13 times (ODV) higher than the rates obtained from the experiments in ultrapure water. The accelerated photodegradation of the target compounds in natural water is attributed mainly to the formation of hydroxyl radicals through photochemical reactions. Biotic (microbial) degradation of the target compounds in surface water has been shown to occur at very low rates (?0.00029 h?1). The half-life times determined from the field experiments were 31 (LDC), 73 (TRA), 51 (VEN), 21 (ODT) and 18 h (ODV) considering all possible mechanisms of degradation for the target compounds in river water (direct photodegradation, indirect photodegradation and biotic degradation).  相似文献   

5.
The feasibility of the use of short-wavelength UV (254+185 nm) irradiation and TiO2 catalyst for photodegradation of gaseous toluene was evaluated. It was clear that the use of TiO2 under 254+185 nm light irradiation significantly enhanced the photodegradation of toluene relative to UV alone, owed to the combined effect of photochemical oxidation in the gas phase and photocatalytic oxidation on TiO2. The photodegradation with 254+185 nm light irradiation was compared with other UV wavelengths (365 nm (black light blue lamp) and 254 nm (germicidal UV lamp)). The highest conversion and mineralization were obtained with the 254+185 nm light. Moreover, high conversions were achieved even at high initial concentrations of toluene. Catalyst deactivation was also prevented with the 254+185 nm light. Regeneration experiments with the deactivated catalyst under different conditions revealed that reactive oxygen species played an important role in preventing catalyst deactivation by decomposing effectively the less reactive carbon deposits on the TiO2 catalyst. Simultaneous elimination of photogenerated excess ozone and residual organic compounds was accomplished by using a MnO2 ozone-decomposition catalyst to form reactive species for destruction of the organic compounds.  相似文献   

6.
Fang L  Huang J  Yu G  Wang L 《Chemosphere》2008,71(2):258-267
The photodegradation of six individual PBDE congeners (BDE-28, 47, 99, 100, 153, 183) in hexane was investigated under UV light in the sunlight region, employing a mercury lamp filtered with Pyrex glass. All photodegradation reactions followed the pseudo-first-order kinetics, with the half-lives ranging from 0.26h for BDE-183 to 6.46h for BDE-100. The photochemical reaction rates of PBDEs decreased with decreasing number of bromine substituents in the molecule, also in some cases were influenced by the PBDE substitution pattern. Principal photoproducts detected were less brominated PBDEs, and no PBDE-solvent adducts were found. Consecutive reductive debromination was confirmed as the main mechanism for the photodegradation of PBDEs in hexane. In general, debromination firstly occurred on the more substituted rings, when the numbers of bromine atoms on the two phenyl rings were unequal. For less brominated PBDEs, the photoreactivity of bromines at various positions of phenyl rings decreased in the order: ortho>para; while for higher brominated PBDEs, the difference became not significant.  相似文献   

7.
Wang G  Qi P  Xue X  Wu F  Deng N 《Chemosphere》2007,67(4):762-769
In this work, the formation of the inclusion complex of bisphenol Z (1,1-bis(4-hydroxyphenyl)cyclohexane, abbreviated as BPCH) with beta-cyclodextrin (beta-CD) has been studied, 1:1 inclusion complex can be obtained, the formation constant of the beta-CD/BPCH complex is 5.94x10(3)M(-1). The photodegradation behavior of BPCH was investigated under monochromatic UV irradiation (lambda=254 nm). The photodegradation rate constant of BPCH in aqueous solutions with beta-CD showed a 9.0-fold increase, and simultaneously the mineralization of BPCH can be enhanced by beta-CD. The influence factors on photodegradation of BPCH were also studied and described in details, such as concentration of beta-CD, initial concentration of BPCH, organic solvent and pH. The photodegradation of BPCH in the presence of beta-CD includes the direct photolysis and the photooxidation of BPCH during the photochemical process. Some predominant photodegradation products are 4-(2,4,5-trihydroxy-phenyl)-4-(4-hydroxyphenyl) butanoic acid, 5,5-bis(4-hydroxyphenyl)pentanoic acid, meta-hydroxylated BPCH, ortho-hydroxylated BPCH and 4-(1-(4-hydroxyphenyl)pentyl)phenol respectively. The enhancement of photodegradation of BPCH mainly results from moderate inclusion depth of BPCH molecule in the beta-CD cavity. This kind of inclusion structure allows BPCH molecule sufficient proximity to secondary hydroxyl groups of the beta-CD cavity, and these hydroxyl groups could be activated and converted to hydroxyl radicals under UV irradiation, which can enhance the photooxidation of BPCH.  相似文献   

