首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Remotely operated vehicle (ROV)-based field studies on the distribution and behaviour of Periphylla periphylla Péron and Lesueur (Ann Mus Hist Nat Marseille 14:316–366, 1809), from three Norwegian fjords have been combined with on-board experiments and morphological and histological studies in order to understand the trophic ecology of this species. Field studies from one of the fjords showed that the zooplankton biomass was negatively related with P. periphylla abundance, indicating a predatory effect. The majority of zooplankton biomass tended to be distributed above the aggregation of P. periphylla, which in turn showed highest abundance at 100–200 m depth. Observation on the orientation of medusae passing the ROV when descending down in the water column at dawn and dusk, showed no consistency with the theory of diel vertical migration. Estimated metabolic demand of P. periphylla indicated a daily predation impact on the prey assemblage of 13% as an average for the fjord. In situ behavioural observations showed that the dominant tentacle posture of large medusae was straight upward, with tentacles extended to the oral–aboral body axis. The hunting mode alternates between ambush and ramming, whereby tentacle posture minimises the water turbulence that may otherwise alarm the prey. The musculature of the tentacles is well developed, with an especially strong longitudinal muscle on the oral side, facilitating fast movement of the tentacle towards the mouth. In addition, ring-, radial-, and diagonal musculatures are also present. The diagonal is probably most important for the corkscrew retraction of the tentacle, used at the moment of prey capture. Results from laboratory experiments show that different body-parts of P. periphylla vary in sensitivity for chemical and mechanical stimuli, including hydrodynamic disturbance and vibration in the surrounding water. Feeding success is facilitated by combining the vibration-sense on the tentacle tips and the marginal lappets, the touch-sense on the tentacle bases and marginal lappets, and a taste control of the captured prey at the mouthlips.  相似文献   

2.
The rhopalia and statocysts of Periphylla periphylla (Péron and Lesueur in Ann Mus Hist Nat Marseille 14:316–366,1809) and Chironex fleckeri Southcott (Aust J Mar Freshw Res 7(2):254–280 1956) were examined histologically and showed several homologous characteristics. Differences in sensory area distribution could be connected to a slightly different functionality of equilibrium sensing. In P. periphylla, the statoliths (crystals) grow independently of each other; whereas in C. fleckeri, one large crystal covers the smaller ones. The structures of both statoliths were examined in detail with single-crystal diffraction, microtomography and diffraction contrast tomography. The single compact statolith of C. fleckeri consisted of bassanite as was previously known only for other rhopaliophoran medusae. An origin area with several small oligocrystals was located in the centre of the cubozoan statolith. The origin areas and the accretion of statoliths are similar in both species. Our results lead to the assumption that the single bassanite statolith of C. fleckeri (Cnidaria, Cubozoa) is a progression of the scyphozoan multiplex statolith. It is therefore suggested that the Cubozoa are derived from a scyphozoan ancestor and are a highly developed taxa within the Rhopaliophora.  相似文献   

3.
Aurelia aurita medusae are able to catch their prey with their entire body surface. Catch efficiency in medusae caught in Kiel harbour in May 1985 was found to be highest at the tentacles and lowest at the subumbrella. Surface structures of the medusa as well as the cnidom are described by SEM observations. Microbasic heterotrichous euryteles and atrichous isorhizas were found. Discharged nematocysts on the prey's skin indicate different functions of the two types. The villi in the gastral cavity show a characteristic morphological differentiation that consists of a ciliated distal and a basal area covered by vesicles. Four types of glandular cells were identified by TEM observations. Mucous cell types preferably occur in densely ciliated areas. The presence of serous cells is restricted to the basal region of the gastral villi and gastral cavity where the extracellular predigestion takes place. The time of food passage in young medusae of A. aurita decreases from 19 h at 4°C to 4 h at 22°C.  相似文献   

