首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2013—2015年,天津市臭氧(O_3)浓度整体呈下降趋势,污染状况略低于京津冀区域的其他城市。O_3浓度春、夏季高,冬季低,高值主要集中在5—9月,浓度从早上06:00开始升高,至中午14:00达到峰值。污染主要集中在中心城区、西部和北部地区,东部、南部和西南部地区污染相对较轻。O_3浓度在温度303 K以上、相对湿度70%以下或西南风为主导时较高。VOCs/NOx比值低于8,O_3的生成处于VOCs控制区。芳香烃类和烯烃类对天津市O_3生成贡献最大,其中,乙烯和甲苯为O_3生成潜势贡献最大的物种,其次为间/对二甲苯、丙烯、邻二甲苯、异戊二烯、反-2-丁烯、乙苯等,通过控制汽车尾气、化工行业及溶剂使用等对O_3生成潜势贡献大的VOCs排放源可有效控制天津市O_3污染。  相似文献   

2.
长沙市大气中醛酮类化合物浓度变化特征   总被引:2,自引:1,他引:1  
参照美国环保署EPA-TO11标准方法,于2014年7—10月监测了长沙市大气中醛酮类化合物的质量浓度。主要监测到的醛酮类化合物为甲醛、乙醛、丙酮、丙醛、甲基丙烯醛,夏季质量浓度最高的是甲醛(13.86 mg/m3),其次是乙醛(7.28 mg/m3)、丙酮(7.14 mg/m3),秋季质量浓度最高的是甲醛(10.31 mg/m3),其次是丙酮(8.37 mg/m3)、乙醛(5.78 mg/m3)。夏季醛酮类化合物的总量高于秋季,甲醛、乙醛、丙酮的质量浓度最大值基本出现在13:00—15:00。C1/C2(甲醛/乙醛)、C2/C3(乙醛/丙醛)的平均值分别为2.02、10.19。分析了醛酮类化合物之间的相关性以及它们可能的来源。丙醛和甲醛、乙醛的相关性较好,三者有共同的人为来源。夏季大气中除丙酮外,其他醛酮类化合物的相关性均较好。夏季甲基丙烯醛和甲醛、乙醛、丙酮有相同的自然来源。综合分析可知,长沙大气中醛酮类化合物质量浓度受自然因素和人为因素的双重影响。  相似文献   

3.
Mixing ratios of 15 carbonyls and BTEX (benzene, toluene, ethyl benzene, xylenes) were measured for the first time in ambient air of Kolkata, India at three sites from March to June 2006 and their photochemical reactivity was evaluated. Day and nighttime samples were collected on weekly basis. Formaldehyde was the most abundant carbonyl (mean concentration ranging between 14.07 microg m(-3) to 26.12 microg m(-3) over the three sites) followed by acetaldehyde (7.60-18.67 microg m(-3)) and acetone (4.43-10.34 microg m(-3)). Among the high molecular weight aldehydes, nonanal showed the highest concentration. Among the mono-aromatic VOCs, mean concentration of toluene (27.65-103.31 microg m(-3)) was maximum, closely followed by benzene (24.97-79.18 microg m(-3)). Mean formaldehyde to acetaldehyde (1.4) and acetaldehyde to propanal ratios (5.0) were typical of urban air. Based on their photochemical reactivity towards OH. radical, the concentrations of the VOCs were scaled to formaldehyde equivalent, which showed that the high molecular weight carbonyls and xylenes contribute significantly to the total OH-reactive mass of the VOCs. Due to the toxic effect of the VOCs studied, an assessment for both cancer risk and non-cancer hazard due to exposure to the population were calculated. Integrated life time cancer risk (ILTCR) due to four carcinogens (benzene, ethyl benzene, formaldehyde and acetaldehyde) and non-cancer hazard index for the VOCs at their prevailing level were estimated to be 1.42E-04 and 5.6 respectively.  相似文献   