8.
BACKGROUND: The photolysis of pesticides is of high current interest since light is one of the most important abiotic factors which are responsible for the environmental fate of these substances and may induce their conversion into noxious products. The action of light can also be mediated by oxygen and synthetic or naturally occurring substances which act as sensitizers. Our objective in this study was to investigate the photochemical behaviour of the systemic fungicide furalaxyl in the presence of oxygen and various sensitizers, and to compare the toxicity of the main photoproduct(s) to that of the parent compound. Previous reports on the direct photolysis of the pesticide demonstrated a very slow degradation and the only identified photoproducts were N-2,6-xylyl-D,L-alaninare and 2,6-dimethylaniline. METHODS: Solutions of furalaxyl in CH3CN were photooxygenate using a 500W high-pressure mercury lamp (through a Pyrex glass filter, lambda>300 nm) or a 650W halogen lamp or sunlight and the proper sensitizer. When sunlight was used, aqueous solutions were employed. The photodegradation was checked by NMR and/or GC-MS. The photoproducts were spectroscopically evidenced and, when possible, isolated chromatographically. Acute toxicity tests were performed on the rotifer Brachionus calyciflorus, the crustacean cladoceran Daphnia magna and the anostracan Thamnocephalus platyurus, while chronic toxicity tests (sublethal endpoints) comprised a producer, the alga Pseudokirchneriella subcapitata and the crustacean Ceriodaphnia dubia, as a consumer. RESULTS AND DISCUSSION: In the presence of both oxygen and sensitizer, furalaxyl underwent rapid photochemical transformations mainly to N-disubstituted formamide, maleic anhydride and a 2(5H)-furanone derivative. The formation of these products was rationalized in terms of a furan endoperoxide intermediate derived from the reaction of furalaxyl with active dioxygenated species (singlet oxygen, superoxide anion or ground state oxygen). The 2(5H)-furanone exhibited a higher toxicity than the parent compound. CONCLUSION: This work reports the first data on the photosensitized oxygenation of furalaxyl with evidence of the high tendency of the pesticide to undergo photodegradation under these conditions leading, among other things, to a 2(5H)-furanone, which is more toxic than the starting furalaxyl towards aquatic organisms. RECOMMENDATIONS AND OUTLOOK: Investigation highlights that the photolytic fate of a pesticide, although quite stable to direct photoreaction due to its low absorption of solar radiation at ground level, can be significantly influenced in the environment by the presence of substances with energy or electron-transfer properties as natural dyes, e.g. chlorophyll, or synthetic pollutants, e.g. polycyclic aromatic hydrocarbons (PAH).  相似文献   

9.
The photodegradation of imazethapyr [2-(4,5-dihydro-4-méthyl-4-(1-méthylethyl)-5-oxo-1H-imidazol-2-yl)-5-ethyl-3-pyridinecarboxylic acid] in aqueous solution in the presence of titranium dioxide (TiO2) and humic acids (HA) at different ratios of herbicide/TiO2 and herbicide/humic acids was studied at pH 7.0. Irradiation was carried out with polychromatic light using Heraeus apparatus equipped with xenon lamp to simulate sunlight having a spectral energy distribution similar to solar irradiation (>290 nm). The concentration of remaining herbicide was followed using a High Pressure Liquid Chromatograph (HPLC) equipped with UV detector at 230 nm. In pure aqueous solution imazethapyr degrades slowly and the photodegradation leads to the formation of two metabolites labelled A and B. The presence of TiO2 caused enhancement of the degradation rate. The presence of HA induced an increase of the photodegradation of the pesticide with respect to pure aqueous solution.  相似文献   

10.
Photolysis behavior of a new herbicide propisochlor in water media as well as the effects of light sources, initial concentration of propisochlor, pH value, dissolved oxygen (DO) level, and salinity on the photolysis process was investigated. It was found that the relationship between initial concentration of propisochlor and its photodegradation rate was negatively correlated. The changes in acidity and alkalinity of the reaction medium influenced the photoreaction rate evidently. In the alkaline solution the degradation was accelerated. In the reaction media with different pH values, the photolysis followed the first-order kinetics. The presence of dissolved oxygen may promote the photolysis and there existed an optimum of dissolved oxygen concentrations. Increasing the DO level can weaken the promotion and even have an adverse effect. It was demonstrated that with dissolved oxygen the photodegradation of propisochlor followed the first-order kinetics equation. The addition of salt ions Ca2+ and Mg2+ changed the ionic strength and solvent polarity, resulting in the effect on propisochlor photolysis. The photoproducts were detected by both HPLC and GC-MS methods. It was found that photolysis products varied under different light sources. Conclusions may be reached that in the photodegradation of propisochlor, the benzene ring remained intact under irradiation of both solar light and high-pressure mercury lamp, and the amido link was relatively stable, while dechlorination was liable to take place; moreover, alpha-hydrogen at the substituent of benzene ring was active.  相似文献   