4.
The globally distributed coronate scyphomedusa Periphylla periphylla (Peron and Lesueur, 1809) occurs in permanent and extremely high abundance in some Norwegian fjords. Studies on the species in Lurefjorden, 40 km north of Bergen, have revealed a holopelagic life cycle with direct development. We distinguished 14 successive developmental stages, characterised by size and morphology. Eggs and early stages are non-mobile, neutrally buoyant, and found mainly at intermediate depths. Rearing studies indicated a development time of 2-3 months from fertilisation to stage 9, when the medusa starts feeding and becomes motile. The fjord population usually shows a strong diel vertical migration, with aggregations at shallower depths during the night. The development includes a gradual increase in pigmentation (porphyrins), starting with the stomach, and thereafter extending to tentacles and the whole exumbrella. This pigment is photodegraded by natural light. Rearing experiments in the laboratory have shown a lethal effect of light. Here, development stops at stage 5. Pigments become visible in stage 7. Older medusae are severely damaged and killed within a few days by exposure to daylight. All stages of P. periphylla are bioluminescent, with this capacity increasing with growth, probably in connection with the development of the nervous net. The light reaction starts at the point of stimulation and spreads at two different speeds corresponding to the two nerve nets of the medusae. The coronal furrow has a central function in transmission of the reaction. It is hypothesised that the bioluminescence is used mainly as a warning to some potential predators, signalling that the porphyrin-containing medusa is unpalatable. P. periphylla has the same two categories of nematocysts as other coronates, with a total of six different types. Nematocyst abundance, distribution and morphology indicate their function. The giant euryteles (capsule up to 100 µm and tubule up to 1160 µm) are the largest ones known among Scyphozoa, and are unique in that this size increases during medusa development.  相似文献   

5.
An account is given about the development of the gametes of the holopelagic coronate scyphomedusa Periphylla periphylla (Péron and Lesueur 1809). The gonads of the species are complex and differ from those thus far described in Scyphozoa in having this characteristic composition of trophocytes, follicle cells, gamete-releasing pores, mucus cells, and resorption cells. Our results differ from those of previous coronate studies with respect to the contact of the oocytes with the gonad tissue throughout the duration of development. Among the Medusozoa, follicle cells have thus far been considered as an apomorphy for the Staurozoa, but their presence in the Scyphozoa casts some doubts on this assumption. From morphological structure and examination of the gonads and gametes, it can be deduced that P. periphylla has true organs and that gamete release is continuous. These results supplement our knowledge of the reproductive biology of this mesopelagic species.  相似文献   

6.
7.
Bioluminescence is the production of visible light by a living organism. The light commonly appears as flashes from point sources (involving one or more cells, usually described as photocytes) or as a glandular secretion. A visible flash usually involves synchronous light emission from a group of cells or, if from a single-celled organism such as a dinoflagellate, from a group of organelles. The number of cells (or organelles) responding synchronously is the main determinant of the flash intensity. Bioluminescence is a common phenomenon in many deep-sea animals and is widespread among the Cnidaria. In this paper, we compare and contrast in situ and laboratory recordings of the bioluminescent responses of specimens of the deep-sea scyphozoans Atolla wyvillei, Atolla vanhoffeni, Atolla parva, Nausithoe rubra, Paraphyllina intermedia, Periphyllopsis braueri and Periphylla periphylla. Displays in all seven species consist of localised flashes and propagated waves of light in the surface epithelium. The first few single waves propagate at rates of up to 60 cm s-1 but subsequent ones in any sequence of stimuli gradually decrease in speed. After several single wave responses, a subsequent stimulus may elicit multiple waves that persist for several seconds. Following such a frenzy, the specimen becomes temporarily refractory to further stimuli, but if rested will recover its normal responses and may produce further frenzies. The dome area, situated above the coronal groove, of the genera Paraphyllina, Periphylla, and Nausithoe is covered with luminescent point sources. Such point sources are generally absent from the dome of species of Atolla. Captured specimens of A. parva also produce secretory bioluminescence, corroborating prior in situ observations of this ability. Secretory bioluminescence in P. periphylla takes the form of scintillating particles released from the lappet margins. We did not observe secretory displays in specimens of any other species in the laboratory, but one instance of apparent secretory luminescence was recorded in situ in a specimen of A. wyvillei.Communicated by J. P. Thorpe, Port Erin  相似文献   

