首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since chemicals’ ecotoxic effects depend for most soil species on the dissolved concentration in pore water, the equilibrium partitioning (EP) method is generally used to estimate hazardous concentrations (HC50) in the soil from aquatic toxicity tests. The present study analyzes the statistical uncertainty in terrestrial HC50s derived by the EP-method. For 47 organic chemicals, we compared freshwater HC50s derived from standard aquatic ecotoxicity tests with porewater HC50s derived from terrestrial ecotoxicity tests. Statistical uncertainty in the HC50s due to limited species sample size and in organic carbon–water partitioning coefficients due to predictive error was treated with probability distributions propagated by Monte Carlo simulations. Particularly for specifically acting chemicals, it is very important to base the HC50 on a representative sample of species, composed of both target and non-target species. For most chemical groups, porewater HC50 values were approximately a factor of 3 higher than freshwater HC50 values. The ratio of the porewater HC50/freshwater HC50 was typically 3.0 for narcotic chemicals (2.8 for nonpolar and 3.4 for polar narcotics), 0.8 for reactive chemicals, 2.9 for neurotoxic chemicals (4.3 for AChE agents and 0.1 for the cyclodiene type), and 2.5 for herbicides–fungicides. However, the statistical uncertainty associated with this ratio was large (typically 2.3 orders of magnitude). For 81% of the organic chemicals studied, there was no statistical difference between the hazardous concentration of aquatic and terrestrial species. We conclude that possible systematic deviations between the HC50s of aquatic and terrestrial species appear to be less prominent than the overall statistical uncertainty.  相似文献   

2.
The equilibrium partitioning method (EqP-method) can be used to calculate soil quality standards (expressed in mg/kg) from aquatic quality standards (expressed in microg/l) using a partitioning coefficient. The validity of this application of the EqP-method was studied comparing aquatic with terrestrial toxicity data. The data set collected for deriving environmental quality standards in the Netherlands, was used for this study. For 10 organic substances (chlorpyrifos, atrazine, carbofuran, pentachlorophenol, chlordane, aldrin, trichlorobenzene, heptachlor, trichlorophenol and trichloroethene) and for 8 metals, sufficient data were available. The aquatic toxicity data were multiplied by the partitioning coefficient in order to obtain aquatic data expressed in mg/kg. For some compounds the terrestrial toxicity data were significantly higher than the aquatic data but for other compounds it was the other way around. These differences indicate that the EqP-method can give significant over-or underestimations, due to inaccurate partitioning coefficients or differences in species sensitivities. These over- or underestimations can have an impact on the setting of environmental quality standards which are based on the hazardous concentration 5% (HC5) values. The uncertainty in the calculation of HC5 values attributed to the use of the EqP-method, was quantified. The HC5 values derived using the EqP-method were in 5% of the cases more than 20 times higher than the corresponding HC5 values that were derived directly from soil toxicity tests. Despite of this uncertainty the use of the EqP-method can still be advocated for setting soil quality guidelines when only a very limited number of terrestrial toxicity data are available.  相似文献   

3.
The most stable forms of chromium in the environment are chromium (III) and chromium (VI), the former being relatively immobile and necessary for organisms, and the latter being highly soluble and toxic. It is thus important to characterise ecotoxicological impacts of Cr(VI). However, there are still some important uncertainties in the calculation of ecotoxicological impacts of heavy metals in the LCIA global approach. The aim of this paper is to understand how the spatial and dynamic characterization of life cycle inventory (LCI) data can be exploited in life cycle impact assessment and particularly for the evaluation of the aquatic and terrestrial ecotoxicity of Cr(VI). To quantify these impacts, we studied an industrial waste landfill in the North of France that was contaminated with chromium. On the polluted area, the aquatic contamination is due to the slag heap as well as to chromium spots in soil. The soil contamination is mainly due to infiltration of chromium from the infill. The concentration of Cr(VI) in soil and water varies according to seasonal climatic variations and groundwater level. These variations have an effect on the Cr(VI) fate factor, in particular on transfer and residence time of the substance. This study underlines the spatial distribution of aquatic ecotoxicity and the temporal variation of freshwater ecotoxicity. We analysed the correlation between precipitation, temperature, concentration and ecotoxicity impact. With regards to the terrestrial ecotoxicity, the study focused on the vertical variation of the ecotoxicity and the major role of the soil layer composition into terrestrial pollution.  相似文献   