11.
TiO2薄膜光催化降解双酚A的研究   总被引:3,自引:0,他引:3  
采用sol-gel法制备TiO2薄膜.以该薄膜为催化剂,研究了在H2O2存在的条件下,对内分泌干扰物质双酚A的光催化降解反应.分别讨论了pH值、H2O2的加入量、双酚A的初始浓度以及光照时间对降解反应的影响.结果表明,在pH=4,30 mg/L的H2O2中对初始浓度为50 mg/L的双酚A溶液光照180 min有较好的降解效果.  相似文献   

12.
The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe3+ ions was investigated. Algae, humic acid and Fe3+ ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4h irradiation in the presence of 6.5 x 10(9) cells L(-1) raw Chlorella vulgaris, 4 mg L(-1) humic acid and 20 micromol L(-1) Fe3+. The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water.  相似文献   

13.

Photolysis behavior of a new herbicide propisochlor in water media as well as the effects of light sources, initial concentration of propisochlor, pH value, dissolved oxygen (DO) level, and salinity on the photolysis process was investigated. It was found that the relationship between initial concentration of propisochlor and its photodegradation rate was negatively correlated. The changes in acidity and alkalinity of the reaction medium influenced the photoreaction rate evidently. In the alkaline solution the degradation was accelerated. In the reaction media with different pH values, the photolysis followed the first-order kinetics. The presence of dissolved oxygen may promote the photolysis and there existed an optimum of dissolved oxygen concentrations. Increasing the DO level can weaken the promotion and even have an adverse effect. It was demonstrated that with dissolved oxygen the photodegradation of propisochlor followed the first-order kinetics equation. The addition of salt ions Ca2+ and Mg2+ changed the ionic strength and solvent polarity, resulting in the effect on propisochlor photolysis. The photoproducts were detected by both HPLC and GC-MS methods. It was found that photolysis products varied under different light sources. Conclusions may be reached that in the photodegradation of propisochlor, the benzene ring remained intact under irradiation of both solar light and high-pressure mercury lamp, and the amido link was relatively stable, while dechlorination was liable to take place; moreover, α-hydrogen at the substituent of benzene ring was active.  相似文献   

14.
Photo solid-phase microextraction (photo-SPME) is applied for the first time to study the photochemical behavior of an emerging pollutant, triclosan, in real contaminated wastewater samples using a solar simulator. In this study, water samples are extracted by SPME and then, the fiber coating is irradiated for a selected time. This on-fiber procedure, so-called photo-SPME, followed by gas chromatography-mass spectrometry makes it possible to study photodegradation kinetics and the generation of byproducts. Several photoproducts were identified in the real samples including the 2,8-dichlorodibenzo-p-dioxin, dichlorophenols and a compound tentatively identified as other DCDD congener or a dichlorohydroxydibenzofuran. Accordingly, it was possible to postulate main photodegradation mechanisms. Photo-SPME demonstrated slower kinetics in wastewater than in spiked ultrapure water probably due to the presence of dissolved organic matter. This technique was extensively compared with conventional aqueous photodegradation showing high similarity. The influence of pH on the triclosan photolysis and on the triclosan-dioxin conversion was also investigated in wastewater. Photodegradation of triclosan and formation of 2,8-DCDD occurred independently of sample pH. This study represents an advance in the use of photo-SPME to understand the photochemical fate of environmental organic pollutants and demonstrates its clear advantages with real samples.  相似文献   

15.
Light-induced degradation of metsulfuron-methyl in water   总被引:1,自引:0,他引:1  
Caselli M 《Chemosphere》2005,59(8):1137-1143
Photodegradation of metsulfuron-methyl, a sulfonylurea herbicide, has been investigated in aqueous solution at different pH and excitation wavelengths. The efficiency of the process has been evaluated through quantum yield determinations. The identification of the photoproducts indicates that the major photochemical pathway is initiated by C-S bond dissociation followed by involvement of water to yield the main final products; the behaviour in water is shown to differ markedly from that in an organic environment.  相似文献   