4.
Concentrations of formaldehyde, acetaldehyde, acetone, propionaldehyde, i-pentanal, and butyraldehyde in residential indoor air in Hangzhou were determined. The mean concentration of the total carbonyl compounds in summer was 222.6 μg/m3, higher than that in winter (68.5 μg/m3). The concentration of a specific carbonyl in indoor air was higher than the outdoor air measurement, indicating the release of carbonyls from the indoor sources. Formaldehyde and acetone were the most abundant carbonyls detected in summer and winter, respectively. Multiple regression analysis indicated that carbonyl concentrations in residential indoor air depended on the age of decoration and furniture, as well as their concentrations in outdoor air. In addition, a primary estimation showed that the health risks of carbonyls in summer were higher than those in winter.  相似文献   

5.
Seventeen airborne carbonyls including monocarbonyls and dicarbonyls were determined in urban and sub-urban sites of Xi’an, China in three seasons in 2010. In winter, acetone was the most abundant carbonyl in the urban site due to usage of organic solvents in constructions and laboratories and its slower atmospheric removal mechanisms by photolysis and reaction with hydroxyl radical than those of formaldehyde and acetaldehyde. In the sub-urban site, acetaldehyde was the most abundant carbonyl, followed by formaldehyde and acetone. During summer, however, formaldehyde was the most dominant carbonyl in both sites. The photooxidations of a wide range of volatile organic compounds (VOCs) yielded much more formaldehyde than other carbonyls under high solar radiation and temperature. In the urban site, the average concentrations of dicarbonyls (i.e., glyoxal and methyglyoxal) in spring and summer were higher than that in winter. Transformation of aromatic VOCs emitted from fuel evaporation leads to the formation of 1,2-dicarbonyls. A reverse trend was observed in sub-urban sites, as explained by the relatively low abundances and accumulations of VOC precursors in the rural atmosphere during warm seasons. Moreover, cumulative cancer risk based on measured outdoor carbonyls (formaldehyde and acetaldehyde) in Xi’an Jiaotong University and Heihe was estimated (8.82?×?10?5 and 4.96?×?10?5, respectively). This study provides a clear map on the abundances of carbonyls and their source interpretation in the largest and the most economic city in Northwestern China.  相似文献   

6.
Foshan is the most air-polluted city in Pearl River Delta. Non-methane hydrocarbons (NMHCs) were investigated for the first time in Foshan in winter 2008. Ethene, ethane, ethyne, propane, i-pentane, and toluene were the most abundant hydrocarbons and observed to be higher in Foshan than those in many other cities in China. Different from other cities, ethene and ethane were observed to be the two highest compounds in Foshan. Generally, the most abundant hydrocarbons showed high mixing ratios in the morning (0930-1030 hours), decreased to the lowest level in the afternoon (1430-1530 hours), and increased to higher value in the evening (1930-2030 hours). But i-pentane exhibited a different diurnal pattern with the highest level (13.4 ± 5.8 ppbv) in the afternoon, implying the acceleration of solvent evaporation resulting from higher temperature. Correlation coefficients (R(2)?= 66% for n = 6 at 95% confidence level) of the individual hydrocarbons with ethyne and i-pentane indicated vehicular emissions were the main sources of ethene, propene, i-butene, isoprene, benzene and toluene, while gasoline evaporation was responsible for n-pentane, n-hexane, and n-heptane. The good correlation of most of the hydrocarbons with ethyne, indicating vehicular emissions, were the main sources of NMHCs. B/T ratio was 0.36 ± 0.06, implying vehicular emissions acted as the major contributors as well as additional emissions of toluene emitted from solvent usage. According to investigation, it also suggested that LPG leakage was the main source of propane, while NG leakage was responsible for ethane in Foshan City.  相似文献   