8.
B. Werner 《Marine Biology》1973,18(3):212-217
New observations on the complete life cycle of Tripedalia cystophora Conant have revealed that—because of the radialsymmetrically constructed body of the polyp and its complete metamorphosis into one medusa—the “Cubozoa” are unique in their development, systematics and evolution. the same is true for the sexual biology of their medusae. It has long been known that the female T. cystophora are larviparous; fertilized eggs develop within the gastral pockets into free-swimming planulae. How do spermatozoa approach the eggs inside the female? In laboratory cultures, young medusae could be raised to maturity. Rearing experiments and observations yielded surprising results, revealing a situation which is new for Cnidaria. In T. cystophora, ripe medusae of both sexes can be identified easily by the different colour and structure of the gonads. In the gonads of the ripe male, numerous spermatozoa are joined to form spermatozeugmata of a simple type. Numerous spermatozeugmata form big globular bodies (spermatophores), which develop in small grooves on the inside surface of the stomach. The spermatophores are transferred directly from the male to the female during successive steps of special mating behaviour. The observations confirm that Cubomedusae have reached the peak of medusan specialization.  相似文献   

9.
Colonies of hydroid polyps of the genus Eudendrium Ehrenberg release planula larvae with a high yolk content. Immediately after hatching, they begin to excrete a slime rope. In the presence of water movements, larvae hatching simultaneously tend to join a trail of slime; in stagnant water, the larvae move down the rope separately. The planula larvae are unable to float. On the basis of aquarium observations, we suggest that slime ropes with larvae adhere to substrates in the vicinity of the mother colony; this prevents the larvae from being carried off too far into open waters. In view of the absence of medusae in Eudendrium, this response of the planula is interpreted as an adaptation to a purely sessile life cycle. Structure and distribution of the slime secretions are documented by means of light and electron-microscope photos.
Ökologische bedeutung der schleimsekretion bei den planula-larven der hydroidengattung Eudendrium
  相似文献   

10.
From measured diel photosynthesis and respiration rates, using oxygen electrodes, estimates of carbon flux between symbiotic algae (zooxanthellae) and host animal are presented for the marine scyphomedusan Mastigias sp. from a marine lake in Palau, Western Caroline Islands, during February and March 1982. The carbon budgets calculated for these lake medusae indicate that carbon fixed photosynthetically by zooxanthellae and made available to the host may satisfy up to 100% of the host's daily metabolic carbon demand (CZAR). The stable carbon isotope (13C) signature of the mesogleal carbon of lake Mastigias sp. was close to that of the zooxanthellae, supporting the interpretation that while these medusae may feed holozoically, some of their carbon comes from their symbionts. The diel photosynthesis, respiration, and preliminary estimates of carbon budgets of three individuals of another ecotype of Mastigias sp. collected from nearby oceanic lagoons are also given. Photosynthesis of lagoon medusae was generally greater than that for lake medusae of similar size, and lagoon medusae were phototrophic with respect to carbon, with commensurately greater CZAR values. Carbon translocated from the symbiotic algae also may contribute to the growth requirements of both lake and lagoon medusae. From carbon flux data, the lake jellyfish were estimated to contribute about 16% to the total primary productivity of their marine lake habitat.  相似文献   

11.
Mass aggregations of the hydromedusae Tiaropsis multicirrata and Rathkea octopunctata have been studied in the Jarnyshnaya Fjord on the Kola Penninsula during the period of domination of the summer neritic plankton complex. The mass aggregations persist at least over periods of 2 months. No hyrometereological parameters could be established that would conceivably favour such aggregations. The factor most likely responsible for creating the aggregations is assumed to be related to the stable level of the summer zooplankton, production in the study area. The vast individual numbers of hydromedusae as well as their polyphageous feeding behaviour and high growth rates suggest that the medusae represent the most substantial consumers of plankton in inshore waters. The low and highly variable percent of medusae individuals which reveal food in their intestinal system lead the authors to assume additional food sources: nannoplankton, bacteria, and dissolved organic matter.  相似文献   