4.
Atmospheric deposition of metals emitted from mining operations has raised metal concentrations in the surrounding soils. This repository may be remobilized and act as a source of metals to nearby surface aquatic systems. It is important to understand metal dynamics and the impact of various chemistry and fate parameters on metal movement in the soil environment in order to evaluate risk associated with metals in terrestrial ecosystems and accurately establish critical discharge limits that are protective of aquatic biota. Here we extend our previously developed coupled multispecies metal fate-TRANsport and SPECiation/complexation (TRANSPEC) model, which was applicable to surface aquatic systems. The extended TRANSPEC, termed TRANSPEC-II, estimates the partition coefficient, K(d), between the soil-solid and -soluble phases using site-specific data and a semi-empirical regression model obtained from literature. A geochemical model calculates metal and species fractions in the dissolved and colloidal phases of the soil solution. The multispecies fugacity/aquivalence based fate-transport model then estimates inter-media transport rates such as leaching from soil, soil runoff, and water-sediment exchanges of each metal species. The model is illustratively applied to Ni in the Kelly Lake watershed (Sudbury, Ontario, Canada), where several mining operations are located. The model results suggest that the current atmospheric fallout supplies only 4% of Ni removed from soil through soil runoff and leaching. Soil runoff contributes about 20% of Ni entering into Kelly Lake with the rest coming from other sources. Leaching to groundwater, apart from runoff, is also a major loss process for Ni in the soil. A sensitivity analysis indicates that raising soil pH to above 6 may substantially reduce metal runoff and improve water quality of nearby water bodies that are impacted by runoff.  相似文献   

5.
Schreck E  Foucault Y  Geret F  Pradere P  Dumat C 《Chemosphere》2011,85(10):1555-1562
Ultrafine particulate matters enriched with metals are emitted into the atmosphere by industrial activities and can impact terrestrial and aquatic ecosystems. Thus, this study investigated the environmental effects of process particles from a lead-recycling facility after atmospheric deposition on soils and potential run-off to surface waters. The toxicity of lead-enriched PM for ecosystems was investigated on lettuce and bacteria by (i) germination tests, growth assays, lead transfer to plant tissues determination and (ii) Microtox analysis.The influence of ageing and soil properties on metal transfer and ecotoxicity was studied using three different soils and comparing various aged, spiked or historically long-term polluted soils. Finally, lead availability was assessed by 0.01 M CaCl2 soil extraction.The results showed that process PM have a toxic effect on lettuce seedling growth and on Vibrio fischeri metabolism. Soil-PM interactions significantly influence PM ecotoxicity and bioavailability; the effect is complex and depends on the duration of ageing. Solubilisation or stabilisation processes with metal speciation changes could be involved. Finally, Microtox and phytotoxicity tests are sensitive and complementary tools for studying process PM ecotoxicity.  相似文献   

6.
The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.  相似文献   

7.
Toxic metals and metalloid are being rapidly added from multiple pathways to aquatic ecosystem and causing severe threats to inhabiting fauna including fish. Being common in all the type of aquatic ecosystems such as freshwater, marine and brackish water fish are the first to get prone to toxic metals and metalloids. In addition to a number of physiological/biochemical alterations, toxic metals and metalloids cause enhanced generation of varied reactive oxygen species (ROS) ultimately leading to a situation called oxidative stress. However, as an important component of antioxidant defence system in fish, the tripeptide glutathione (GSH) directly or indirectly regulates the scavenging of ROS and their reaction products. Additionally, several other GSH-associated enzymes such as GSH reductase (GR, EC 1.6.4.2), GSH peroxidase (EC 1.11.1.9), and GSH sulfotransferase (glutathione-S-transferase (GST), EC 2.5.1.18) cumulatively protect fish against ROS and their reaction products accrued anomalies under toxic metals and metalloids stress conditions. The current review highlights recent research findings on the modulation of GSH, its redox couple (reduced glutathione/oxidised glutathione), and other GSH-related enzymes (GR, glutathione peroxidase, GST) involved in the detoxification of harmful ROS and their reaction products in toxic metals and metalloids-exposed fish.  相似文献   