7.
Lower carbonyls and n-alkanals from C5 to C10 were measured from late autumn 2000 to summer 2001 in two urban areas in the Algerian territory: Algiers and Ouargla. They were collected on silica cartridges coated with dinitrophenylhydrazine (DNPH) and pentafluorophenylhydrazine (PFPH), which were analysed by HPLC-UV and high-resolution GC-MS. respectively. The two methods were used in parallel samplings in a suburban Algiers site and provided consistent results for semi-volatile congeners, as differences in the concentration data did not exceed 21% on average for individual carbonyl levels ranging from 0.0 to 0.5-2.6 microg m(-3). Concentrations of formaldehyde up to 27 and 5 microg m(-3) were monitored during 10 h samplings in the daytime in Algiers and Ouargla, respectively; acetaldehyde reached values of 13 and 5 microg m(-3), whilst acetone was the most abundant ketone with peak levels of 14 and 4 microg m(-3), respectively. High night-time levels of lower carbonyls were also measured at both locations. Among the semi-volatile alkanals, the highest levels were observed in suburban Algiers for hexanal and nonanal (2.2 microg m(-3)) and in downtown Algiers for valeraldehyde (2.6 microg m(-3)), whilst in Ouargla only hexanal and nonanal levels within the C5-C10 fraction exceeded 1 microg m(-3). Moreover, benzaldehyde concentrations as high as 5 microg m(-3) were measured in the centre of Algiers. Algiers data are comparable with those found in photochemically polluted urban areas of Europe and the USA. Strong correlations between formaldehyde and acetaldehyde and between formaldehyde and benzaldehyde were observed; by contrast, acetone did not show any correlation with the lower aldehydes, suggesting the existence of carbonyl sources other than vehicular traffic. Diurnal variations of almost all carbonyls suggested that motor vehicles were the most important source in the winter, whereas photochemical production appeared to predominate during the summer.  相似文献   

8.
Burning incense to pay homage to deities is common in Chinese homes and temples. Air samples were collected and analyzed for carbonyls from a home and a temple in Hong Kong where incense burning occurs on a daily basis. Carbonyls in the air were trapped on a solid sorbent coated with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine, followed by thermal desorption and subsequent GC/MS analysis. The carbonyls identified include formaldehyde, acetaldehyde, acrolein, 2-furfural, benzaldehyde, glyoxal, and methylglyoxal. The levels of the above carbonyls correlate with the intensity of the incense-burning activities. The total mixing ratios of the carbonyls in the temple exceed those in the ambient air outside the temple by 11-23 times. Formaldehyde is the most abundant species, contributing to approximately 55% of the total carbonyl mixing ratios in both the temple and the home environments during incense burning. The mixing ratio of formaldehyde ranges from 108 to 346 ppbv in the temple and averages 103 ppbv in the home during incense burning. These values exceed the World Health Organization (WHO) air quality guideline of 100 microg m(-3) (88 ppbv) for formaldehyde. The highest formaldehyde level in the temple exceeds the WHO guideline by 3 times at peak incense burning hours. The mixing ratio of acrolein in the temple ranges from 20 to 99 ppbv, approaching or exceeding the WHO air quality guideline of 50 microg m(-3) (22 ppbv) for acrolein. Our measurements indicate that incense burning significantly elevates the concentrations of a number of carbonyls, most notably formaldehyde and acrolein, in the surrounding environments. This study provides preliminary insights on indoor air quality problems created by incense burning.  相似文献   

9.
对大连市2015年秋冬季环境空气中VOCs进行采样分析,获得其组成、含量、昼夜和季节变化规律,分析不同类别VOCs的来源,并计算不同VOCs物种的臭氧生成潜势(OFP)。结果表明:大连市环境空气中秋季VOCs平均体积浓度(55.81×10-9)略高于冬季(42.66×10-9);秋季VOCs以羰基化合物和烷烃为主,而冬季VOCs以烷烃和烯炔烃为主。大连环境空气中光化学反应的主要VOCs类别为羰基化合物、烯炔烃和芳香烃,主要物种为丙烷、乙烷、正丁烷和乙烯。羰基化合物含量高与机动车尾气及医院大量试剂的使用有关,烷烃主要来源于汽油车与液化石油气(LPG)燃烧排放,芳香烃主要由机动车排放贡献。各类别VOCs的组分含量与其OFP并不一致,大连市环境空气中各类VOCs的OFP由高到低依次为羰基化合物>芳香烃>烯炔烃>烷烃。  相似文献   

10.
城市大气挥发性有机物(VOCs)监测是空气质量监测网的重要组成部分,而数据质量控制和质量保证是VOCs监测的基础。基于8次中国城市大气VOCs外场监测,通过挖掘VOCs浓度、组成和化学活性的内在规律,对VOCs监测数据质量进行评估并总结方法。分析结果显示:城市大气乙烷和苯等长寿命组分具有明显的背景浓度,且区域背景值较为接近,可以用来诊断长寿命VOCs组分浓度异常偏低或偏高现象。而示踪组分的季节(日)变化规律可以用来识别VOCs组分定性问题(如夏季大气异戊二烯和烷基硝酸酯浓度日变化规律应反映植被排放和光化学反应特征)。另外,在气团混合均匀的情况下,VOCs浓度波动与其活性之间存在负相关,这一规律可以用来核查数据准确性或局地源影响。  相似文献   

