首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The occurrence and genetic effects of polyandry were studied in the ant Proformica longiseta using three microsatellite markers. The average queen mating frequency (QMF) estimated from the sperm dissected from the spermathecae of 61 queens was 2.4 with 69% of the queens being multiply mated. QMF estimated from worker offspring in a subsample of eight monogynous colonies was 3.5, but the effective paternity (me,p) was only 1.23. The difference between these values reflected unequal sperm use by the queens. Most colonies of P. longiseta were polygynous and the average relatedness among workers was 0.35. Polyandry thus added only marginally to the genetic diversity of colonies, and our results gave little support to the genetic-variability hypothesis for explaining polyandry. Diploid male load was low, as only 1% of males were diploid. A large majority (92%) of nests produced one sex only, with males produced in colonies that had higher than average worker relatedness. This contradicted the predictions derived from worker control of sex ratios. Males produced enough sperm to fill the spermathecae of several queens. Thus, the results indicated that diploid male load, sperm limitation and sex ratio conflict are also unlikely explanations of polyandry. Plausible hypotheses for polyandry include mating by convenience, as the sex ratio is male biased and the mating costs to a female can be low because the females are wingless and have no mating flight. The observed unequal sperm use furthermore points to sperm choice and sperm competition as important factors in the evolution of polyandry.  相似文献   

2.
Parasites reduce host fitness, and so instigate counter adaptations by their hosts. In temporary social parasitism, usurpers must not only enter the colony unharmed, but also have their eggs reared by the host workers. We introduced parasitic Formica lugubris and Formica aquilonia queens into queen right and orphaned fragments of three host species, Formica cinerea, Formica picea and Formica fusca, and show that workers of all three host species kill over 40 % of the introduced queens within 10 days, regardless of the presence/absence of a resident queen, and parasite species. More parasite queens died in F. cinerea than in F. picea and F. fusca. There were no major differences in survival between the parasite species (except that F. lugubris survived longer than F. aquilonia in F. fusca colonies compared to F. picea colonies), but parasite queens survived longer in orphaned than in queen right fragments of F. fusca. Experimental introduction of parasite (F. aquilonia) eggs into orphaned colonies of F. fusca showed that none of the parasite eggs were reared until pupation; whereas on average, 12 % of the con-specific hetero-colonial eggs introduced in the same manner were reared until pupation. In all colonies that received parasite brood, all offspring consisted of worker-laid males, whereas the corresponding value was 50 % for colonies that received con-specific hetero-colonial brood. Thus, when the risks of entering host colonies and brood failure are combined, the rate of successful colony take-over is very low. Moreover, the host workers can to some extent alleviate the costs of parasitism by producing a final batch of own offspring.  相似文献   

3.
In several ant species, colonies are founded by small groups of queens (pleometrosis), which coexist until the first workers eclose, after which all but one queen is killed. It has been hypothesized that, by producing a larger cohort of workers, cooperating queens may increase colony success during brood raids, a form of competition in which brood and workers from losing nests are absorbed into winning colonies. To test whether this benefit is sufficient to favor pleometrosis, newly mated queens of the fire ant Solenopsis invicta were assembled in groups of one, two, three, or four, reared in the laboratory until the first workers eclosed, then planted in the field in replicated assemblages. The proportion of colonies engaging in brood raids increased with average foundress number per nest and with colony density but was unaffected by variance in foundress number among interacting colonies. Within mixed assemblages of single-queen and multiple-queen colonies, queen number had no effect on the likelihood of engaging in raids or the probability of nest survival through the brood raiding period. However, following nearly 30% of raids, queens moved to new nests and displaced the resident queens. When queen relocation and subsequent mortality were accounted for, it was found that the survival of queens from four-queen groups was substantially higher than that of solitary queens. By contrast, the survival of queens from two-queen colonies was no greater than that of solitary queens. These results show that the competitive advantages of multiple-queen colonies are sufficient to counterbalance the increased mortality of queens within groups only when the number of foundresses is greater than two and when colonies are founded at high density. When colonies lose brood raids, the workers appear to abandon their mothers to join surviving colonies. However, in laboratory experiments, queens attempting to enter foreign nests were significantly more likely to displace the resident queen if their own daughters were present within the invaded nest. Thus, workers may be able to bias the probability that their mother rejoins them and displaces competing queens.  相似文献   