8.
We investigated the influence of soil properties on Ni toxicity to barley root and tomato shoot growth, using 16 European soils. The effective concentration of added Ni causing 50% inhibition (EC(50)) ranged from 52 to 1929mgkg(-1) and from 17 to 920mgkg(-1) for the barley and tomato test, respectively, representing 37- and 54-fold variation among soils. Soil cation exchange capacity was the best single predictor for the EC(50). The EC(50) based on either the Ni concentration or free Ni(2+) activity in soil solution varied less among soils (7-14 fold) than that based on the total added Ni, suggesting that solubility of Ni is a key factor influencing its toxicity to plants. The EC(50) for free Ni(2+) activity from the barley test decreased with increasing pH, indicating a protective effect of protons. The results can be used in the risk assessment of Ni in the terrestrial environment.  相似文献   

9.
Qin F  Shan XQ  Wei B 《Chemosphere》2004,57(4):253-263
Effects of low-molecular-weight organic acids (LMWOAs) and residence time on desorption of Cu, Cd, and Pb from two typical Chinese soils were studied. Citric, malic, and acetic acids were chosen as representatives of LMWOAs commonly present in soils. CaCl(2) and NaNO(3) were used in desorption as they were main soil background electrolytes for comparison. Desorption of Cu, Cd, and Pb from both soils followed the descending order: citric acid>malic acid>acetic acid>CaCl(2)>NaNO(3), which was consistent with the order of stability of Cu-, Cd-, and Pb-LMWOAs complexes from large to small and ion exchange ability of Ca(2+) and Na(+). Desorption of metals by inorganic salts decreased with increasing desorption solution pH. Whereas desorption of metals by LMWOAs showed different trend in response to pH change due to their different complexing abilities. Malic and acetic acids released less metals at low pH 3.1 compared with citric acid at pH 7, indicating that pH was not the dominant factor governing the release of metals. In addition, all LMWOAs desorbed more metals than inorganic salts, CaCl(2) and NaNO(3). Therefore, organic ligands played a dominant role in desorption of heavy metals. More metals were released from Jiangxi soil than from Heilongjiang soil due to lower soil pH, CEC, organic matter content and manganese oxide of Jiangxi soil. Generally, desorption of metals decreased with increasing residence time of metals in soils.  相似文献   

10.
Intention, Goal, Scope, Background  Following the introduction of automobile catalytic converters the platinum group metals (PGM) platinum (Pt), palladium (Pd) and rhodium (Rh) gain on increasing interest in environmental research as these metals are emitted with exhaust fumes into the environment. Consequently, elevated PGM levels were found in different environmental matrices uch as road dusts, soils along heavily frequented roads, sediments of urban rivers etc. Accordingly, the effects of increasing PGM emissions on the biosphere are controversially discussed. Objective  This paper summarizes the present knowledge on the biological availability of PGM to plants and animals. As biological availability is one of the most decisive factors determining the toxicologi-cal potential of xenobiotics, this information is very important to evaluate the possible threat of the noble metals to ecosystems. Results and Discussion  The availability of soluble as well as particle bound PGM to terrestrial plants was demonstrated in several studies. Experimental investigations revealed uptake of Pt, Pd and Rh also by aquatic plants. Additionally, the biological availability of the noble metals for animals has been verified in experimental studies using soluble metal salts, catalytic converter model substances, sediments of urban rivers, road dust or tunnel dust as metal sources. These studies refer mainly to aquatic animals. Beside of free living organisms, in particular worms parasitizing fish demonstrated a high potential to accumulate PGM. This could be of great interest in respect of biomonitoring purposes. Generally, for plants as well as for animals Pd turns out to be the best available metal among the PGM. Compared to other heavy metals, the biological availability of PGM from road dust to zebra mussels(Dreissena polymorpha) ranged between that of Cd and Pb. Conclusion  Especially chronic effects of PGM on the biosphere can not be excluded due to (1) their cumulative increase in the environment, (2) their unexpected high biological availability and bioaccumulation and (3) their unknown toxicological and ecotoxicological potential. However, it appears that acute effects on ecosystems due to anthropogenic PGM emission are not likely. Recommendation and Outlook  Research on environmental PGM contamination of the biosphere, especially the fauna, and on long-term toxiciry of low PGM concentrations is highly appreciated. These studies require very sensitive analytical techniques to determine PGM even in low sample amounts. Research has to be done in particular on reliable determination of (ultra) trace levels of Pd and Rh as the lack of data on these two metals is mainly due to analytical problems.  相似文献   

11.