11.
利用2017年嘉善善西超级站臭氧(O3)及其前体物(NOx和VOCs)以及气象因子(温度、湿度、风速)逐小时数据,分析了2017年全年NOx和O3的变化特征以及春季(4—5月)、夏季(7—8月)NOx和气象因子对O3生成的影响,利用O3生成潜势(OFP)评估了VOCs大气化学反应活性,并通过潜在源区贡献(PSCF)和浓度权重轨迹(CWT)方法分析了嘉善春、夏季O3潜在源区贡献特征。研究发现:O3日变化特征为单峰结构,NOx为弱双峰结构。O3浓度在3—9月较高,春、夏季O3浓度峰值分别出现在15:00和14:00,春、夏季的NOx、O3日变化与2017年全年日变化趋势基本一致。NOx对O3存在滴定作用,且低湿高温有利于O3浓度的升高。春、夏季O3生成潜势贡献均表现为烯烃 > 芳香烃 > 烷烃,由于烯烃光化学活性较高,夏季烯烃浓度升高导致其贡献较春季增长约18.1个百分点,且夏季VOCs平均最大O3增量反应活性高于春季。PSCF和CWT分析结果表明,嘉善春季的潜在源区主要为本地、西南方向和东南方向,夏季的潜在源区主要为本地、西北方向、西南方向以及东南方向。  相似文献   

12.
选取武夷山、庞泉沟和长岛3个具有代表性的空气背景站点及其周边城市站点,分析研究夏季环境空气中挥发性有机污染物(VOCs)的特征。结果表明,庞泉沟、武夷山、长岛背景站点的总挥发性有机物(TVOCs)平均浓度分别为(24.71±7.89)×10-9、(7.94±5.82)×10-9、(11.98±5.34)×10-9,分别比对应的城市站点低42%、43%、11%。背景站点TVOCs中的烷烃占比为67%~72%,明显高于城市站点;背景站点与城市站点TVOCs中的烯烃和芳香烃占比无显著差异;但背景站点炔烃占比(2%~3%)明显低于城市地区(10%~24%)。背景站点异戊二烯浓度在09:00—15:00出现峰值,且TVOCs浓度变化趋势与异戊二烯浓度变化趋势关联性较强,说明背景站点受自然源影响较大。臭氧生成潜势(OFP)分析结果表明,烯烃及芳香烃对背景地区与城市地区臭氧生成有较大影响,城市地区总OFP远大于背景地区,乙烯、甲苯等对城市地区OFP的贡献较大,异戊二烯对背景地区OFP的贡献较大。  相似文献   

13.
Ambient levels of carbonyl compounds and their possible sources were studied at three places in the metropolitan area of Costa Rica, including a residential, an industrial, and a commercial downtown area with high vehicular flow, during the periods of April–May and September–December 2009. Fifteen carbonyl compounds were identified in the ambient air, of which acetone was the most abundant carbonyl, followed by formaldehyde and acetaldehyde. Concentrations were highest in rainy season at all sites and lower in dry season. These decreases in concentration are explained by the influences of both photochemical reactions and local meteorological conditions. The strong correlation between C1–C2 and C3 indicated a common origin for these carbonyls. The C1/C2 ratios varied between 0.49 to 1.05, values which can be considered typical of an urban area.  相似文献   