4.
In several species of ants, queens often form temporary cooperative associations during colony foundation. These associations end soon after the eclosion of the first workers with the death or expulsion of all but one of the queens. This study examined competition between foundress queens of the fire ant Solenopsis invicta. Although attacks by the workers contributed to queen mortality, queens gained no advantage by producing more workers than their co-foundresses. Restriction fragment length polymorphism analysis of mitochondrial DNA showed that the queen producing more workers during colony founding was no more likely to survive than the less productive queen. In experimentally manipulated colonies in which all the workers were daughters of only one of the queens, the mother of the workers was no more likely to survive than the unrelated queen. Queens producing diploid males reared fewer offspring but were as likely to survive as queens producing only workers. These results suggest that workers do not discriminate between related and unrelated queens within colonies. Aggressive encounters between queens were common. Queens were more likely to die or be expelled if paired with heavier queens or if they lost more weight than their co-foundress during the claustral period. Finally, when queens were separated by screens through which workers could pass, the workers usually attacked and killed the queen farther from the brood. These results suggest that queen survival is promoted by a high fighting ability relative to co-foundresses, rather than by increased worker production, and that workers respond to queen differences that are independent of kinship. Received: 8 September 1995/Accepted after revision: 5 March 1996  相似文献   

5.
Summary A number of hypotheses for the occurrence of multiple mating by queens of social Hymenoptera are reviewed in the light of Cole's (1983) observation that polyandrous species tend to have larger colonies than single-mating ones. Most of these hypotheses cannot be definitively excluded, but only three of them appear sufficiently general, plausible and predictive to be useful guides to further research. These, and their predictions, are: (1) Caste-determination has a genetic basis and hence polyandry allows fuller expression of the potential caste system in each colony. Species with more complex caste differentiation should be more often polyandrous than species with simpler caste systems. (2) Polyandry maximises the production of divergent worker genotypes and hence the range of environmental conditions that a colony can tolerate. Broader-niched species should be more often polyandrous than species with narrower niches. (3) The reduction of the variance of diploid male production, under the heterozygosity sex-determination model, favors polyandry when sexuals are produced late during colony growth. Queens in species reproducing during the exponential phase of colony growth should tend to mate once, but queens should tend to be polyandrous in species with reproduction occurring further along the colony growth curve. Williams's (1975) observation that the level of genetic variation in a brood approaches a maximum very quickly with increasing polyandry is quantified for females; the initial increase is much greater for male-haploid than for male-diploid species.  相似文献   

6.
Monogyne fire ant, Solenopsis invicta, colony workers are territorial and are aggressive toward members of other fire ant colonies. In contrast, polygyne colony workers are not aggressive toward non-nestmates, presumably due to broader exposure to heritable and environmentally derived nestmate recognition cues (broad template). Workers from both monogyne and polygyne fire ant colonies execute newly mated queens after mating flights. We discovered that monogyne and polygyne queens have a remarkable effect on conspecific recognition. After removal of their colony queen, monogyne worker aggression toward non-nestmate conspecifics quickly drops to merely investigative levels; however, heterospecific recognition/aggression remains high. Queenless monogyne or polygyne worker groups were also not aggressive toward newly mated queens. Queenless worker groups of both forms that adopted a monogyne-derived newly mated queen became aggressive toward non-nestmate workers and newly mated queens. We propose that the powerful effect of fire ant queens on conspecific nestmate recognition is caused by a queen-produced recognition primer pheromone that increases the sensitivity of workers to subtle quantitative differences in nestmate recognition cues. This primer pheromone prevents the adoption of newly mated queens (regulation of reproductive competition) in S. invicta and when absent allows queenless workers to adopt a new queen readily. This extraordinary discovery has broad implications regarding monogyne and polygyne colony and population dynamics.  相似文献   