Background, aim, and scope  

Dissolved organic matter, measured as dissolved organic carbon (DOC), is an important component of aquatic ecosystems and of the global carbon cycle. It is known that changes in DOC quality and quantity are likely to have ecological repercussions. This review has four goals: (1) to discuss potential mechanisms responsible for recent changes in aquatic DOC concentrations; (2) to provide a comprehensive overview of the interactions between DOC, nutrients, and trace metals in mainly boreal environments; (3) to explore the impact of climate change on DOC and the subsequent effects on nutrients and trace metals; and (4) to explore the potential impact of DOC cycling on climate change.  相似文献   

12.
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.  相似文献   

13.

Background, aim, and scope  

Phosphorus loss from terrestrial to the aquatic ecosystems contributes to eutrophication of surface waters. To maintain the world's vital freshwater ecosystems, the reduction of eutrophication is crucial. This needs the prevention of overfertilization of agricultural soils with phosphorus. However, the methods of risk assessment for the P loss potential from soils lack uniformity and are difficult for routine analysis. Therefore, the efficient detection of areas with a high risk of P loss requires a simple and universal soil test method that is cost effective and applicable in both industrialized and developing countries.  相似文献   

14.
Following onto our work on the in situ remediation of soils contaminated with PAH's, PCB's and other polychlorinated organic compounds using microwave energy, we now report a preliminary investigation on the in situ remediation of soils contaminated with toxic metal ions: Cd(II), Mn(II), Th(IV), Cr(III) and mainly Cr(VI). The soil is partially vitrified in the process, and extraction with hot (70 degrees C) 35% nitric acid for 4.5 h leads to the recovery of very small amounts of the metals which had been spiked into the clean soil: Cd, Mn, and Cr(III) are completely immobilized (unextractable), Th is mostly unextractable, and Cr(VI) partially extractable at very high levels of spiking, but almost completely unextractable using the US EPA Toxicity Characteristic Leaching Procedure. This suggests that contaminated soils which are not going to be used for agricultural purposes can be remediated safely to preset depths without fear of the toxic metal ions leaching out for a long time.  相似文献   

15.
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.  相似文献   

16.
Ecosystem effects of atmospheric deposition of nitrogen in The Netherlands   总被引:21,自引:0,他引:21  
Atmospheric deposition of inorganic N, mainly ammonium volatilized from manure produced in intensive stockbreeding, on sensitive terrestrial and aquatic ecosystems in The Netherlands is in the order of 40 to 80 kg ha(-1) year(-1). Proven effects of this deposition are (i) eutrophication with N, leading to floristic changes (ii) acidification of base-poor sandy soils and of moorland pools, leading to higher concentrations of dissolved, potentially toxic metals such as Al3+, and (iii) increased levels of nitrate in groundwater below woodlands. In acid forest soils, but not in soils under heathland, nitrification and leaching of nitrate is common. However, in very poor sandy forest soils and at very high ammonium inputs, nitrification may be too slow to prevent the development of high concentrations of ammonium. Both excessive acidification and excessive levels of ammonium probably play an important role in the general forest decline, which is most severe in the southern and central parts of the country, where ammonium inputs are highest.  相似文献   

17.
A toxicity test using spore release of the aquatic green alga, Ulva, was developed and evaluated by assessing the toxicity of different organic and inorganic chemicals and elutriates of sewage or waste sludge. The toxic ranking of four metals was: Cu (EC50 of 0.040mgL(-1))>Cd (0.095mgL(-1))>Pb (0.489mgL(-1))>Zn (0.572mgL(-1)). The EC50 for TBTO ranged from 24 to 63microgL(-1). The most toxic VOC was formalin (EC50 of 0.788microlL(-1)) and the least toxic was acetone. Spore release was significantly inhibited in all elutriates; the greatest and least toxic effects were for industrial sewage (3.29%) and filtration bed (10.08%), respectively. The bioassay is simple, inexpensive and sensitive. The cosmopolitan distribution of Ulva means that the test would have a potential application worldwide.  相似文献   