12.
13.
Phyllorhiza punctata, commonly called the Australian white spotted jellyfish, invaded the Caribbean in the 1960s, becoming established there and subsequently in the United States in the northern Gulf of Mexico (by 2000) and eastern Florida (2001). With the prevailing Loop Current flowing clockwise around the Gulf of Mexico and joining the Gulf Stream along eastern Florida, potential transport of P. punctata along the eastern seaboard of the USA could be facilitated. P. punctata medusae were collected in small numbers along the entire Georgia coast during May–November in 2007 and 2008. Medusa bell diameters increased both years from ca. 10 cm in May to ca. 33 cm in autumn. Specimens lacked zooxanthellae, as reported for medusae in the northern Gulf of Mexico and Florida. It is possible that the P. punctata medusae observed were transported from established populations to the south; however, whether or not this species is established along the Georgia coast has yet to be determined.  相似文献   

14.
Under laboratory conditions, the Atlantic mackerel Scomber scombrus feed on Aglantha digitale, a small, transparent medusa common in temperate and boreal waters. The same feeding response to A. digitale was observed whether the medusae were offered alone or together with a mixture of copepod prey. A. digitale mortality in the path of the mackerel school is estimated to be near 100%. Median carbon and nitrogen content of A. digitale was equivalent to about ten small copepods (e.g. Pseudocalanus sp.). A. digitale is abundant in temperate-boreal waters and may be an important source of nutrition to mackerel in the northwest Atlantic.  相似文献   

15.
The copepod Paramacrochiron maximum was found in high numbers (up to 5,675 copepods/medusa) on the oral arms of the scyphozoan Catostylus mosaicus. This association was considered to be commensalism for the following reasons: P. maximum (Lichomolgidae) was abundant on the medusae (approximately 805 copepods/kg of medusae) and very rare in the water column (approximately 5.99×10-4 copepods/kg of water); copepodites and adults of the symbiont were present on the host; the copepods were on the medusae both day and night, at different times (nine occasions between March 1999 and May 2000) and different locations (Botany Bay and Lake Illawarra, NSW, Australia). Over 40 taxa of plankton were found on the oral arms of C. mosaicus (including protists, cnidarians, polychaetes, molluscs, a wide range of holoplanktonic and meroplanktonic crustaceans, chaetognaths and fish eggs). These taxa were abundant in the water column and we concluded that they were prey. Symbiotic amphipods and carangid fishes were found with medusae. We conclude that there is a symbiotic association between P. maximum and C. mosaicus and care should be taken not to confound these copepods with the prey of C. mosaicus. Poecilostomid copepods are well known for consuming mucus and feeding is likely to be a major reason for the association.Communicated by G.F. Humphrey, Sydney  相似文献   

16.
The successful invasion of non-indigeneous species depends on initial colonization as well as establishing a self-maintaining population. The invasive hydrozoan Moerisia lyonsi (Boulenger, 1908), possibly originating from low-salinity waters in the Black Sea and Middle East regions, has become established in low-salinity waters in several estuaries of North America, including Chesapeake Bay. The effects of temperature and salinity on mortality of M. lyonsi polyps were examined in the laboratory in February 2001 in the presence of abundant food. The polyps of M. lyonsi were directly transferred from 20°C and 10 salinity to one of 45 combinations of temperature (10–29°C) and salinity (1–40). Polyp mortality within 7 days occurred only in low-temperature treatments with salinities of 35–40. Surviving polyps reproduced asexually in salinities of 1–40 at 20–29°C, and in salinities of 1–25 at 15°C, but not in any salinities at 10°C. The greatest asexual reproduction rates, an index for population survival potential, occurred at salinities of 5–20. Survival and reproduction of M. lyonsi over such broad temperature and salinity ranges indicate that M. lyonsi may colonize and establish populations throughout the Chesapeake Bay; however, M. lyonsi medusae were reported only at salinities <9.3 there. This discrepancy may be due to the effects of predators. The scyphomedusan Chrysaora quinquecirrha (Desor, 1848), but not the ctenophore Mnemiopsis leidyi (A. Agassiz, 1865) consumed M. lyonsi medusae in laboratory experiments in August–September 2001. Populations of M. lyonsi do not appear to be limited by temperature and salinity conditions; however, their distribution in Chesapeake Bay may be restricted to low salinities not inhabited by predators.Communicated by J.P. Grassle, New Brunswick  相似文献   