7.
Previous studies have shown that colony social organization in Solenopsis invicta is under strong genetic control. Colonies containing some proportion of workers with the Bb or bb genotypes at the gene Gp-9 display polygyne social organization (multiple reproductive queens per colony), whereas colonies with only BB workers express monogyne organization (single reproductive queen per colony). The hypothesis that the presence of workers bearing the b allele confers the polygyne social phenotype on a colony leads to the prediction that social organization can be manipulated by experimentally altering frequencies of adult workers bearing this allele. We did this by replacing queens in colonies of each social form with single queens of the alternate form, which differ in Gp-9 genotype. As worker Gp-9 genotype compositions changed, experimental colonies switched to the alternate social organization. These switches occurred when frequencies of workers with the b allele passed an identifiable threshold, such that colonies with fewer than 5% such workers behaved like monogyne colonies and those with more than 10% behaved like polygyne colonies. Our data thus confirm the prediction that colony social organization in this ant can be altered by manipulating adult worker genotype compositions, and thereby support the hypothesis that the expression of polygyny requires the presence of adult workers bearing the b allele at Gp-9.  相似文献   

8.
Workers of a queenless honeybee colony can requeen the colony by raising a new queen from a young worker brood laid by the old queen. If this process fails, the colony becomes hopelessly queenless and workers activate their ovaries to lay eggs themselves. Laying Cape honeybee workers (Apis mellifera capensis) produce female offspring as an additional pathway for requeening. We tested the frequency of successful requeening in ten hopelessly queenless colonies. DNA genotyping revealed that only 8% of all queens reared in hopelessly queenless colonies were the offspring of native laying worker offspring. The vast majority of queens resulted from parasitic takeovers by foreign queens (27%) and invading parasitic workers (19%). This shows that hopelessly queenless colonies typically die due to parasitic takeovers and that the parasitic laying workers are an important life history strategy more frequently used than in providing a native queen to rescue the colony. Parasitism by foreign queens, which might enter colonies alone or accompanied by only a small worker force is much more frequent than previously considered and constitutes an additional life history strategy in Cape honeybees.  相似文献   

9.
We report the results of a comprehensive investigation of the queen size dimorphism in the North American ant Leptothorax rugatulus. Employing allozymes and microsatellites as genetic markers, we found no evidence that the gene pools of large (macrogynes) and small (microgynes) queens are distinct. Queens in polygynous colonies are related to each other, supporting the hypothesis that colonies with more than one queen commonly arise by the adoption of daughter queens into their natal colonies. The higher fat content of macrogynes, their predominance in monogynous societies and in small founding colonies, and their greater flight activity favor the view that macrogynes predominantly found colonies independently, while microgynes are specialized for dependent colony founding by readoption. When comparing the genetic structure of three different subpopulations, we found that the alternative life histories had no significant effect on population viscosity at the scale investigated.  相似文献   

10.
Summary Multiple mating by queens in social Hymenoptera with single locus sex determination may be an adaptation to reduce the effect of genetic load caused by the production of diploid males, if there is a concave relationship between queen fitness and the proportion of diploid male offspring in the colony. In this situation queens should be selected to reduce the variance in the production of diploid male offspring by multiple mating. It has been suggested that this concave relationship occurs in species such as the honey bee, Apis mellifera, in which reproduction occurs near the peak of colony population. This paper suggests that the timing of diploid male removal may influence mating frequency, with early removal of diploid males favoring multiple mating and late removal of diploid males favoring single mating. This idea is explored in two ways. A mathematical model shows that cell use in the brood area of species that rear young in cells will be more efficient with multiple mating. This would favor multiple mating in species, such as the honey bee, in which brood rearing is constrained by the usable area of the brood chamber. Secondly, comparison of polyandrous honey bees (early removal of diploid males as young larvae) with monandrous fire ants, Solenopsis invicta, and Melipona bees (non-removal of immature diploid males) suggests that in the species without diploid male removal, variance reduction may reduce queen fitness. Suggestions are made for testing this hypothesis.  相似文献   

11.
Social Hymenoptera are general models for the study of parent-offspring conflict over sex ratio, because queens and workers frequently have different reproductive optima. The ant Pheidole pallidula shows a split distribution of sex ratios with most of the colonies producing reproductives of a single sex. Sex ratio specialization is tightly associated with the breeding system, with single-queen (monogynous) colonies producing male-biased brood and multiple-queen (polygynous) colonies female-biased brood. Here, we show that this sex specialization is primarily determined by the queens influence over colony sex ratio. Queens from monogynous colonies produce a significantly more male-biased primary sex ratio than queens from polygynous colonies. Moreover, queens from monogynous colonies produce a significantly lower proportion of diploid eggs that develop into queens and this is associated with lower rate of juvenile hormone (JH) production compared to queens from polygynous colonies. These results indicate that queens regulate colony sex ratio in two complementary ways: by determining the proportion of female eggs laid and by hormonally biasing the development of female eggs into either a worker or reproductive form. This is the first time that such a dual system of queen influence over colony sex ratio is identified in an ant.  相似文献   