18.
Hyun S  Ahn MY  Zimmerman AR  Kim M  Kim JG 《Chemosphere》2008,71(9):1646-1653
The hydraulic properties, such as hydraulic conductivity and water retention, of aged diesel-contaminated and bioremediated soils were examined and implications of the hydraulic properties for assessing bioremediation performance of soils were proposed. Bioremediation of diesel-contaminated soil was performed over 80 d using three treatments; (I) no nutrient added, column-packed soil, (II) nutrient added, column-packed soil, and (III) nutrient added, loosen soil. Diesel reduction in treatment I soil (control soil) was negligible while treatment III showed the greatest extent of diesel biodegradation. All treatments showed greatest rates of diesel biodegradation during the first 20 d, followed by a much retarded biodegradation rate in the remaining incubation period. Reduction of the degradation rate due to entrained diesel within inaccessible soil pores was hypothesized and tested by measuring the hydraulic properties of two column-packed soils (treatments I and II). The hydraulic conductivity of treatment II soil (nutrient added) was consistently above that of treatment I soil (no nutrient added) at pressure heads between 0 and 15 cm. In addition, the water retention of treatment II soil was greater at pressure heads <100 cm (equivalent to pore size of >30 microm), suggesting that biodegradative removal of hydrocarbons results in enhanced wettability of larger soil pores. However, water retention was not significantly different for control and biodegraded soils at pressure heads >100 cm, where smaller size soil pores were responsible for the water retention, indicating that diesel remained in smaller soil pores (e.g., <30 microm). Both incubation kinetics and hydraulic measurements suggest that hydrocarbons located in small pores with limited microbe accessibility may be recalcitrant to bioremediation.  相似文献   

19.
A soil column leaching study was conducted on an acidic soil in order to assess the impact of lime-stabilized biosolid on the mobility of metallic pollutants (Cu, Ni, Pb and Zn). Column leaching experiments were conducted by injecting successively CaCl2, oxalic acid and ethylenediaminetetraacetic acid (EDTA) solutions through soil and biosolid-amended soil columns. The comparison of leaching curves showed that the transport of metals is mainly related to the dissolved organic carbon, pH and the nature of extractants. Metal mobility in the soil and biosolid-amended soils is higher with EDTA than with CaCl2 and oxalic acid extractions, indicating that metals are strongly bound to solid-phase components. The single application of lime-stabilized biosolid at a rate ranging from 15 to 30 t/ha tends to decrease the mobility of metals, while repeated applications (2?×?15 t/ha) increase metal leaching from soil. This result highlights the importance of monitoring the movement and concentrations of metals, especially in acid and sandy soils with shallow and smaller water bodies.  相似文献   

20.
Al-Hamdan AZ  Reddy KR 《Chemosphere》2008,71(5):860-871
This paper presents a systematic bench-scale laboratory study performed to assess the transient behavior of chromium, nickel, and cadmium in different soils during electrokinetic remediation. A series of laboratory electrokinetic experiments was conducted using two different clayey soils, kaolin and glacial till. For each type of soil, four electrokinetic experiments with 1, 2, 4, and 10 d of treatment time were performed. In all tests, the contaminants were Cr(VI), Ni(II), and Cd(II) combined in the soil. A geochemical assessment was performed using the geochemical model MINEQL(+) to determine the partitioning of the heavy metals in soils as precipitated, adsorbed, and aqueous forms. Results showed that in kaolin, the extent of Ni(II) and Cd(II) migration towards the cathode increased as the treatment time increased. Unlike kaolin, in glacial till treatment time had no effect on nickel and cadmium migration because of its high buffering capacity. In both kaolin and glacial till, the extent of Cr(VI) migration towards the anode increased as the treatment time increased. However, Cr(VI) migration was higher in glacial till as compared to kaolin because of the high pH conditions that existed in glacial till. In all tests, some Cr(VI) was reduced to Cr(III), and the Cr(VI) reduction rate to Cr(III) as well as the Cr(III) migration were significantly affected by the treatment time. Overall, this study showed that the electroosmotic flow as well as the direction and extent of contaminant migration and removal depend on the polarity of the contaminant, the type of soil, and the treatment duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号