17.
Herein, we characterize a symbiotic relationship between the scyphomedusa Lychnorhiza lucerna and the decapod crustacean Libinia spinosa in Río de la Plata, South America. Of 843 specimens of L. lucerna examined during the study, 69 (8.2 %) hosted L. spinosa within subgenital spaces. The broad spatial and temporal scale of the study, together with the large number of observations made, confirm an association between the two species. Medusae having crab associates were mature and larger than those lacking such symbionts. Adult crabs of both sexes, as well as juveniles and soft-shell individuals, were found as associates of medusae. Analysis of crab stomach contents revealed the presence of nematocysts and copepod remains. Our results suggest that medusae provide protection and possibly access to food for crabs. Benefits related to transportation were not clear and need further evaluation. Crabs of L. spinosa may acquire their scyphozoan symbionts either as larvae planktonic stages or as adult crabs attaching to jellyfish when aggregating close to bottom.  相似文献   

18.
We describe feeding behavior of Aurelia aurita (Linnaeus) using gut content analyses of field-collected specimens and a mesocosm experiment. The field studies were conducted in Narragansett Bay, Rhode Island, USA from March to April 1988, and the mesocosm studies were done at the Marine Ecosystems Research Laboratory at the University of Rhode Island. Patterns of prey selection changed with medusa diameter. Smaller medusae (12 mm diameter) consumed mostly hydromedusan prey whereas larger medusae (up to 30 mm diameter) ingested greater numbers of copepod prey. While larger medusae did feed on copepods, their diet also contained more barnacle nauplii and hydromedusae than expected from the relative abundances of these prey types in plankton samples. A marginal flow mechanism of feeding by A. aurita provided an explanation for the patterns of prey selection we observed in medusae of different sizes and among widely divergent prey types. Our data indicated that large prey, with escape speeds slower than the marginal flow velocities around the bell margins of A. aurita, made up a substantial fraction of the daily ration when they were available. Such prey species may be more important to nutrition than the more abundant copepods and microzooplankton. Successful development of young medusae may depend upon an adequate supply of slowly escaping prey.  相似文献   

19.
Swimming and feeding by the scyphomedusa Chrysaora quinquecirrha   总被引:2,自引:2,他引:0  
The semaeostome scyphomedusa, Chrysaora quinquecirrha (Desor, 1848), is an abundant and important planktonic predator in estuaries and coastal waters of the eastern USA during the summer. We videotaped free-swimming medusae in the laboratory and in the field in order to determine the relationship between swimming motions and prey encounter with capture surfaces. Medusae were collected from the Choptank River (Chesapeake Bay) in September 1992 and in the Niantic River, Connecticut, USA in July 1994. We used newly hatched Artemia sp. nauplii and fluorescein dye to trace water motions around swimming medusae. Swimming results in a pulsed series of toroids which travel along the medusan oral arms and tentacles. Prey are entrained in this flow and the location of naupliar encounter was influenced by the phase of the pulsation cycle during which entrainment occurred. Flow-field velocities, measured by tracking particles adjacent to the bell margin during contraction, increased with bell diameter. Received: 29 March 1997 / Accepted: 11 April 1997  相似文献   

20.
K. J. Larson 《Marine Biology》1992,112(2):229-235
Linuche unguiculata (Schwartz) seasonally forms patches in the Caribbean Sea and Indo-Pacific Ocean. Eighteen patches of medusae varying from about 500 m2 to nearly 1 km2 in area, were documented along the Belize barrier reef in March and April 1987, April 1988, and March and April 1990. The shape of each patch and the inter-medusa distances varied with wind velocity. At low wind speed (<4 m s-1) patches were elliptical or circular and the individual medusae were separated by distances of 0.5 m, whereas at higher speeds windrows were evident and medusae were closer together. Windrows probably form by horizontal advection owing to convergence by Langmuir circulations. Because individual patches might exist for up to 4 mo as they drift downwind, and because winds of sufficient speed to produce Langmuir circulations do not always occur, a mechanism is necessary to maintain patch integrity during calms. In situ observations and in vitro video recording showed that the medusae swam in horizontal, near-surface, circular, clockwise trajectories. Although swimming speed was relatively high (up to 8 cm s-1). net displacement velocity can be low (<1 cm s-1). Thus, circular swimming probably reduces cluster breakup. Patch formation probably improves reproductive success by reducing sperm dilution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号