12.
Lack of kin recognition in swarming honeybees ( Apis mellifera )   总被引:2,自引:0,他引:2  
Honeybee colonies reproduce by colony fission and swarming. The primary swarm leaves the nest with the mated mother queen. Further “after-swarms” can leave the nest. These are composed of virgin queens and sister workers. Since all workers in the primary swarm have the same relationship to the mother queen, kin recognition cannot have any effect on the worker distribution in the swarm. Because of polyandry of the mother queen, the after-swarm is composed of super- and halfsister workers of the virgin queen. In this case kin recognition might affect swarm composition if workers increase their inclusive fitness by preferentially investing in a supersister queen. The distribution of workers in the mother colony, the primary and the after-swarm was analyzed using single-locus DNA fingerprinting in two colonies of the honeybee (Apis mellifera). The colonies were composed of 21 and 24 worker subfamilies because of multiple mating of the queen. The subfamily distribution in the mother colonies before swarming was significantly different from the subfamily frequencies in the primary swarm. This indicates different propensities for swarming in the various subfamilies. The subfamily distribution was also significantly different between the mother colony and the after-swarm. There was however no significant difference between the subfamily composition of the primary and the after-swarm. The average effects of kin recognition on the distribution of the subfamilies in the two after-swarms were less than 2%. We conclude that colony-level selection sets the evolutionary framework for swarming behaviour. Received: 22 May 1996 / Accepted after revision: 2 November 1996  相似文献   

13.
The evolution of polyandry is a central problem in the study of insect mating systems, and both material and genetic benefits have been proposed to offset the presumed costs of multiple mating. Although most eusocial Hymenoptera queens mate with just one or occasionally two males, high levels of polyandry are exhibited by several taxa, including seed-harvester ants of the genus Pogonomyrmex. Previous studies of queen mating frequency in Pogonomyrmex have focused on monogynous (one queen per colony) species in the subgenus Pogonomyrmex. We performed a genetic mother–offspring analysis of mating frequency in Pogonomyrmex (Ephebomyrmex) pima, a queen-dimorphic species with dealate and intermorph queens that differ in colony structure (intermorph colonies contain multiple queens). Our results demonstrate that both dealate and intermorph queens of P. (E.) pima are typically single maters, unlike their congeners analyzed thus far. Polyandry appears to be a derived trait in Pogonomyrmex, but comparative tests between P. (E.) pima queen morphs and across the genus provide no evidence that it evolved as an adaptation to increase genetic diversity within colonies or to obtain more sperm, respectively.  相似文献   

14.
Summary The colony founding characteristics of newly mated fire ant queens from monogyne colonies were studied in the field and in the laboratory under haplo- and pleometrotic conditions. Initial queen weight (live) was not correlated with subsequent progeny production. During founding, queens lost a mean of 54% of their lean weight, 73% of their fat weight and 67% of their energy content. The percentage of fat decreased from 44% to 33%. Queens lost weight or energy in relation to the amount of progeny they produced (Figs. 1, 2). The efficiency of the conversion of queen to progeny increased as more progeny were produced, leading to a decline in the unit cost of progeny (Fig. 3). The more minims a queen produced, the lower the mean weight of these minims and the faster they developed (Fig. 4). In a field experiment on pleometrotic founding, total brood increased with queen number, peaked between four and seven queens and declined with 10 queens (Fig. 5). Brood developed faster at the sunny, warmer site, but total production and queen survival was higher at the shady site. As queen density increased, production per queen decreased as a negative exponential in which the exponent estimated sensitivity of brood production to queen-crowding and the constant estimated the production by solo queens (Fig. 9). These effects of queen number were confirmed in laboratory experiments. The decrease of production per queen was small and not always detectable during the egg-laying phase, but brood attrition was always strong during the larval period and increased with queen number (Figs. 8, 10). While airborne factors may have contributed to this inhibition, most of the brood reduction was due to other causes, probably cannibalism. For a given number of minims, increased queen number increased the mean weight of these minims, an effect that resulted both from a lower minim production per queen and from cannibalism of dead queens by survivors (Fig. 11). Cannibal queens lost much less weight to produce a given number of minims than unfed control queens, and these minims were heavier (Fig. 12).  相似文献   