14.
This study selected a petrochemical industrial complex in Beijing, China, to understand the characteristics of surface ozone (O3) in this industrial area through the on-site measurement campaign during the July–August of 2010 and 2011, and to reveal the response of local O3 to its precursors’ emissions through the NCAR-Master Mechanism model (NCAR-MM) simulation. Measurement results showed that the O3 concentration in this industrial area was significantly higher, with the mean daily average of 124.6 μg/m3 and mean daily maximum of 236.8 μg/m3, which are, respectively, 90.9 and 50.6 % higher than those in Beijing urban area. Moreover, the diurnal O3 peak generally started up early in 11:00–12:00 and usually remained for 5–6 h, greatly different with the normal diurnal pattern of urban O3. Then, we used NCAR-MM to simulate the average diurnal variation of photochemical O3 in sunny days of August 2010 in both industrial and urban areas. A good agreement in O3 diurnal variation pattern and in O3 relative level was obtained for both areas. For example of O3 daily maximum, the calculated value in the industrial area was about 51 % higher than in the urban area, while measured value in the industrial area was approximately 60 % higher than in the urban area. Finally, the sensitivity analysis of photochemical O3 to its precursors was conducted based on a set of VOCs/NOx emissions cases. Simulation results implied that in the industrial area, the response of O3 to VOCs was negative and to NOx was positive under the current conditions, with the sensitivity coefficients of ?0.16~?0.43 and +0.04~+0.06, respectively. By contrast, the urban area was within the VOCs-limitation regime, where ozone enhancement in response to increasing VOCs emissions and to decreasing NOx emission. So, we think that the VOCs emissions control for this petrochemical industrial complex will increase the potential risk of local ozone pollution aggravation, but will be helpful to inhibit the ozone formation in Beijing urban area through reducing the VOCs transport from the industrial area to the urban area.  相似文献   

15.
The ozone in Rio de Janeiro has been in violation of national air quality standards. Among all of the monitoring stations, the Bangu neighbourhood has the most violations of the national standard of 160 μg m?3 for the years 2012 and 2013. This study evaluated the reactivity of the carbonyls and aromatics in the tropospheric ozone formation processes. The samples were collected between July and October of 2013. Carbonyls were sampled using SiO2 cartridges coated with C18 and impregnated with 2,4-dinitrophenylhydrazine and were analysed by HPLC. Activated carbon cartridges and GC/MS were used to measure the concentration of monoaromatic hydrocarbons. An air quality monitoring station provided the concentrations of the criteria pollutants and the meteorological parameters. Cluster analysis and a Pearson correlation matrix were used to determine the formation of groups and the correlation of the variables. The evaluation of the volatile organic compounds (VOC) reaction with OH radicals and the MIR scale was used to extrapolate the reactivity of VOCs to the ozone formation. The average concentrations obtained were 19.7 and 51.9 μg m?3 for formaldehyde and acetaldehyde, respectively. The mean concentrations obtained for aromatics were 1.5, 6.7, 1.5, 2.6 and 1.6 μg m?3 for benzene, toluene, ethyl benzene, m+p-xylene and o-xylene, respectively. The cluster analysis indicated the presence of three similar groups, with one formed by gaseous criteria pollutants, another formed by the meteorological parameters, ozone and fine particles, and the last group formed by the aromatics. For the two reactivity scales evaluated, acetaldehyde and toluene were the main ozone precursors.  相似文献   

16.
Alpine wetland is a source for CH4, but little is known about methane emission from such wetland, especially about its diurnal pattern. In this study we tried to probe the diurnal variation in methane emission from alpine wetland vegetation. The average methane emission rate was 9.6 ± 3.4 mg CH4 m???2 h???1. There was an apparent diurnal variation pattern in methane emission with one minor peak at 06:00 and a major one at 15:00. The sunrise peak was consistent with a two-way transport mechanism for plants (convective at daytime and diffusive at night-time). CH4 emission was found significantly correlated with redox potentials. The afternoon peak could not be explained by diurnal variation in soil temperature, but could be attributable to changes in CH4 oxidation and production driven by plant gas transport mechanism. The results have important implications for sampling and scaling strategies for estimating methane emission from alpine wetlands.  相似文献   