16.
以亚甲基蓝(MB)作为表面修饰剂,采用简单的化学吸附法制备亚甲基蓝表面修饰的纳米TiO2光催化剂(TiO2-MB)。经表面修饰后,TiO2-MB光催化剂波长响应范围红移至可见光区575 nm处。探讨了光催化剂量、光照时间和溶液pH值对TiO2-MB光催化降解造纸废水的影响;研究了纳米TiO2-MB对造纸废水的暗吸附规律和光降解性能。结果表明:纳米TiO2-MB对造纸废水的吸附规律都较好地符合Langmuir和Freundlich吸附等温模型,属于吸热反应;光催化降解动力学符合Langmuir-Hinshelwood动力学模型。在160 W高压汞灯光照80 min,3.0 g/L纳米TiO2-MB光催化降解pH=2.0的造纸废水(COD:2 069.8 mg/L),COD去除率可达94.7%,处理效果远高于避光条件下。光催化剂经8次使用仍具有较高的催化活性。  相似文献   

17.
Kinetic studies of endosulfan photochemical degradation in controlled aqueous systems were carried out by ultraviolet light irradiation at lambda = 254 nm. The photolysis of (alpha + beta: 2 + 1) endosulfan, alpha-endosulfan and beta-endosulfan were first-order kinetics. The observed rate constants obtained from linear least-squares analysis of the data were 1 x 10(-4) s(-1); 1 x 10(-4) s(-1); and 2 x 10(-5) s(-1), respectively, and the calculated quantum yields (phi) were 1, 1 and 1.6, respectively. Preliminary differential pulse polarographic (DPP) analysis allowed to observe the possible endosulfan photochemical degradation pathway. This degradation route involves the formation of the endosulfan diol, its transformation to endosulfan ether and finally the ether's complete degradation by observing the potential shifts.  相似文献   

18.
In this work the photochemical behaviour of a technical mixture of polybrominated diphenyl ethers (PBDEs) (BDE-47, BDE-99, BDE-100, BDE-153 and BDE-154) has been studied. The mixture of BDEs was extracted from aqueous solutions using SPME fibers that were subsequently exposed to different UV irradiation times, procedure so-called Photo-SPME. PBDEs photochemical studies in such medium have been accomplished for the first time. Twenty one different photoproducts, all of them generated by successive bromine atoms losses, have been identified, being their photoformation-photodegradation curves easily determined by the Photo-SPME technique.  相似文献   

19.
The degradation photoproducts of the fungicide fenarimol obtained from irradiation of aqueous solutions with sunlight were characterised. The photoproducts resulting from samples with different exposure times were extracted and separated using chromatographic techniques. Seven main photoproducts were detected using high performance liquid chromatography with a photodiode array detector, gas chromatography with mass spectrometry detector and Fourier transform infrared spectroscopy. Structures are suggested for possible photoproducts based on the characterisation results, minimum energy geometry of the parent compound, and the mass spectral behaviour of fenarimol. These correspond to the compounds with m/z 328 (three structural isomers (a), (b) and (c)), m/z 294 (two structural isomers (a) and (b)), m/z 292, 278 and 190. Of the various major products detected, the isomer 328(a) is seen to be particularly unstable under the action of sunlight. The most stable photoproducts are found to be those with m/z 294(a), 278 and 190. However, upon prolonged solar irradiation all of these break down to produce polar, low molecular weight compounds. Comparison with our own and other results on fenarimol photolysis indicate significant solvent effects on the process. The combination of these structural characterisation results and previous data from spectroscopic and photodegradation kinetics studies allows us to suggest some possible mechanisms for the photodegradation of fenarimol under sunlight.  相似文献   

20.
Many drugs such as beta-blockers have been shown to occur in aquatic environments. Even if adequate ecotoxicity data are not available, it is of primary importance to get informations about their fate in environmental waters, particularly about their photofate in sewage treatment plant effluents (STP). The main difficulties when studying pharmaceutical photochemical behaviour in environmental waters, are linked to the very low environmentally relevant concentrations (ng L(-1) to microg L(-1)) which can generate problems in terms of analytical sensitivity. Moreover, the complexity of environmental matrices can modify micropollutants degradation kinetics. The photodegradation of beta-blockers has been compared at two concentration levels (10 microg L(-1) and 10 mg L(-1)) and in two different matrices (pure water and STP effluent). It has been shown that the concentration does not influence beta-blockers degradation pathways, thus allowing the identification of degradation compounds using the 10 mg L(-1) solutions. Although environmental waters speed up the degradation process, the same photoproducts were appeared in both matrices. Using LC-MS/MS, hydroxyl radical additions have been identified as an important degradation pathway for especially pindolol, propranolol and timolol, leading to several positional isomers, corresponding to mono-, di- or tri-hydroxylations. Kinetics of appearance/disappearance of these photoproducts have been studied in STP effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号