15.
Summary Three experiments were performed to determine whether brood care in honey bee colonies is influenced by colony genetic structure and by social context. In experiment 1, there were significant genotypic biases in the relative likelihood of rearing queens or workers, based on observations of individually labeled workers of known age belonging to two visually distinguishable subfamilies. In experiment 2, no genotypic biases in the relative likelihood of rearing drones or workers was detected, in the same colonies that were used in experiment 1. In experiment 3, there again were significant genotypic differences in the likelihood of rearing queens or workers, based on electrophoretic analyses of workers from a set of colonies with allozyme subfamily markers. There also was an overall significant trend for colonies to show greater subfamily differences in queen rearing when the queens were sisters (half- and super-sisters) rather than unrelated, but these differences were not consistent from trial to trial for some colonies. Results of experiments 1 and 3 demonstrate genotypic differences in queen rearing, which has been reported previously based on more limited behavioral observations. Results from all three experiments suggest that genotypic differences in brood care are influenced by social context and may be more pronounced when workers have a theoretical opportunity to practice nepotism. Finally, we failed to detect persistent interindividual differences in bees from either subfamily in the tendency to rear queen brood, using two different statistical tests. This indicates that the probability of queen rearing was influenced by genotypic differences but not by the effect of prior queen-rearing experience. These results suggest that subfamilies within a colony can specialize on a particular task, such as queen rearing, without individual workers performing that task for extended periods of time.  相似文献   

16.
Queen mating frequency of the facultatively polygynous ant Acromyrmex echinatior was investigated by analysing genetic variation at an (AG)n repeat microsatellite locus in workers and sexuals of 20 colonies from a single Panamanian population. Thirteen colonies were found to be monogynous, 5 colonies contained multiple queens, whereas the queen number of 2 colonies remained unresolved. Microsatellite genotypes indicated that 12 out of 13 queens were inseminated by multiple males (polyandry). The mean queen mating frequency was 2.53 and the mean genetically effective paternity frequency was 2.23. These values range among the highest found in ants, and the results are in keeping with the high mating frequencies reported for other species of leafcutter ants. Consistent skew in the proportional representation of different patrilines within colonies was found, and this remained constant in two consecutive samples of offspring. Dissections showed that all examined queens from multiple-queen colonies were mated egg-layers. The mean relatedness value among nestmate workers in polygynous colonies was lower than that for monogynous colonies. No diploid males were detected in a sample of 70 genotyped males. Worker production of males was detected in one queenless colony. We discuss our findings in relation to known patterns of multiple maternity and paternity in other eusocial Hymenoptera. Received: 2 September 1998 / Received in revised form: 3 February 1999 / Accepted: 7 February 1999  相似文献   

17.
The fitness of a social insect colony depends greatly on the quality (i.e., mating ability, fecundity, and offspring viability) of its queen(s). In honeybees, there is marked variation in the quality of young queens that compete in a series of lethal duels to replace a colonys previous queen. Workers interact with queens during these duels and could increase their inclusive fitness by biasing the outcomes of the duels in favor of high-quality queens. We predicted that workers will have more antagonistic interactions (chasing, grabbing, clamping) and fewer beneficent interactions (feeding, grooming) with low-quality than high-quality queens. To test this prediction, we reared queens from 0-day-old, 2-day-old, and 3-day-old worker larvae in observation colonies undergoing queen replacement, thus producing high-quality, low-quality, and very low-quality queens, respectively. Immediately after each queen emerged, we observed her for 1 h to record her interactions with the workers. Subsequent morphological measurement of the queens confirmed that initial larval age had a significant effect on queen quality. However, there was no consistent effect of queen quality on the rates of worker–queen interactions, thus falsifying our hypothesis. The mean power of our tests was high (0.599), therefore the probability of a type II error (a false negative) is low. We conclude that if workers actively select high-quality queens, then they do so prior to queen duels, during queen development. We suggest that each worker–queen interaction has a distinct adaptive significance rather than forming a suite of behavior that favors particular queens (e.g., chasing repels any queen that approaches a queen cell, thus protecting all queen cells from destruction).Communicated by M. Giurfa  相似文献   