17.
Air samples were collected in Beijing from June through August 2008, and concentrations of volatile organic compounds (VOCs) in those samples are here discussed. This sampling was performed to increase understanding of the distributions of their compositions, illustrate the overall characteristics of different classes of VOCs, assess the ages of air masses, and apportion sources of VOCs using principal compound analysis/absolute principal component scores (PCA/APCS). During the sampling periods, the relative abundance of the four classes of VOCs as determined by the concentration-based method was different from that determined by the reactivity approach. Alkanes were found to be most abundant (44.3–50.1%) by the concentration-based method, but aromatic compounds were most abundant (38.2–44.5%) by the reactivity approach. Aromatics and alkenes contributed most (73–84%) to the ozone formation potential. Toluene was the most abundant compound (11.8–12.7%) during every sampling period. When the maximum incremental reactivity approach was used, propene, toluene, m,p-xylene, 1-butene, and 1,2,4-trimethylbenzene were the five most abundant compounds during two sampling periods. X/B, T/B, and E/B ratios in this study were lower than those found in other cities, possibly due to the aging of the air mass at this site. Four components were extracted from application of PCA to the data. It was found that the contribution of vehicle exhaust to total VOCs accounted for 53% of VOCs, while emissions due to the solvent use contributed 33% of the total VOCs. Industrial sources contributed 3% and biogenic sources contributed 11%. The results showed that vehicle exhausts (i.e., unburned vehicle emissions + vehicle internal engine combustion) were dominant in VOC emissions during the experimental period. The solvent use made the second most significant contribution to ambient VOCs.  相似文献   

18.
2015年8月22日至9月26日利用在线GC-MS/FID和离线Canister-GCMS/FID采样并分析了重庆城区7个监测点位的96种VOCs,结果表明,城区总挥发性有机化合物平均体积分数为42.43×10-9,且空间分布特征为"中心城区高,周边低"。重庆本地高乙烷、高乙烯和高乙炔浓度呈区域污染现象,且城市监测点位主要受交通源、工业排放和溶剂挥发的影响,缙云山站则主要以生物源排放为主。重庆市城区气团的OH自由基反应速率平均值为8.86×10-12cm3/(mol·s),最大反应增量活性平均值为4.08 mol/mol,与乙烯相当,说明本地大气化学反应活性较强。重庆城区对OH自由基损耗速率贡献最大的组分是烯/炔烃(35%),对臭氧生成潜势贡献最大的组分是芳香烃(39%)。乙醛、乙烯和甲苯等物质是VOCs的关键活性组分。  相似文献   

19.
利用合肥市臭氧和VOCs连续观测数据分析了合肥市臭氧及其前体物污染特征,并使用NAQPMS模型研究了合肥市不同季节臭氧来源情况。结果表明:O3已经成为影响合肥市环境质量的主要污染因子,O3高值区主要集中在5—6月和9月。合肥市大气VOCs中烷烃含量最丰富,其次是烯烃、芳香烃和炔烃;主要物种为乙烷、丙烷、乙炔、正戊烷、乙烯、环戊烷、异戊烷、正丁烷、异丁烷和甲苯。合肥市O3生成主要受VOCs控制,其中,烯烃是合肥市O3生成贡献最大的关键活性组分,乙烯的OFP贡献率居首位。合肥市不同季节O3来源差异较大,其中,本地排放是主要来源,夏季占比为50%,其余季节占比为30%~45%,O3存在跨省长距离输送特征,主导风向的变化是造成合肥市臭氧来源季节性变化的重要因素。  相似文献   

20.
2017年9月1日至11月30日采用Syntech Spectras GC955在线气相色谱仪对杭州市不同功能区大气环境中的挥发性有机化合物(VOCs)进行了在线连续监测,分析了不同功能区VOCs及各组分的体积分数、日变化规律及大气化学反应活性。结果显示,下沙周边工业区总VOCs浓度整体高于朝晖周边居民区,其中夜间更为显著。烷烃和芳香烃浓度在夜间时段工业区较居民区高得更为明显,其中芳香烃组分表现尤为突出,2个功能区烯烃体积分数相差不大。杭州市主要VOCs体积分数总体上在国内处于中间水平。不同功能区烷烃和芳香烃均呈现夜间浓度高于白天的日变化特征,居民区各VOCs组分日变化基本呈现双峰结构,工业区烷烃和芳香烃体积分数日变化呈现单峰结构,烯烃体积分数没有明显的日变化特征。不同功能区中芳香烃对臭氧生成潜势贡献最大,烯烃次之,烷烃贡献最小。下沙周边工业区大气化学活性(尤其是芳香烃组分)较朝晖周边居民区强。同种VOCs物质在不同功能区对臭氧生成潜势的贡献大小不同,但关键贡献物质均为低碳烷烃、低碳烯烃及苯系物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号