18.
Using four polymorphic microsatellite loci, we found that four Apis andreniformis queens collected in Thailand each mated at least 10–20 times, producing an average relatedness, g ww, of workers of 0.30 ± 0.007, and an average effective number of matings of 9.1 ± 2.2. The degrees of polyandry and intra-colonial genetic relatedness in A. andreniformis are similar to those in A. mellifera, slightly more than in A. florea, and up to 6 times less than in A. dorsata. We argue that while presently favoured hypotheses for the evolution of polyandry in monogynous social insects may adequately explain the evolution of up to five or six matings, they are inadequate to explain the extreme polyandry (10–60 matings) observed in Apis. One alternative possibility is that colony fitness is a non-additive function of the fitness of individual subfamilies. Such behavioral over-dominance may mean that queen fitness is increased by high levels of polyandry, which increase the probability of desirable combinations of worker genotypes occurring in one colony. The special attributes of honey bees which may lead to behavioral over-dominance include colony aggregation (which may increase the incidence of disease), and frequent long-distance migration. Received: 8 May 1996/Accepted after revision: 9 August 1996  相似文献   

19.
Wild bumblebee colonies are hard to find and often inaccessible, so there have been few studies of the genetic structure of bumblebees within natural colonies, and hence, it is not clear how frequently events such as worker reproduction, worker drift and queen usurpation take place. This study aimed to quantify the occurrence of natal-worker reproduction, worker drift and drifter reproduction within 14 wild colonies of Bombus terrestris in Central Scotland. Four unlinked microsatellites were used to identify patterns of relatedness of the colonies’ adults and broods. In colonies with queens (queenright colonies), worker reproduction accounted for just 0.83 % of males, increasing to 12.11 % in queenless colonies. Four colonies contained a total of six workers which were not daughters of the queen, and were assumed to be drifters, and four male offspring of drifters. Drifting is clearly not common and results in few drifter offspring overall, although drifters produced approximately seven times more offspring per capita than workers that remained in their natal colony. Unexpectedly, two colonies contained clusters of sister workers and juvenile offspring that were not sisters to the rest of the adults or brood found in the colonies, demonstrating probable egg dumping by queens. A third colony contained a queen which was not a sister or daughter to the other bees in the colony. Although usurping of bumblebee colonies by queens in early season is well documented, this appears to be the first record of egg dumping, and it remains unclear whether it is being carried out by old queens or newly mated young queens.  相似文献   

20.
Summary ecological aspects of monogyny and polygyny in social insect colonies are important in comparing individual queen reproductive success. Inseminated, fecund, multiple foundresses are common in some groups of ants and eusocial wasps, but true polygyny in termites has not previously been studied. One third of Nasutitermes corniger (Isoptera: Termitidae) colonies sampled in areas of young second growth in Panama contained from 2–33 primary queens (not supplementary or neotenic reproductives). All queens in polygynous associations were fully pigmented, physogastric egg layers within a single royal cell. Multiple kings were found less frequently; true polyandry is apparently restricted to immature polygynous colonies.Data on queen weight and morphological features, and on colony composition, show that queens in polygynous nests are young and that a transition from polygyny to monogyny probably occurs after several years. The escalated growth rate of multiple queen colonies removes them from the vulnerable incipient colony size class more rapidly than colonies initiated by a single foundress, and gives them sufficient neuter support staff (workers and soldiers) to enable earlier production of fertile alates. Using a population model (Leslie matrix) I construct isoclines of equal population growth which show values of early age class probability of survival and reproductive output favoring monogyny or polygyny under individual selection. This model of queen mutualism accounts for the risk of a female in a polygynous group not succeeding as the final surviving queen.Multiple primary queens are considered rare in termites, but a review of the literature demonstrates that they may be more widespread than is currently recognized. Polygyny in termites has received scant attention but is of significance as an example of a further ecological and evolutionary convergence between the phylogenetically independent orders Isoptera and Hymenoptera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号